## ORGANIC CHEMISTRY

## AROMATIC COMPOUND

1. Consider the following reaction scheme and choose the correct option(s) for the major products $\mathbf{Q}, \mathbf{R}$ and $\mathbf{S}$.
[JEE(Advanced) 2023]

(A)

Q

R

s
(B)

Q

R
S
(C)

Q

s
(D)

Q

R

S
2. In the given reaction scheme, $\mathbf{P}$ is a phenyl alkyl ether, $\mathbf{Q}$ is an aromatic compound; $\mathbf{R}$ and $\mathbf{S}$ are the major products.
[JEE(Advanced) 2023]


The correct statement about $\mathbf{S}$ is
(A) It primarily inhibits noradrenaline degrading enzymes.
(B) It inhibits the synthesis of prostaglandin.
(C) It is a narcotic drug.
(D) It is ortho-acetylbenzoic acid.
3. The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match List-I with List-II and choose the correct option.
[JEE(Advanced) 2023]

## List-I

(P) Etard reaction
(1)
(2)

Toluene $\xrightarrow[\text { (ii) } \mathrm{SOCl}_{2}]{\text { (i) } \mathrm{KMnO}_{4}, \mathrm{KOH}, \Delta}$
(3)

Benzene $\xrightarrow[\text { anhyd. } \mathrm{AlCl}_{3}]{\mathrm{CH}_{3} \mathrm{Cl}}$
(S) Rosenmund reduction
(4)

Aniline $\xrightarrow[273-278 \mathrm{~K}]{\mathrm{NaNO}_{2} / \mathrm{HCl}}$
(5)

Phenol $\xrightarrow{\mathrm{Zn}, \Delta}$
(A) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 3$
(B) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 5 ; \mathrm{S} \rightarrow 2$
(C) $\mathrm{P} \rightarrow 3$; $\mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 1$; $\mathrm{S} \rightarrow 4$
(D) $\mathrm{P} \rightarrow 3$; Q $\rightarrow 4$; $\mathrm{R} \rightarrow 5$; $\mathrm{S} \rightarrow 2$

## "Paragraph II" for Question No. 4

A trinitro compound, 1, 3,5 tris-(4-nitrophenyl) benzene, on complete reaction with an excess of $\mathrm{Sn} / \mathrm{HCl}$ gives major product, which on treatment with an excess of $\mathrm{NaNO}_{2} / \mathrm{HCl}$ at $0^{\circ} \mathrm{C}$ provides $\mathbf{P}$ as the product. $\mathbf{P}$, upon treatment with excess of $\mathrm{H}_{2} \mathrm{O}$ at room temperature, gives the product $\mathbf{Q}$. Bromination of $\mathbf{Q}$ in aqueous medium furnishes the product $\mathbf{R}$. The compound $\mathbf{P}$ upon treatment with an excess of phenol under basic conditions gives the product $\mathbf{S}$.
The molar mass difference between compounds $\mathbf{Q}$ and $\mathbf{R}$ is $474 \mathrm{~mol}^{-1}$ and between compounds $\mathbf{P}$ and $\mathbf{S}$ is $172.5 \mathrm{~g} \mathrm{~mol}^{-1}$.
[JEE(Advanced) 2023]
4. The number of heteroatoms present in one molecule of $\mathbf{R}$ is $\qquad$ .
[Use: Molar mass (in g mol ${ }^{-1}$ ): $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Br}=80, \mathrm{Cl}=35.5$
Atoms other than C and H are considered as heteroatoms]

## "Paragraph II" for Question No. 5

A trinitro compound 1, 3, 5 tris-(4-nitrophenyl) benzene, on complete reaction with an excess of $\mathrm{Sn} / \mathrm{HCl}$ gives major product, which on treatment with an excess of $\mathrm{NaNO}_{2} / \mathrm{HCl}$ at $0^{\circ} \mathrm{C}$ provides $\mathbf{P}$ as the product. $\mathbf{P}$, upon treatment with excess of $\mathrm{H}_{2} \mathrm{O}$ at room temperature, gives the product $\mathbf{Q}$. Bromination of $\mathbf{Q}$ in aqueous medium furnishes the product $\mathbf{R}$. The compound $\mathbf{P}$ upon treatment with an excess of phenol under basic conditions gives the product $\mathbf{S}$.
The molar mass difference between compounds $\mathbf{Q}$ and $\mathbf{R}$ is $474 \mathrm{~mol}^{-1}$ and between compounds $\mathbf{P}$ and $\mathbf{S}$ is $172.5 \mathrm{~g} \mathrm{~mol}^{-1}$.
[JEE(Advanced) 2023]
5. The total number of carbon atoms and heteroatoms present in one molecule of $\mathbf{S}$ is $\qquad$ .
[Use: Molar mass in $\mathrm{g} \mathrm{mol}^{-1}$ ]: $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Br}=80, \mathrm{Cl}=35.5$
Atoms other than C and H are considered as heteroatoms
6. If the reaction sequence given below is carried out with 15 moles of acetylene, the amount of the product D formed (ing) is $\qquad$ -.


