ORGANIC CHEMISTRY

CARBONYL COMPOUND

1. In the following reactions, $\mathbf{P}, \mathbf{Q}, \mathbf{R}$, and \mathbf{S} are the major products.
[JEE(Advanced) 2023]

The correct statement(s) about $\mathbf{P}, \mathbf{Q}, \mathbf{R}$, and \mathbf{S} is(are)
(A) Both \mathbf{P} and \mathbf{Q} have asymmetric carbon(s).
(B) Both \mathbf{Q} and \mathbf{R} have asymmetric carbon(s).
(C) Both \mathbf{P} and \mathbf{R} have asymmetric carbon(s).
(D) \mathbf{P} has asymmetric carbon(s), \mathbf{S} does not have any asymmetric carbon.
2. In the reaction scheme shown below \mathbf{Q}, \mathbf{R} and \mathbf{S} are the major products.
[JEE(Advanced) 2020]

The correct structure of
(A) S is

(B) \mathbf{Q} is

(C) \mathbf{R} is

(D) S is

3. Choose the correct option(s) for the following set of reactions
[JEE(Advanced) 2019]

$$
\begin{aligned}
& \begin{array}{lll}
\mathbf{C}_{6} \mathbf{H}_{\mathbf{1 0}} \mathbf{O} \mathbf{O} \\
\text { ii) } \mathrm{H}_{2} \mathrm{O} \\
\text { i) } \mathrm{MeMgBr}
\end{array} \quad \begin{array}{l}
\text { Q } \xrightarrow{\text { Conc. } \mathrm{HCl}} \xrightarrow{\mathbf{S}} \underset{\text { (major) }}{ }{ }^{20 \% \mathrm{H}_{3} \mathrm{PO}_{4}, 360 \mathrm{~K}}
\end{array} \\
& \underset{\text { (major) }}{\mathbf{T}} \stackrel{\stackrel{\text { ii) } \mathrm{H}_{2}, \mathrm{Ni}}{\stackrel{\mathrm{ii}}{2} \mathrm{Br}_{2}, \mathrm{~h} v}}{\text { (major) }} \underset{\Delta}{\mathbf{R}} \xrightarrow[\Delta]{\text { HBr, benzoyl peroxide }} \underset{\text { (major) }}{\mathbf{U}}
\end{aligned}
$$

(A)

(B)

(C)

(D)

4. The reaction(s) leading to the formation of 1,3,5-trimethylbenzene is (are)
[JEE(Advanced) 2018]
(A)

(B)

(C)

1) $\mathrm{Br}_{2}, \mathrm{NaOH}$
$\xrightarrow[\text { 3) sodalime, } \Delta]{\text { 2) } \mathrm{H}_{3} \mathrm{O}^{+}}$
(D)

5. In the following reaction sequence, the amount of D (in g) formed from 10 moles of acetophenone is \qquad .
(Atomic weight in $\mathrm{g} \mathrm{mol}^{-1}: \mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Br}=80$. The yield (\%) corresponding to the product in each step is given in the parenthesis)
[JEE(Advanced) 2018]

6. Positive Tollen's test is observed for
[JEE(Advanced) 2016]
(A)

(B)

(C)

(D)

7. The major product of the following reaction sequence is :
[JEE(Advanced) 2016]

(A)

(B)

(C)

(D)

8. Reagent(s) which can be used to bring about the following transformation is(are)
[JEE(Advanced) 2016]

(A) LiAlH_{4} in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$
(B) BH_{3} in THF
(C) NaBH_{4} in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(D) Raney Ni/ H_{2} in THF
9. The major product of the following reaction is -
[JEE(Advanced) 2015]

(A)

(B)

(C)

(D)

10. Among the following the number of reaction(s) that produce(s) benzaldehyde is -
[JEE(Advanced) 2015]
I.

II.

III.

IV.

Paragraph For Questions No. 11 and 12
In the following reaction

11. Compound X is :
(A)

(B)

(C)

(D)

12. The major compound Y is :
(A)

(B)

(C)

(D)

SOLUTIONS

1. Ans. (C, D)

Sol. Formation of \mathbf{P}

Formation of Q

Formation of \mathbf{R}

(R)

Formation of S

(S) No asymmetric carbon
2. Ans. (B, D)

Sol.

(R)
(1) $\mathrm{CH}_{3} \mathrm{MgBr}$
(2) $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}$

3. Ans. (B, D)

Sol.

4. Ans. (A, B, D)

Sol. (A)

(B)

(C)

(D)

5. Ans. (495)

Sol.

6. Ans. (A, B, C)

Sol. Tollens's test is given by compounds having aldehyde group. Also α-hydroxy carbonyl gives positive tollen's test.
(A)

Acraldehyde
(B)

Benzaldehyde
(C)

Benzoin
(D)

7. Ans. (A)

Sol.

8. Ans. (C, D)

Sol.

LiAlH_{4} in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$; BH_{3} in (THF) ; Raney $\mathrm{Ni}\left(\mathrm{H}_{2}\right)$ either can reduce all functional group or can reduce some of the functional group of the compound given above in reactant side.
But NaBH_{4} is example of selective reducing agent. It can not reduce $-\mathrm{C}-\mathrm{O}-$ (ester group) -Cl
(carboxylic acid group),
 (epoxide group), but reduces $-\mathrm{CH}=\mathrm{O}$ (aldehyde group)into $-\mathrm{CH}_{2} \mathrm{OH}$ (1° alcohol)
9. Ans. (A)

Sol.

$\xrightarrow[\text { 2. } \mathrm{H}^{+}, \Delta]{\text { 1. } \mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}}$

(Aldol condensation product)
Mechanism :

10. Ans. (4)

Sol. I.

this reaction is called Gattermann koch synthesis
II.

III.

this reaction is called Rosenmund reduction
IV.

11. Ans. (C)

Sol.

12. Ans. (D)

Sol.

