ALLEN[®]

INORGANIC CHEMISTRY

COORDINATION CHEMISTRY

 Match the electronic configurations in List-I with appropriate metal complex ions in List-II and choose the correct option. [Atomic Number: Fe = 26, Mn = 25, Co = 27] [JEE(Advanced) 2023]

		List-I		List-II	
	(P)	$t_{2g}^{6}e_{g}^{0}$	(1)	$[Fe(H_2O)_6]^{2+}$	
	(Q)	$t_{2g}^{3}e_{g}^{2}$	(2)	$[Mn(H_2O)_6]^{2+}$	
	(R)	$e^{2}t_{2}^{3}$	(3)	$[Co(NH_3)_6]^{3+}$	
	(S)	$t_{2g}^4 e_g^2$	(4)	$[\text{FeCl}_4]^-$	
			(5)	$\left[\text{CoCl}_4\right]^{2-}$	
	(A) P -	\rightarrow 1; Q \rightarrow 4; R \rightarrow 2; S \rightarrow	• 3	(B) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 5$	
	(C) P -	\rightarrow 3; Q \rightarrow 2; R \rightarrow 5; S \rightarrow	• 1	(D) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 1$	
2.	The complex(es), which can exhibit the type of isomerism shown by [Pt(NH ₃) ₂ Br ₂], is(are)				
	[en = H]	H ₂ NCH ₂ CH ₂ NH ₂]		[JEE(Advanced) 2023]	
	(A) [Pt	$t(en)(SCN)_2]$		(B) $[Zn(NH_3)_2Cl_2]$	
	(B) [Pt	$(NH_3)_2Cl_4]$		(D) $[Cr(en)_2(H_2O)(SO_4)]^+$	
3.	LIST-I contains metal species and LIST-II contains their properties.				
	LIST-I			LIST-II	
	(I) $[Cr(CN)_6]^{4-}$			(P) t_{2g} orbitals contain 4 electrons	
	(II) [Ri	$uCl_6]^{2-}$		(Q) μ (spin-only) = 4.9 BM	
	(III) [C	$r(H_2O)_6]^{2+}$		(R) low spin complex ion	

(IV) $[Fe(H_2O_6)]^{2+}$

[Given : Atomic number of Cr = 24, Ru = 44, Fe = 26]

Metal each metal species in LIST-I with their properties in LIST-II, and choose the correct option

(S) metal ion in 4+ oxidation state

(T) d^4 species

[JEE(Advanced) 2022]

- (A) $I \rightarrow R, T; II \rightarrow P, S; III \rightarrow Q, T; IV \rightarrow P, Q$ (B) $I \rightarrow R, S; II \rightarrow P, T; III \rightarrow P, Q; IV \rightarrow Q, T$ (C) $I \rightarrow P, R; II \rightarrow R, S; III \rightarrow R, T; IV \rightarrow P, T$ (D) $I \rightarrow Q, T; II \rightarrow S, T; III \rightarrow P, T; IV \rightarrow Q, R$
- **4.** The calculated spin only magnetic moments of $[Cr(NH_3)_6]^{3+}$ and $[CuF_6]^{3-}$ in BM, respectively, are
(Atomic numbers of Cr and Cu are 24 and 29, respectively)[JEE(Advanced) 2021](A) 3.87 and 2.84(B) 4.90 and 1.73(C) 3.87 and 1.73(D) 4.90 and 2.84

- 5. The total number of possible isomers for $[Pt(NH_3)_4Cl_2]Br_2$ is _____
- 6. The pair(s) of complexes wherein both exhibit tetrahedral geometry is(are) (Note: py = pyridine

Given: Atomic numbers of Fe, Co, Ni and Cu are 26, 27, 28 and 29, respectively)

[JEE(Advanced) 2021]

[JEE(Advanced) 2020]

[JEE(Advanced) 2021]

(A) $[FeCl_4]^-$ and $[Fe(CO)_4]^{2-}$	(B) $[Co(CO)_4]^-$ and $[CoCl_4]^{2-}$			
(C) $[Ni(CO)_4]$ and $[Ni(CN)_4]^{2-}$	(D) $[Cu(py)_4]^+$ and $[Cu(CN)_4]^{3-}$			
Choose the correct statement(s) among the following :				

(A) $[FeCl_4]^-$ has tetrahedral geometry.

