INORGANIC CHEMISTRY

SALT ANALYSIS

1. In the scheme given below, **X** and **Y**, respectively, are [JEE(Advanced) 2023]

Metal halide
$$\xrightarrow{\text{aq. NaOH}}$$
 White precipitate (**P**) + Filtrate (**Q**)

$$\mathbf{P} \xrightarrow{\text{aq. H}_2SO_4 \atop \text{PbO}_2(\text{excess})} \mathbf{X} \text{ (a coloured species in solution)}$$

$$\mathbf{Q} \xrightarrow{\text{Conc. H}_2SO_4 \atop \text{warm}} \mathbf{Y} \text{ (gives blue-coloration with KI-starch paper)}$$

(A) CrO_4^{2-} and Br_2

(B) MnO_4^{2-} and Cl_2

(C) MnO₄ and Cl₂

- (D) MnSO₄ and HOCl
- 2. A mixture of two salts is used to prepare a solution S, which gives the following results:

The correct option(s) for the salt mixture is(are)

[JEE(Advanced) 2021]

(A) $Pb(NO_3)_2$ and $Zn(NO_3)_2$

(B) $Pb(NO_3)_2$ and $Bi(NO_3)_3$

(C) AgNO₃ and Bi(NO₃)₃

(D) $Pb(NO_3)_2$ and $Hg(NO_3)_2$

Paragraph for Q. No. 3 and 4

The reaction of K₃[Fe(CN)₆] with freshly prepared FeSO₄ solution produces a dark blue precipitate called Turnbull's blue. Reaction of $K_4[Fe(CN)_6]$ with the FeSO₄ solution in complete absence of air produces a white precipitate X, which turns blue in air. Mixing the FeSO₄ solution with NaNO₃, followed by a slow addition of concentrated H₂SO₄ through the side of the test tube produces a brown ring.

[JEE(Advanced) 2021]

- **3.** Precipitate X is
 - (A) $Fe_4[Fe(CN)_6]_3$
- (B) $Fe[Fe(CN)_6]$
- (C) $K_2Fe[Fe(CN)_6]$
- (D) KFe[Fe(CN)₆]
- 4. Among the following, the brown ring is due to the formation of
 - (A) $[Fe(NO)_2(SO_4)_2]^{2-}$ (B) $[Fe(NO)_2(H_2O)_4]^{3+}$ (C) $[Fe(NO)_4(SO_4)_2]$
- (D) $[Fe(NO)(H_2O)_5]^{2+}$
- 5. A colorless aqueous solution contains nitrates of two metals, X and Y. When it was added to an aqueous solution of NaCl, a white precipitate was formed. This precipitate was found to be partly soluble in hot water to give a residue P and a solution Q. The residue P was soluble in aq. NH₃ and also in excess sodium thiosulfate. The hot solution Q gave a yellow precipitate with KI. The metals X and Y, respectively, are [JEE(Advanced) 2020]
 - (A) Ag and Pb
- (B) Ag and Cd
- (C) Cd and Pb
- (D) Cd and Zn

Choose the correct statement(s) among the following.

[JEE(Advanced) 202

- (A) SnCl₂.2H₂O is a reducing agent.
- (B) SnO₂ reacts with KOH to form K₂[Sn(OH)₆].
- (C) A solution of PbCl₂ in HCl contains Pb²⁺ and Cl⁻ions.
- (D) The reaction of Pb₃O₄ with hot dilute nitric acid to give PbO₂ is a redox reaction.
- 7. The green colour produced in the borax bead test of a chromium(III) salt is due to –

[JEE(Advanced) 2019]

- (A) $Cr(BO_2)_3$
- (B) CrB
- (C) $Cr_2(B_4O_7)_3$
- (D) Cr_2O_3
- The correct option(s) to distinguish nitrate salts of Mn²⁺ and Cu²⁺ taken separately is (are):-8.