The yields of $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and $\mathbf{D}$ are given in parentheses.
[Given : Atomic mass of $\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16, \mathrm{Cl}=35$ ]
[JEE(Advanced) 2022]
7. Considering the following reaction sequence, the correct statement(s) is(are)
[JEE(Advanced) 2022]

(A) Compounds $\mathbf{P}$ and $\mathbf{Q}$ are carboxylic acids.
(B) Compound S decolorizes bromine water.
(C) Compounds $\mathbf{P}$ and $\mathbf{S}$ react with hydroxylamine to give the corresponding oximes.
(D) Compound $\mathbf{R}$ reacts with dialkylcadmium to give the corresponding tertiary alcohol.
8. Consider the following transformations of a compound $\mathbf{P}$.


Choose the correct option(s).
[JEE(Advanced) 2020]
(A) $\mathbf{P}$ is

(B) $\mathbf{X}$ is $\mathrm{Pd}-\mathrm{C} /$ quinoline $/ \mathrm{H}_{2}$
(C) $\mathbf{P}$ is

(D) $\mathbf{R}$ is

9. Consider the reaction sequence from $\mathbf{P}$ to $\mathbf{Q}$ shown below. The overall yield of the major product $\mathbf{Q}$ from $\mathbf{P}$ is $75 \%$. What is the amount in grams of $\mathbf{Q}$ obtained from 9.3 mL of $\mathbf{P}$ ?
(Use density of $\mathbf{P}=1.00 \mathrm{~g} \mathrm{~mL}^{-1}$, Molar mass of $\mathrm{C}=12.0, \mathrm{H}=1.0, \mathrm{O}=16.0$ and $\mathrm{N}=14.0 \mathrm{~g} \mathrm{~mol}^{-1}$ )
[JEE(Advanced) 2020]

10. Choose the correct option(s) for the following reaction sequence


Consider Q, R and S as major products
[JEE(Advanced) 2019]
(A)


Q


S
(B)


Q

R
(C)



S
(D)


R


S

## Paragraph for Question No. 11 \& 12

The reaction of compound P with $\mathrm{CH}_{3} \mathrm{MgBr}$ (excess) in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ followed by addition of $\mathrm{H}_{2} \mathrm{O}$ gives
$\mathbf{Q}$, The compound $\mathbf{Q}$ on treatment with $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $0^{\circ} \mathrm{C}$ gives $\mathbf{R}$. The reaction of $\mathbf{R}$ with $\mathrm{CH}_{3} \mathrm{COCl}$ in the presence of anhydrous $\mathrm{AlCl}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by treatment with $\mathrm{H}_{2} \mathrm{O}$ produces compounds S .
[Et it compounds $\mathbf{P}$ is ethyl group]

11. The reactions, $\mathbf{Q}$ to $\mathbf{R}$ and $\mathbf{S}$ to $\mathbf{S}$, are -
(A) Dehydration and Friedel-Crafts acylation
(B) Friedel-Crafts alkylation, dehydration and Friedel-Crafts acylation
(C) Aromatic sulfonation and Friedel-Crafts acylation
(D) Friedel-Crafts alkylation and Fridel-Crafts acylation
12. The product $\mathbf{S}$ is -
[JEE(Advanced) 2017]
(A)

(B)

(C)

(D)

13. Among the following reaction(s) which gives (give) tert-butyl benzene as the major product is(are)
[JEE(Advanced) 2016]
(A)

(B)

(C)

(D)