7.

- (B) $[Co(en)(NH_3)_2Cl_2]^+$ has 2 geometrical isomers.
- (C) $[FeCl_4]^-$ has higher spin-only magnetic moment than $[Co(en)(NH_3)_2Cl_2]^+$.
- (D) The cobalt ion in $[Co(en)(NH_3)_2Cl_2]^+$ has sp³d² hybridization.
- 8. In an experiment, *m* grams of a compound X (gas/liquid/solid) taken in a container is loaded in a balance as shown in figure I below. In the presence of a magnetic field, the pan with X is either deflected upwards (figure II), or deflected downwards (figure III), depending on the compound X. Identify the correct statement(s) [JEE(Advanced) 2020]

- (A) If **X** is $H_2O(l)$, deflection of the pan is upwards.
- (B) If **X** is $K_4[Fe(CN)_6](s)$, deflection of the pan is upwards.
- (C) If **X** is $O_2(g)$, deflection of the pan is downwards.
- (D) If **X** is $C_6H_6(l)$, deflection of the pan is downwards.
- 9. Total number of *cis* N–Mn–Cl bond angles (that is, Mn–N and Mn–Cl bonds in *cis* positions) present in a molecule of *cis*-[Mn(*en*)₂Cl₂] complex is _____ (*en* = NH₂CH₂CH₂NH₂) [JEE(Advanced) 2019]
- 10. The correct statement(s) regarding the binary transition metal carbonyl compounds is (are) (Atomic numbers : Fe = 26, Ni = 28) [JEE(Advanced) 2018]
 - (A) Total number of valence shell electrons at metal centre in Fe(CO)₅ or Ni(CO)₄ is 16
 - (B) These are predominantly low spin in nature
 - (C) Metal carbon bond strengthens when the oxidation state of the metal is lowered
 - (D) The carbonyl C–O bond weakens when the oxidation state of the metal is increased

