

FINAL JEE(Advanced) EXAMINATION - 2023

(Held On Sunday 04th June, 2023)

PAPER-1

TEST PAPER

CHEMISTRY

SECTION-1: (Maximum Marks: 12)

- This section contains **THREE** (03) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen; Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen,

both of which are correct:

Partial Marks : +1 If two or more options are correct but **ONLY** one option is chosen and it

is a correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 marks;

choosing ONLY (B) will get +1 marks;

choosing ONLY (D) will get +1 marks;

choosing no option (i.e. the question is unanswered) will get 0 marks; and

choosing any other combination of options will get –2 marks.

- 1. The correct statement(s) related to processes involved in the extraction of metals is(are)
 - (A) Roasting of Malachite produces Cuprite.
 - (B) Calcination of Calamine produces Zincite.
 - (C) Copper pyrites is heated with silica in a reverberatory furnace to remove iron.
 - (D) Impure silver is treated with aqueous KCN in the presence of oxygen followed by reduction with zinc metal.

2. In the following reactions, P, Q, R, and S are the major products.

$$CH_{3}CH_{2}CH(CH_{3})CH_{2}CN \xrightarrow{(i) PhMgBr, then H_{3}O^{\oplus} \atop (ii) PhMgBr, then H_{2}O} \mathbf{P}$$

$$Ph - H + CH_{3}CCl \xrightarrow{(i) anhyd. AlCl_{3} \atop (ii) PhMgBr, then H_{2}O} \mathbf{Q}$$

$$CH_{3}CH_{2}CCl \xrightarrow{(i) \frac{1}{2}(PhCH_{2})_{2}Cd} \mathbf{R}$$

$$PhCH_{2}CHO \xrightarrow{(ii) PhMgBr, then H_{2}O \atop (iii) PhMgBr, then H_{2}O \atop (iii) CrO_{3}, dil. H_{2}SO_{4} \atop (iii) HCN \atop (iv) H_{2}SO_{4}, \Delta} \mathbf{S}$$

The correct statement(s) about P, Q, R, and S is(are)

- (A) Both **P** and **Q** have asymmetric carbon(s).
- (B) Both **Q** and **R** have asymmetric carbon(s).
- (C) Both **P** and **R** have asymmetric carbon(s).
- (D) P has asymmetric carbon(s), S does **not** have any asymmetric carbon.
- Consider the following reaction scheme and choose the correct option(s) for the major products Q, R and S.

SECTION-2: (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If **ONLY** the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

4. In the scheme given below, **X** and **Y**, respectively, are

Metal halide
$$\xrightarrow{\text{aq. NaOH}}$$
 White precipitate (**P**) + Filtrate (**Q**)

$$P \xrightarrow{\text{PbO}_2(\text{excess}) \atop \text{heat}} X \text{ (a coloured species in solution)}$$

$$Q \xrightarrow{\text{Conc. H}_2\text{SO}_4 \atop \text{warm}} Y \text{ (gives blue-coloration with KI-starch paper)}$$

(A) CrO_4^{2-} and Br_2

(B) MnO_4^{2-} and Cl_2

(C) MnO₄ and Cl₂

- (D) MnSO₄ and HOCl
- Plotting $1/\Lambda_m$ against $c\Lambda_m$ for aqueous solutions of a monobasic weak acid (HX) resulted in a 5. straight line with y-axis intercept of P and slope of S. The ratio P/S is

 $\Lambda_{\rm m} = {\rm molar\ conductivity}$

 $\Lambda_{\rm m}^{\circ}$ = limiting molar conductivity

c = molar concentration

 K_a = dissociation constant of HX]

- (A) $K_a \Lambda_m^{\circ}$
- (B) $K_a \Lambda_m^{\circ} / 2$
- (C) $2 K_a \Lambda_m^{\circ}$ (D) $1 / (K_a \Lambda_m^{\circ})$
- 6. On decreasing the pH from 7 to 2, the solubility of a sparingly soluble salt (MX) of a weak acid (HX) increased from 10^{-4} mol L⁻¹ to 10^{-3} mol L⁻¹. The pK_a of HX is:
 - (A)3