## Paragraph For Q. 14 \& Q. 15

Treatment of compound $\mathbf{O}$ with $\mathrm{KMnO}_{4} / \mathrm{H}^{+}$gave $\mathbf{P}$, which on heating with ammonia gave $\mathbf{Q}$. The compound $\mathbf{Q}$ on treatment with $\mathrm{Br}_{2} / \mathrm{NaOH}$ produced $\mathbf{R}$. On strong heating, $\mathbf{Q}$ gave $\mathbf{S}$, which on further treatmenet with ethyl 2-bromopropanoate in the presence of KOH following by acidification, gave a compound $\mathbf{T}$.
[JEE(Advanced) 2016]

(O)
14. The compound $\mathbf{R}$ is :
(A)

(B)

(C)

(D)

15. The compound $\mathbf{T}$ is:
(A) Glycine
(B) Alanine
(C) Valine
(D) Serine
16. In the following reactions, the product $S$ is -
[JEE(Advanced) 2015]

(A)

(B)

(C)

(D)

17. For the identification of $\beta$-naphthol using dye test, it is necessary to use
[JEE(Advanced) 2014]
(A) dichloromethane solution of $\beta$-naphthol
(B) acidic solution of $\beta$-naphthol
(C) neutral solution of $\beta$-naphthol
(D) alkaline solution of $\beta$-naphthol

## SOLUTIONS

1. Ans. (B)

Sol.

2. Ans. (B)

Sol. P is phenyl alkyl ether
Q is aromatic compound
R and S are the major product
i.e.




(Aspirin)
Pain killer
Acetyl salicylic acid
(Non-narcotic analgesic)
Aspirin inhibits the synthesis of chemicals known as prostaglandin's.
3. Ans. (D)

Sol. $\mathrm{P} \rightarrow 3, \mathrm{Q} \rightarrow 4, \mathrm{R} \rightarrow 5, \mathrm{~S} \rightarrow 2$
(i)


Acetophenone
(ii)

(iii)

(iv)


Gattermann reaction
(Q)
(v)



Gattermann Koch reaction
( R )
4. Ans. (9.00)
5. Ans. (51.00)

Sol. Common solution for Q.No. 4 and 5

6. Ans. (135.80-136.20)

Sol.

7. Ans. (A, B, C or A, C)

Sol.



8. Ans. (B, C)

Sol.

9. Ans. (18.60)

Sol.



Molecular weight of
aniline $=$ M.wt. of $\mathrm{C}_{6} \mathrm{NH}_{7}$

$$
=72+7+14=93
$$

density of $\mathrm{P}=1 \mathrm{gm} \mathrm{ml}^{-1}$
9.3 ml of $\mathrm{P}=9.3 \mathrm{gm} \mathrm{P}$
$=\frac{9.3}{9.3}=0.1 \mathrm{~mole} \mathrm{P}$

The mole ratio $\mathrm{PhNH}_{2}: \mathrm{PhN}_{2}{ }^{+}$:

= $1: 1: 1$
so the mole of Q formed will be 0.1 mole and extent of reaction is $100 \%$ but if it is $75 \%$ yield.
Then amount of $\mathrm{Q}=0.1 \times \frac{75}{100}=0.075 \mathrm{~mol}$
The molecular formula of $\mathrm{Q}=\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ON}_{2}$
so M.wt. of $\mathrm{Q}=16 \times 12+12 \times 1+16+2 \times 14$
$=192+12+16+28$
$=248 \mathrm{gm}$
so amount of $\mathrm{Q}=248 \times 0.075$
$=18.6 \mathrm{gm}$
10. Ans. $(B, D)$

Sol.


## 11. Ans.(B)

Sol.

12. Ans. (D)

Sol.


(S)
13. Ans. (B, C, D)

Sol.

$3^{\circ}$ alkyl bromide



(D)

14. Ans. (A)
15. Ans. (B)

## Solution for Q. 14 \& 15




Q to R is Hoffmann's bromamide degradation reaction
S to T is Gabriel's phthalimide sysnthesis
16. Ans. (A)

Sol.

17. Ans. (D)

Sol. In alkaline medium the activating nature of - OH group increases and the rate of electrophilic substitution (Coupling Reaction) increases on aromatic ring.

-OH group converts to $-\mathrm{O}^{\Theta}$
Electron releasing nature of $-\mathrm{O}^{\ominus}$ is more than -OH
Nucleophilicity of $\beta$-napthol increases in basic medium