ALI	LEN [®]	Advanced Chemistry 10 Years Topicw	ise Questions with Solutions		
11.	Among the species given below, the total	number of diamagnetic species is			
	H atom, NO ₂ monomer, O_2^- (superoxide),	, dimeric sulphur in vapour phase,			
	Mn ₃ O ₄ , (NH ₄) ₂ [FeCl ₄], (NH ₄) ₂ [NiCl ₄], K ₂	$_2$ MnO ₄ , K $_2$ CrO ₄	[JEE(Advanced) 2018]		
12.	The correct option(s) regarding the complete	The correct option(s) regarding the complex $[Co(en) (NH_3)_3(H_2O)]^{3+}$:-			
	$(en = H_2NCH_2CH_2NH_2)$ is (are)		[JEE(Advanced) 2018]		
	(A) It has two geometrical isomers				
	(B) It will have three geometrical isomers if bidentate 'en' is replaced by two cyanide ligands				
	(C) It is paramagnetic				
	(D) It absorbs light at longer wavelength	as compared to $[Co(en) (NH_3)_4]^{3+}$			
13.	Match each set of hybrid orbitals from LI		Г-II.		
	LIST-I	LIST-II			
	P. dsp^2	1. $[FeF_6]^{4-}$			
	$Q. sp^3$	2. [Ti(H ₂ O) ₃ Cl ₃]			
	R. sp^3d^2	3. $[Cr(NH_3)_6]^{3+}$			
	S. d^2sp^3	4. $[FeCl_4]^{2-}$			
		5. Ni(CO) ₄			
		6. $[Ni(CN)_4]^{2-}$			
	The correct option is	0. [111(017)4]	[JEE(Advanced) 2018]		
	(A) $P \rightarrow 5$; $Q \rightarrow 4,6$; $R \rightarrow 2,3$; $S \rightarrow 1$	(B) $P \rightarrow 5,6; Q \rightarrow 4; R \rightarrow 3$			
	(C) $P \rightarrow 6$; $Q \rightarrow 4,5$; $R \rightarrow 1$; $S \rightarrow 2,3$	(D) $P \to 4,6; Q \to 5,6; R -$			
14.					
	Addition of excess aqueous ammonia to a pink coloured aqueous solution of MCl_2 . $6H_2O(X)$ and NH_4Cl gives an octahedral complex Y in the presence of air. In aqueous solution, complex Y behaves as 1 : 3 electrolyte. The reaction of X with excess HCl at room temperature results in the formation of a blue coloured complex Z. The calculated spin only magnetic moment of X and Z is 3.87 B.M., whereas it is zero for complex Y.				
	Among the following options, which state	ements is(are) correct ?	[JEE(Advanced) 2017]		
	(A) The hybridization of the central metal ion in Y is d^2sp^3				
	(B) Z is tetrahedral complex				
	(C) Addition of silver nitrate to Y gives only two equivalents of silver chloride				
	(D) When X and Z are in equilibrium at 0° C, the colour of the solution is pink				
15.	The number of geometric isomers possible		NCH ₂ CH ₂ O ⁻) is		
			[JEE(Advanced) 2016]		
16.	The geometries of the ammonia complexe	es of Ni^{2+} , Pt^{2+} and Zn^{2+} , respectively			
			[JEE(Advanced) 2016]		
	(A) octahedral, square planar and tetrahed	leral			
	(B) square planar, octahederal and tetrahed				
	(C) tetrahederal, square planar and octahed	derai			

3

- 17. For the octahedral complexes of Fe³⁺ in SCN⁻ (thiocyanato-S) and in CN⁻ ligand environments, the difference between the spin only magnetic moments in Bohr magnetons (when approximated to the nearest integer) is

 [Atomic number of Fe = 26]
 [JEE(Advanced) 2015]

 18. The correct statement(s) about Cr²⁺ and Mn³⁺ is (are)

 [Atomic numbers of Cr = 24 and Mn = 25]
 (A) Cr²⁺ is a reducing agent
 (B) Mn³⁺ is an oxidizing agent
 (C) Both Cr²⁺ and Mn³⁺ exhibit d⁴ electronic configuration
 - (D) When Cr^{2+} is used as a reducing agent, the chromium ion attains d^5 electronic configuration
- 19. In the complex acetylbromidodicarbonylbis(triethylphosphine)iron(II), the number of Fe–C bond(s) is-

[JEE(Advanced) 2015]

- **20.** Among the complex ions, $[Co(NH_2-CH_2-NH_2)_2Cl_2]^+$, $[CrCl_2(C_2O_4)_2]^{3-}$, $[Fe(H_2O)_4(OH)_2]^+$, $[Fe(NH_3)_2(CN)_4]^-$, $[Co(NH_2-CH_2-CH_2-NH_2)_2(NH_3)Cl]^{2+}$ and $[Co(NH_3)_4(H_2O)Cl]^{2+}$, the number of complex ion(s) that show(s) *cis-trans* isomerism is [JEE(Advanced) 2015]
- 21. A list of species having the formula XZ₄ is given below : XeF₄, SF₄, SiF₄, BF₄⁻, BrF₄⁻, [Cu(NH₃)₄]²⁺, [FeCl₄]²⁻, [CoCl₄]²⁻ and [PtCl₄]²⁻. Defining shape on the basis of the location of X and Z atoms, the total number of species having a square planar shape is [JEE(Advanced) 2014]
- **22.** Match each coordination compound in List-I with an appropriate pair of characteristics from List-II and select the correct answer using the code given below the lists.