(B) 4

- (C) 5
- (D) 2
- In the given reaction scheme, P is a phenyl alkyl ether, Q is an aromatic compound; R and S are the 7. major products.

$$\mathbf{P} \xrightarrow{\text{HI}} \mathbf{Q} \xrightarrow{\text{(ii) NaOH} \atop \text{(iii) CO}_2} \mathbf{R} \xrightarrow{\text{(i)(CH}_3\text{CO)}_2\text{O}} \mathbf{S}$$

The correct statement about **S** is

- (A) It primarily inhibits noradrenaline degrading enzymes.
- (B) It inhibits the synthesis of prostaglandin.
- (C) It is a narcotic drug.
- (D) It is *ortho*-acetylbenzoic acid.

SECTION-3: (Maximum Marks: 24)

• This section contains **SIX** (06) questions.

• The answer to each question is a **NON-NEGATIVE INTEGER**.

• For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

• Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY If the correct integer is entered;

Zero Marks : 0 In all other cases.

8. The stoichiometric reaction of 516 g of dimethyldichlorosilane with water results in a tetrameric cyclic product X in 75% yield. The weight (in g) of X obtained is ____.

[Use, molar mass (g mol⁻¹): H = 1, C = 12, O = 16, Si = 28, Cl = 35.5]

9. A gas has a compressibility factor of 0.5 and a molar volume of 0.4 dm³ mol⁻¹ at a temperature of 800 K and pressure **x** atm. If it shows ideal gas behaviour at the same temperature and pressure, the molar volume will be **y** dm³ mol⁻¹. The value of **x/y** is ____.

[Use: Gas constant, $R = 8 \times 10^{-2} \text{ L atm K}^{-1} \text{ mol}^{-1}$]

10. The plot of log k_f versus $\frac{1}{T}$ for a reversible reaction $A(g) \rightleftharpoons P(g)$ is shown.

Pre-exponential factors for the forward and backward reactions are 10^{15} s⁻¹ and 10^{11} s⁻¹, respectively. If the value of log K for the reaction at 500 K is 6, the value of log k_b at 250 K is

[K = equilibrium constant of the reaction]

 k_f = rate constant of forward reaction

 k_b = rate constant of backward reaction]

11. One mole of an ideal monoatomic gas undergoes two reversible processes $(A \rightarrow B \text{ and } B \rightarrow C)$ as shown in the given figure :

 $A \to B$ is an adiabatic process. If the total heat absorbed in the entire process $(A \to B \text{ and } B \to C)$ is $RT_2 \ln 10$, the value of $2 \log V_3$ is _____.

[Use, molar heat capacity of the gas at constant pressure, $C_{p,m} = \frac{5}{2} R$]

12. In a one-litre flask, 6 moles of A undergoes the reaction A (g) \rightleftharpoons P (g). The progress of product formation at two temperatures (in Kelvin), T_1 and T_2 , is shown in the figure:

If $T_1 = 2T_2$ and $(\Delta G_2^{\Theta} - \Delta G_1^{\Theta}) = RT_2 \ln x$, then the value of x is _____.

 $[\Delta G_1^{\Theta} \text{ and } \Delta G_2^{\Theta} \text{ are standard Gibb's free energy change for the reaction at temperatures } T_1 \text{ and } T_2,$ respectively.]

13. The total number of sp^2 hybridised carbon atoms in the major product **P** (a non-heterocyclic compound) of the following reaction is _____.

$$NC \downarrow_{CN}^{CN} \underbrace{ \begin{array}{c} \text{(i) LiAlH}_4 \text{ (excess), then H}_2O \\ \text{(ii) Acetophenone (excess)} \end{array}}_{P} \textbf{P}$$

SECTION-4: (Maximum Marks: 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY **ONE** of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +3 **ONLY** if the option corresponding to the correct combination is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

Match the reactions (in the given stoichiometry of the reactants) in List-I with one of their products 14. given in List-II and choose the correct option.