[JEE(Advanced) 2018]

- (A) Mn²⁺ shows the characteristic green colour in the flame test
- (B) Only Cu²⁺ shows the formation of precipitate by passing H₂S in acidic medium
- (C) Only Mn²⁺ shows the formation of precipitate by passing H₂S in faintly basic medium
- (D) Cu²⁺/Cu has higher reduction potential than Mn²⁺/Mn (measured under similar conditions)
- The reagent(s) that can selectively precipiate S^{2-} from a mixture of S^{2-} and SO_4^{2-} in aqueous soltuion 9. [JEE(Advanced) 2016] is(are):
 - (A) CuCl₂

(B) BaCl₂

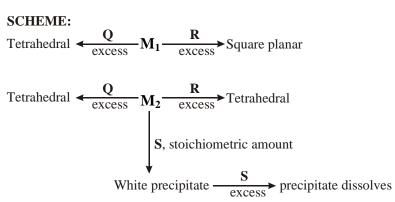
(C) Pb(OOCCH₃)₂

- (D) Na₂[Fe(CN)₅NO]
- 10. In the following reaction sequence in aqueous soluiton, the species X, Y and Z respectively, are –

[JEE(Advanced) 2016]

$$S_2O_3^{2-} \xrightarrow{Ag^+} X \xrightarrow{Ag^+} Y \xrightarrow{With time} Z$$
clear white black solution precipitate precipitate

- (A) $[Ag(S_2O_3)_2]^{3-}$, $Ag_2S_2O_3$, Ag_2S (B) $[Ag(S_2O_3)_3]^{5-}$, Ag_2SO_3 , Ag_2S
- (C) $[Ag(SO_3)_2]^{3-}$, $Ag_2S_2O_3$, Ag
- (D) $[Ag(SO_3)_3]^{3-}$, Ag_2SO_4 , Ag_3
- 11. The pair(s) of ions where BOTH the ions are precipitated upon passing H₂S gas in presence of dilute HCl, [JEE(Advanced) 2015] is(are)
 - (A) Ba^{2+} , Zn^{2+}


(B) Bi³⁺, Fe³⁺

(C) Cu²⁺. Ph²⁺

- (D) Hg²⁺, Bi³⁺
- Among PbS, CuS, HgS, MnS, Ag₂S, NiS, CoS, Bi₂S₃, and SnS₂ the total number of **BLACK** coloured 12. [JEE(Advanced) 2014] sulphides is

Paragraph for Q. 13 and Q. 14

An aqueous solution of metal ion M_1 reacts separately with reagents Q and R in excess to give tetrahedral and square planar complexes, respectively. An aqueous solution of another metal ion M_2 always forms tetrahedral complexes with these reagents. Aqueous solution of M_2 on reaction with reagent S gives white precipitate which dissolves in excess of S. The reactions are summarized in the sheme given below. [JEE(Advanced) 2014]

- 13. M_1 , Q and R, respectively are
 - (A) Zn²⁺, KCN and HCl

(B) Ni²⁺, HCl and KCN

(C) Cd²⁺, KCN and HCl

(D) Co²⁺, HCl and KCN

- **14.** Reagent S is
 - (A) $K_4[Fe(CN)_6]$
- (B) Na₂HPO₄
- (C) K₂CrO₄
- (D) KOH

SOLUTIONS

1. Ans. (C)

Sol.
$$MnCl_2 + NaOH \rightarrow Mn(OH)_2 \downarrow + NaCl$$
(P)
(white ppt.) (Filterate)

$$Mn(OH)_2 \xrightarrow{PbO_2 + H^+(H_2SO_4)} MnO_4^- + Pb^{2+}$$
Purple

$$Cl^- \xrightarrow{MnO(OH)_2/conc. H_2SO_4/D} Cl_2$$

2. Ans. (A, B)

Sol.
$$Pb(NO_3)_2 \xrightarrow{dil.HCl} PbCl_2 \downarrow$$
White Ppt.

$$Bi(NO_3)_3 \xrightarrow{dil.HCl} BiCl_3$$
 $Water$
Soluble

$$Hg(NO_3)_2 \xrightarrow{\text{dil.HCl}} HgCl_2$$
 $\underset{\text{Soluble}}{\text{Water}}$

$$AgNO_{3} \xrightarrow{\quad dil.HCl \quad} AgCl \downarrow \\ \quad White PPt.$$

$$Zn(NO_3)_2 \xrightarrow{\text{dil.HCl}} ZnCl_2$$
Water Solub le

$$Pb(NO_3)_2 \xrightarrow{NaOH(dil.)} Pb(OH)_2 \downarrow$$
White PPt.