 $\{en = H_2NCH_2CH_2NH_2 \text{ 'atomic numbers ; } Ti = 22 \text{ ; } Cr = 24 \text{ ; } Co = 27 \text{ ; } Pt = 78 \}$

[JEE(Advanced) 2014]

List-I

- (P) $[Cr(NH_3)_4Cl_2]Cl$
- (Q) $[Ti(H_2O)_5Cl](NO_3)_2$
- (R) $[Pt(en)(NH_3)Cl]NO_3$
- (S) $[Co(NH_3)_4(NO_3)_2]NO_3$
- Code :
- Р S Q R 4 (A) 2 3 1 1 (B) 3 4 2 2 1 (C) 3 4 (D) 1 3 4 2

- List-II
- (1) Paramagnetic and exhibits ionisation isomerism
- (2) Diamagnetic and exhibits *cis-trans* isomerism
- (3) Paramagnetic and exhibits cis-trans isomerism
- (4) Diamagnetic and exhibits ionisation isomerism

SOLUTIONS

1.	Ans. (D)
Sol.	1. $[Fe(H_2O)_6]^{+2}$ WFL configuration $3d^6 \xrightarrow{\textcircled{0}} e_g$ $t_{2g}^4 e_g^2(S)$
	2. $\begin{bmatrix} II \\ Mn(H_2O)_6 \end{bmatrix}^{+2}$ WFL configuration $3d^5 \underbrace{\textcircled{}}_{t_{2g}} e_g$ $t_{2g}^3 e_g^2(Q)$
	3. $\begin{bmatrix} III \\ Co(NH_3)_6 \end{bmatrix}^{+3}$ SFL configuration $3d^6 - \underbrace{\bigcirc e_g}_{t_{2g}} e_g^{-6} e_g^{-6}$
	4. $[\operatorname{Fe} \operatorname{Cl}_{4}]^{\Theta}$ WFL configuration $3d^{5} \underbrace{}_{e^{2}} t_{2}^{3}(R)$
	5. $\begin{bmatrix} II \\ Co Cl_4 \end{bmatrix}^{-2} \\ WFL \\ configuration \\ 3d^7 - \underbrace{\textcircled{}}_{e} \underbrace{}_{e} \underbrace{e^4 t_2^{\ 3}(\text{None})}^{2} \underbrace{e^1 t_2}_{e} \underbrace{e^1 t_2^{\ 3}(\text{None})}^{2} \underbrace{e^1 t_2^{\ 3}(\text{None})}^{2} \underbrace{e^1 t_2^{\ 3}(\text{None})}^{2} \underbrace{e^1 t_2^{\ 3}(t_2)}_{e} \underbrace{e^1 t_2^{\ 5}(t_2)}_{e} e$
2.	Ans. (C, D)
Sol.	$[Pt(NH_3)_2Br_2]$
	Hybridisation : dsp^2 , geometry : square planar Br H_3

6

ALLEN[®]

4. Ans. (A)

Sol. $[Cr(NH_3)_6]^{3+}$

 $Cr^{3+} \Rightarrow [Ar]3d^3$

In presence of NH₃ ligand

e_g

1

Number of unpaired electrons = 3

 $\mu = \sqrt{n(n+2)}$ B.M. $\mu = \sqrt{3(3+2)}$ B.M.

$$\mu = \sqrt{3(3+2)}$$
 D.M

$$\mu = \sqrt{15} \qquad B.M.$$

 \Rightarrow 3.87 B.M.