T	• ,	H
	101	

- (P) $P_2O_3 + 3H_2O \rightarrow$
- (Q) $P_4 + 3NaOH + 3H_2O \rightarrow$
- (R) $PCl_5 + CH_3COOH \rightarrow$
- (S) $H_3PO_2 + 2H_2O + 4AgNO_3 \rightarrow$
- (A) $P \rightarrow 2$; $Q \rightarrow 3$; $R \rightarrow 1$; $S \rightarrow 5$
- (C) $P \rightarrow 5$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 3$

List-II

- (1) P(O)(OCH₃)Cl₂
- (2) H_3PO_3
- (3) PH₃
- (4) POCl₃
- (5) H_3PO_4
- (B) $P \rightarrow 3$; $Q \rightarrow 5$; $R \rightarrow 4$; $S \rightarrow 2$
- (D) $P \rightarrow 2$; $Q \rightarrow 3$; $R \rightarrow 4$; $S \rightarrow 5$
- 15. Match the electronic configurations in List-I with appropriate metal complex ions in List-II and choose the correct option.

[Atomic Number: Fe = 26, Mn = 25, Co = 27]

List-I

- (P)
- (Q)
- (R)
- (S)
- (A) $P \rightarrow 1$; $Q \rightarrow 4$; $R \rightarrow 2$; $S \rightarrow 3$
- (C) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 1$

- List-II
- $[Fe(H_2O)_6]^{2+}$ (1)
- $[Mn(H_2O)_6]^{2+}$ (2)
- $[Co(NH_3)_6]^{3+}$ (3)
- (4) [FeCl₄]
- (5) $[CoCl_4]^{2-}$
- (B) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 5$
- (D) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 1$

16. Match the reactions in List-I with the features of their products in List-II and choose the correct option.

List-I

List-II

- (P) (-)-1-Bromo-2-ethylpentane $\frac{\text{aq. NaOH}}{\text{S}_{\text{N}}\text{2 reaction}}$
- (1) Inversion of configuration
- (Q) (-)-2-Bromopentane $\frac{\text{aq. NaOH}}{\text{S}_{\text{N}}\text{2 reaction}}$
- (2) Retention of configuration
- (R) (-)-3-Bromo-3-methylhexane $\frac{\text{aq. NaOH}}{\text{S}_{\text{N}}1 \text{ reaction}}$
- (3) Mixture of enantiomers
- (S) Me H Me Br $\frac{\text{aq. NaOH}}{\text{S}_{\text{N}1} \text{ reaction}}$ (Single enantiomer)
- (4) Mixture of structural isomers

(5) Mixture of diastereomers

- (A) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 3$
- (B) $P \rightarrow 2$; $Q \rightarrow 1$; $R \rightarrow 3$; $S \rightarrow 5$
- (C) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 4$
- (D) $P \rightarrow 2$; $Q \rightarrow 4$; $R \rightarrow 3$; $S \rightarrow 5$
- 17. The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match List-I with List-II and choose the correct option.

List-I

(P) Etard reaction

- List-II
- (1) Acetophenone $Zn-Hg, HCl \rightarrow$
- (Q) Gattermann reaction
- (2) Toluene (i) KMnO₄,KOH, Δ (ii) SOCl₂
- (R) Gattermann-Koch reaction (3)
- Benzene $\xrightarrow{\text{CH}_3\text{Cl}}$ anhyd. AlCl₃
- (S) Rosenmund reduction (4)
- Aniline $\frac{\text{NaNO}_2/\text{HCl}}{273-278 \text{ K}}$
- (5) Phenol $Zn, \Delta \rightarrow$

(A)
$$P \rightarrow 2$$
; $Q \rightarrow 4$; $R \rightarrow 1$; $S \rightarrow 3$

(B)
$$P \rightarrow 1$$
; $Q \rightarrow 3$; $R \rightarrow 5$; $S \rightarrow 2$

(C)
$$P \rightarrow 3$$
; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 4$

(D)
$$P \rightarrow 3$$
; $Q \rightarrow 4$; $R \rightarrow 5$; $S \rightarrow 2$