$$\operatorname{Zn}(\operatorname{NO}_3)_2 \xrightarrow{\operatorname{NaOH(dil.)}} \operatorname{Zn}(\operatorname{OH})_2 \downarrow$$
White PPt.

$$Bi(NO_3)_3 \xrightarrow{NaOH(dil.)} Bi(OH)_3 \downarrow$$
White PPt.

$$AgNO_{3} \xrightarrow{\quad NaOH(dil.) \quad} Ag_{2}O$$

$$\xrightarrow{\quad Brown\ PPt.}$$

$$Hg\big(NO_3\big)_2 \xrightarrow{\quad NaOH(dil.) \quad} HgO \downarrow_{Yellow\,PPt.}$$

3. Ans. (C)

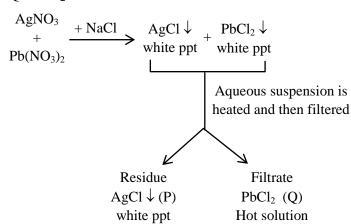
Sol.
$$K_4[Fe(CN)_6] \xrightarrow{FeSO_4 \atop absence \text{ of air}} K_2Fe[Fe(CN)_6]$$

White precipitate

air
$$Fe_{4}[Fe(CN)_{6}]_{3}$$
(Prussian Blue)

4. Ans. (D)

Sol. FeSO₄
$$\xrightarrow{\text{NaNO}_3}_{\text{slow addition of conc. H}_2\text{SO}_4}$$
 $\left[\text{Fe}(\text{H}_2\text{O})_5\,\text{NO}\right]\text{SO}_4$
(Brown Ring Complex)


5. Ans. (A)

Sol. X : Ag

P: AgCl

Y : Pb

 $Q : PbCl_2$

$$AgCl + 2NH_3$$
 solution $\rightarrow [Ag(NH_3)_2]Cl$

$$AgCl + 2Na_2S_2O_3$$
 solution $\rightarrow Na_3 [Ag(S_2O_3)_2] + NaCl$

$$PbCl_2 + 2KI \rightarrow PbI_2 \downarrow + 2KCl$$

Hot solution (yellow ppt)

(Q)

6. Ans. (A, B)

Sol. (A) SnCl₂.2H₂O is a reducing agent since Sn²⁺ tends to convert into Sn⁴⁺.

(B)
$$SnO_2 + 2KOH_{(aq.)} + 2H_2O \longrightarrow K_2[Sn(OH)_6]$$

(Base)

(C) First group cations (Pb²⁺) form insoluble chloride with HCl that is PbCl₂ however it is slightly soluble in water and therefore lead +2 ion is never completely precipitated on adding hydrochloric acid in test sample of Pb²⁺, rest of the Pb²⁺ ions are quantitatively precipitated with H₂S in acidic medium.

So that we can say that filtrate of first group contain solution of $PbCl_2$ in HCl which contains Pb^{2+} and Cl^- However in the presence of conc. HCl or excess HCl it can produce $H_2[PbCl_4]$

So, we can conclude A, B or A,B,C should be answers.

(D)
$$Pb_3O_4 + 4HNO_3 \longrightarrow PbO_2(\downarrow) + 2Pb(NO_3)_2 + 2H_2O$$
 $\underset{\text{(mixture of oxides)}}{\text{(mixture of oxides)}}$

It is not a redox reaction.

7. Ans. (A)

Sol. Chromium (III) salt
$$\stackrel{\Delta}{\longrightarrow}$$
 Cr₂O₃

Borax
$$\stackrel{\Delta}{\longrightarrow}$$
 B₂O₃ + NaBO₂

$$2Cr_2O_3 + 6B_2O_3 \longrightarrow 4Cr(BO_2)_3$$

8. Ans. (B, D)

- **Sol.** (A) Cu⁺² and Mn⁺² both gives green colour in flame test and cannot distinguished.
 - (B) Cu⁺² belongs to group-II of cationic radical will gives ppt. of CuS in acidic medium.
 - (C) Cu⁺² and Mn⁺² both form ppt. in basic medium.