 $\left[CuF_{6}\right]^{3-}$

$$\mathrm{Cu}^{3+} \Rightarrow \mathrm{[Ar]}3\mathrm{d}^{8}$$

In presence of F⁻Ligand

$$Cu^{3+} \Rightarrow \boxed{11} e_{g}$$

$$\boxed{1111} t_{2g}$$

Number of unpaired electrons = 2

$$\mu = \sqrt{n(n+2)}$$
 B.M.
 $\mu = \sqrt{2(2+2)} \Rightarrow \sqrt{8}$ B.M. $\Rightarrow 2.84$ B.M

5. Ans. (6)

Sol. Isomers

- $(I) \quad [Pt (NH_3)_4 Cl_2]Br_2 \Longrightarrow G.I. = 2$
- (II) [Pt (NH₃)₄ Br₂] $Cl_2 \Rightarrow G.I. = 2$
- (III) [Pt (NH₃)₄ BrCl] Br.Cl \Rightarrow G.I. = 2

I, II, III are ionisation isomers of each other, each having 2 geometrical isomers.

Total possible isomers will be 6

Ans. (A, B, D) **Sol.** (A) [FeCl₄] Fe \rightarrow [Ar] $3d^64s^2$ $Fe^{+3} \longrightarrow [Ar] 3d^54s^0$ Cl is W.F.L. and does not pair up the unpaired electron of central metal atom.

(B)

6.

ALLEN[®] (C) [Ni(CO)₄] Ni \rightarrow [Ar] 3d⁸4s² $Ni^0 \rightarrow [Ar] 3d^8 4s^2$ 4s 4p \therefore Ni (d¹⁰) in [Ni(CO)₄] 1 1 1 11 1 sp³ Tetrahedral $[Ni(CN)_4]^{2-}$ Ni \rightarrow [Ar] 3d⁸4s² $Ni^{+2} \rightarrow [Ar] 3d^8 4s^0$ CN[−] is S.F.L. and pair up the unpaired electron of central metal atom. 4s 4p \therefore Ni (d⁸) in [Ni(CN)₄]² 11 11 1 dsp^2 Square planar **(D)** [Cu(py)₄] $Cu \rightarrow [Ar] 3d^{10}4s^1$ $Cu^{+1} \longrightarrow [Ar] 3d^{10}4s^0$ \therefore Cu⁺¹(d¹⁰) in [Cu(py)₄]⁺ 11 11 11 1 1 sp^3 Tetrahedral $[Cu(CN)_4]^3$ $Cu \rightarrow [Ar] 3d^{10}4s^1$ $Cu^{+1} \rightarrow [Ar] 3d^{10}4s^0$ CN[−] is S.F.L. and pair up the unpaired electron of central metal atom. 4p \therefore Cu⁺¹ (d¹⁰) in [Cu(CN)₄]³⁻ | 11 | 11 1 | 11 | 1

7. Ans. (A, C)

Sol.

(A) $[FeCl_4]^-$

 $[FeCl_4]^-$ is sp³ hybridised and has tetrahedral geometry with 5 unpaired electrons.

(B) $[Co(en)(NH_3)_2Cl_2]^+$ has three geometrical isomers.

(C) $[FeCl_4]^-$

Number of unpaired electrons (n) = 5

Spin only magnetic moment = $\sqrt{n(n+2)}$ B.M.

= 5.92 B.M.

Number of unpaired electrons (n) = 0

Spin only magnetic moment = $\sqrt{n(n+2)}$ B.M. = 0

(D) $[Co(en)(NH_3)_2Cl_2]^+$

 $[Co(en)(NH_3)_2Cl_2]^+$ is d^2sp^3 hybridised and has octahedral geometry with 0 unpaired electron.

- 8. Ans. (A, B, C)
- **Sol. Paramagnetic compound (X)** are attracted towards magnetic field and the pan is deflected downwards. While the **Diamagnetic compound (X)** are repelled by magnetic field and pan is deflected upward.

(A) $X \Rightarrow H_2O \rightarrow$ **Diamagnetic** (correct)

(B) $X \Rightarrow K_4[Fe(CN)_6](s) \rightarrow Diamagnetic (correct)$

Here Fe²⁺ + Strong field ligand $\rightarrow 3d^6 \Rightarrow [t_2g^6, eg^0]$

(C) $X \Rightarrow O_2 \rightarrow \textbf{Paramagnetic}$ (correct)

Here $O_2(g)$ is paramagnetic due to two-unpaired electrons present in π^* (antibonding orbitals).

(D)
$$X \Rightarrow C_6H_6(\ell) \rightarrow Diamagnetic$$
 (Incorrect)

It is due to presence of 0 unpaired electrons.

9. Ans. (6.00)

Number of cis (Cl-Mn-N) = 6

10. Ans. (B, C)

Sol. (A) $[Fe(CO_5)]$ & $[Ni(CO)_4]$ complexes have 18-electrons in their valence shell.

- (B) Carbonyl complexes are predominantly low spin complexes due to strong ligand field.
- (C) As electron density increases on metals (with lowering oxidation state on metals), the extent of synergic bonding increases. Hence M–C bond strength increases
- (D) While positive charge on metals increases and the extent of synergic bond decreases and hence C–O bond becomes stronger.

Paramagnetic

Paramagnetic

Paramagnetic

11. Ans. (1) Sol.

* H-atom =
$$\begin{bmatrix} 1 \\ 1s^1 \end{bmatrix}$$
 Paramagnetic

*
$$NO_2 = \bigvee_{O}^{O} N O$$
 odd electron species

- * O_2^- (superoxide) = One unpaired electrons in π^* M.O.
- * S_2 (in vapour phase) = same as O_2 , two unpaired e^-s are present in π^* M.O.

*
$$Mn_3O_4 = 2 MnO_2 MnO_2$$

* $(NH_4)_2[FeCl_4] = Fe^{+2} = 3d^6 4s^0$
 $\boxed{11 1 1 1 1 1}$
 $record record record$

- 12. Ans. (A, B, D)
- **Sol.** (A) $[Co(en)(NH_3)_3(H_2O)]^{+3}$ complex is type of $[M(AA)b_3c]$ have two G.I.

ALLEN[®]____

(B) If (en) is replaced by two cynide ligand, complex will be type of [Ma₃b₂c] and have 3 G.I.

- (C) $[Co(en)(NH_3)_3(H_2O)]^{3+}$ have d⁶ configuration (t_{2g}^6) on central metal with SFL therefore it is dimagnetic in nature.
- (D) Complex $[Co(en)(NH_3)_3(H_2O)]^{3+}$ have lesser CFSE (Δ_O) value than $[Co(en)(NH_3)_4]^{3+}$ therefore complex $[Co(en)(NH_3)_3(H_2O)]^+$ absorbs longer wavelength for d–d transition.

Sol. [1] $[FeF_6]^{4-}$

Total geometrical isomers = 5

and

14.

Sol.

15.

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

16.	LEN [®] Ans. (A)						
Sol.	Metal ion	Complex with NH ₃	Geometry				
	Ni ²⁺	$[Ni(NH_3)_6]^{2+}$	Octahedral				
	Pt^{2+}	$\left[\mathrm{Pt}(\mathrm{NH}_3)_4\right]^{2+}$	Square planar				
	Zn^{2+}	$[Zn(NH_3)_4]^{2+}$	Tetrahedral				
	So, option (A) i	s correct.					
7.	Ans. (4)						
Sol.	$\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{3-}$		$\left[\operatorname{Fe}(\operatorname{SCN})_{6}\right]^{3-}$				
	$Fe^{+3} = 3d^5$		$\mathrm{Fe}^{+3} = 3\mathrm{d}^5$				
	Θ CN is S.F.L		^o SCN is W.F.L				
	$\Delta_0 > P$		$\Delta_0 < P$				
			11				
	11 11 1		1111				
	$\mu = \sqrt{n(n+2)}$	B.M.	$\mu = \sqrt{n(n+2)} \text{B.M.}$				
	•	inpaired electron $= 1$	n = number of unpaired electron = 5				
	$\mu = 1.73$ B.M.		$\mu = 5.92$ B.M.				
	difference $= 5.9$	02 - 1.73 = 4.19					
	Ans. ≈ 4						
18.	Ans. (A, B, C)						
Sol.		ducing agent : CORRECT ST					
	Cr^{+2} is a reducing agent as its configuration changes from d^4 to d^3 and Cr^{+3} having a half filled t_{2g} level is						
	presence of H ₂ O						
	$Cr^{+2} \rightarrow Cr^{+3} + e^{-2}$						
	$3d^44s^{\circ}$ $3d^34s^{\circ}$						
	(B) Mn^{+3} is a or	xidizing agent : CORRECT S	FATEMENT				
	The change from	m Mn^{+3} to Mn^{+2} results in the h	half filled (d^5) configuration which has extra stability				
	$Mn^{+3} \xrightarrow{+e^-} Mn^{+2}$						
	$3d^44s^\circ$ $3d^54s^\circ$						
	[extra stable half filled (d^5) configuration]						
	(C) Both Cr^{+2} a		onfiguration : CORRECT STATEMENT				
$Cr^{+2} \rightarrow 3d^44s^{\circ}$							
	$Mn^{+3} \rightarrow 3d^44s^\circ$						
	nium ion attain d ⁵ electronic configuration : INCORECT						
	(D) When Cr^{2}	(D) when $Cr^{+2} \rightarrow Cr^{+3} + e^{-2}$					
		$^{+3} + e^{-}$					