(D)
$$Cu^{+2}/Cu = +0.34 \text{ V (SRP)}$$

$$Mn^{+2}/Mn = -1.18 \text{ V (SRP)}$$

9. Ans. (A or A, C)

Sol. (A)
$$CuCl_2 + S^{2-} \longrightarrow CuS \downarrow + 2Cl^{-}$$

$$(Sol^n) \qquad (Sol^n) \qquad \quad (Black \; ppt.) \qquad (Sol^n)$$

$$CuCl_2 + SO_4^{2-} \longrightarrow No ppt.$$

$$(Sol^n)$$
 (Sol^n)

(B)
$$BaCl_2 + S^{2-} \longrightarrow BaS + 2Cl^{-}$$

$$(Sol^n)$$
 (Sol^n) $(No ppt.)$ (Sol^n)

$$BaCl_2 + SO_4^{2-} \longrightarrow BaSO_4 \downarrow + 2Cl^-$$

(C)
$$Pb(OOCCH_3)_2 + S^{2-} \longrightarrow PbS \downarrow + 2CH_3COO^{-}$$

$$Pb(OOCCH_3)_2 + SO_4^{2-} \longrightarrow PbSO_4 \downarrow + 2CH_3COO^{-}$$

(D)
$$Na_2[Fe(CN)_5NO] + S^{2-} \longrightarrow Na_4[Fe(CN)_5NOS]$$

$$Na_2[Fe(CN)_5NO] + SO_4^{2-} \longrightarrow No ppt.$$

$$(Sol^n)$$
 (Sol^n)

Note : PbSO₄ Ksp =
$$2.5 \times 10^{-8}$$
 Which are not given in question

PbS Ksp =
$$3 \times 10^{-28}$$

As in question selective precipitation is asked PbS will be precipitate much easier than PbSO₄ though both are insoluble. Hence answer should be (C) also alongwith (A)

10. Ans. (A)

Sol.
$$S_2O_3^{2-} \xrightarrow{Ag^+} [Ag(S_2O_3)_2]^{3-} \xrightarrow{Ag^+} Ag_2S_2O_3 \downarrow$$

(X)

clear solution

(Y)

white precipitate

with time

 $Ag_2S\downarrow$

(Z)

black precipitate

So, X, Y and Z are $[Ag(S_2O_3)_2]^{3-}$, $Ag_2S_2O_3$ and Ag_2S respectively.

11. Ans. (C, D)

Sol. (A)
$$Ba^{+2} \xrightarrow{H^+/H_2S}$$
No ppt [because BaS is soluble in water]

$$Zn^{+2} \xrightarrow{H^+/H_2S}$$
 No ppt [because Zn^{+2} form ZnS in ammonical solution (IV group)

(large
$$K_{sp}$$
 of ZnS)]

(B)
$$Bi^{3+} \xrightarrow{H^+/H_2S} Bi_2S_3 \downarrow [Bi^{3+} \text{ is II group cation}]$$

$$Fe^{+3} \xrightarrow{H^+/H_2S} Fe^{+2} + S$$
 [because in acidic solution Fe^{+3} show redox reaction with H_2S]

(C)
$$Cu^{+2} \xrightarrow{H^+/H_2S} CuS \downarrow [Cu^{+2} \text{ is II group cation}]$$

$$Pb^{2+} \xrightarrow{H^+/H_2S} PbS \downarrow [Pb^{2+} \text{ is also II group cation}]$$

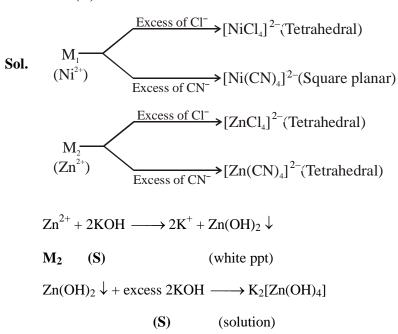
black ppt

(D)
$$Hg^{2+} \xrightarrow{H^+/H_2S} HgS \downarrow [Hg^{2+} \text{ is II group cation}]$$

black ppt

$$Bi^{3+} \xrightarrow{H^+/H_2S} Bi_2S_3 \downarrow [Bi^{3+} \text{ II group cation}]$$

black/brown ppt


12. Ans. (6) / (7)

MnS – dirty pink/Buff

$$SnS_2$$
 – yellow

 Bi_2S_3 – brown / black (brownish black)

- 13. Ans. (B)
- 14. Ans. (D)