19. Ans. (3)

Sol. Structure of complex

Total number of Fe-C bonds are 3

- 20. Ans. (6)
- Sol. Total number of complex ions which show cis-trans isomerism

Complex ion	Complex type	Isomers
$[Co(NH_2-CH_2-CH_2-NH_2)_2Cl_2]^+$	$[M(AA)_2b_2]$	$1 \operatorname{cis} + 1 \operatorname{trans}$
$[CrCl_2(C_2O_4)_2]^{3-}$	$[M(AA)_2b_2]$	$1 \operatorname{cis} + 1 \operatorname{trans}$
$\left[Fe(H_2O)_4(OH)_2\right]^+$	[Ma ₄ b ₂]	$1 \operatorname{cis} + 1 \operatorname{trans}$
$[Fe(NH_3)_2(CN)_4]^-$	[Ma ₄ b ₂]	$1 \operatorname{cis} + 1 \operatorname{trans}$
$[Co(NH_2-CH_2-CH_2-NH_2)_2(NH_3)Cl]^{+2}$	[M(AA) ₂ bc]	$1 \operatorname{cis} + 1 \operatorname{trans}$
$\left[\mathrm{Co}(\mathrm{NH}_3)_4(\mathrm{H}_2\mathrm{O})\mathrm{Cl}\right]^{+2}$	[Ma ₄ bc]	$1 \operatorname{cis} + 1 \operatorname{trans}$

All six complex ions show cis-trans isomerism

- 21. Ans. (4)
- Sol. XeF_4 , BrF_4^- , $[Cu(NH_3)_4]^{2+}$, $[PtCl_4]^{2-}$ are square planar

 $SF_4-Sea\ saw$

 SiF_4 , BF_4^- , $[FeCl_4]^{2-}$, $[CoCl_4]^{2-}$ are tetrahedral

22. Ans. (B)

- **Sol.** (P) $[Cr^{III}(NH_3)_4Cl_2]Cl$:
- (1) Complex given in (P) is Paramagnetic & show two geometrical isomerism (cis and trans) (does not show ionization isomer)
- (Q) [Ti^{III}(H₂O)₅Cl](NO₃)₂ (1 unpaired electrons)

(3 unpaired electrons)

- (R) [Pt^{II}(en)(NH₃)Cl]NO₃(1 unpaired electrons)
- (S) [Co^{III}(NH₃)₄(NO₃)₂]NO₃ (0 unpaired electrons)
- (2) Complex given in (Q) is paramagnetic show ionization isomerism
- (3) Complex given in (R) is diamagnetic and show ionization isomerism
- (4) Complex given in (S) is diamagnetic does not show ionization isomerism show geometrical isomerism