

# FINAL JEE(Advanced) EXAMINATION - 2022

(Held On Sunday 28th AUGUST, 2022)

### **PAPER-1**

# TEST PAPER WITH SOLUTION

# **PHYSICS**

**SECTION-1: (Maximum Marks: 24)** 

- This section contains EIGHT (08) questions.
- The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 ONLY if the correct numerical value is entered;

Zero Marks : 0 In all other cases.

1. Two spherical stars A and B have densities  $\rho_A$  and  $\rho_B$ , respectively. A and B have the same radius, and their masses  $M_A$  and  $M_B$  are related by  $M_B = 2M_A$ . Due to an interaction process, star A loses some of its mass, so that its radius is halved, while its spherical shape is retained, and its density remains  $\rho_A$ . The entire mass lost by A is deposited as a thick spherical shell on B with the density of the shell being  $\rho_A$ . If  $\nu_A$  and  $\nu_B$  are the escape velocities from A and B after the interaction process,

the ratio 
$$\frac{v_B}{v_A} = \sqrt{\frac{10n}{15^{1/3}}}$$
. The value of *n* is \_\_\_\_\_

Ans. 2.30

**Sol.** Given 
$$R_A = R_B = R$$

$$M_B = 2M_A$$

Calculation of escape velocity for A:

Radius of remaining star = 
$$\frac{R_A}{2}$$
.

Mass of remaining star = 
$$\rho_A \frac{4}{3} \pi \frac{R_A^3}{8} = \frac{M_A}{8}$$

$$\frac{-GM_{A/B}}{R_{A/2}} + \frac{1}{2}mv_A^2 = 0 \implies v_A = \sqrt{\frac{2GM_{A/B}}{R_{A/2}}} = \sqrt{\frac{GM_A}{2R}}$$

Calculation of escape velocity for B

Mass collected over 
$$B = \frac{7}{8} M_A$$

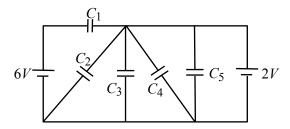


Let the radius of B becomes r.

$$\begin{split} & \therefore \frac{4}{3}\pi(r^3-R_B^3)\rho_A = \frac{7}{8}\rho_A\frac{4}{3}\pi R_A^3 \ \Rightarrow \pi^3 = \frac{7}{8}R_A^3 + R_B^3 = \frac{(15)^{1/3}R}{2} \\ & \therefore \frac{V_B^2}{2} = \frac{23GM_A}{8\times15^{1/3}\frac{R}{2}} = \frac{23GM_A}{4\times15^{1/3}R} \\ & \therefore V_B = \sqrt{\frac{23GM_A}{2\times15^{1/3}R}} \\ & \therefore \frac{V_B}{V_A} = \sqrt{\frac{23}{15^{1/3}}} = \sqrt{\frac{10\times2.30}{15^{1/3}}} \end{split}$$

n = 2.30

2. The minimum kinetic energy needed by an alpha particle to cause the nuclear reaction  ${}^{16}_{7}\text{N} + {}^{4}_{2}\text{He} \rightarrow {}^{1}_{1}\text{H} + {}^{19}_{8}\text{O}$  in a laboratory frame is n (in MeV). Assume that  ${}^{16}_{7}\text{N}$  is at rest in the laboratory frame. The masses of  ${}^{16}_{7}\text{N}$ ,  ${}^{4}_{2}\text{He}$ ,  ${}^{1}_{1}\text{H}$  and  ${}^{19}_{8}\text{O}$  can be taken to be 16.006 u, 4.003 u, 1.008 u and 19.003 u, respectively, where 1 u = 930  $MeVc^{-2}$ . The value of n is \_\_\_\_\_\_.

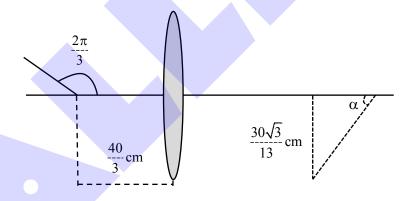

#### Ans. 2.32 to 2.33

Sol. 
$${}^{16}_{7}N + {}^{4}_{2}He \rightarrow {}^{1}_{1}He + {}^{19}_{8}O$$
  
 ${}^{16}_{7}N + {}^{4}_{2}He \rightarrow {}^{1}_{1}He + {}^{19}_{8}O$   
 ${}^{16}_{1}006 + 4.003 + 1.008 + 19.003$   
 ${}^{4}v_{0} = 1v_{1} + 19v_{2} = 20v_{2}$  (For max loss of KE)  
 $v_{0} = \frac{v_{2}}{5}$   
E required =  $(1.008 + 19.003 - 16.006 - 4.003) \times 930 = 1.86$   
 $\frac{1}{2}4v_{0}^{2} - \frac{1}{2}20v^{2} = 1.86$   
 $\frac{1}{2}4v_{0}^{2} - 10\frac{v_{0}^{2}}{25}20v^{2} = 1.86$   
 $2v_{0}^{2} - \frac{2}{5}v_{0}^{2} = 1.86$   
 $v_{0}^{2} = \frac{1.86 \times 5}{8}$   
 $v_{0}^{2} = \frac{1.86 \times 5}{8}$   
 $v_{0}^{2} = \frac{1.86 \times 5}{8}$ 

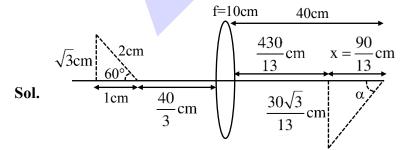
= 2.325



3. In the following circuit  $C_1 = 12 \ \mu F$ ,  $C_2 = C_3 = 4 \ \mu F$  and  $C_4 = C_5 = 2 \ \mu F$ . The Charge stored in  $C_3$  is  $\mu C$ .




## Ans. 8


**Sol.** Potential difference across the terminals of  $C_3$  is 2V.

:. 
$$Q_3 = CV = (4\mu) (2) = 8\mu C$$

4. A rod of length 2 cm makes an angle  $\frac{2\pi}{3}$  rad with the principal axis of a thin convex lens. The lens has a focal length of 10 cm and is placed at a distance of  $\frac{40}{3}$  cm from the object as shown in the figure. The height of the image is  $\frac{30\sqrt{3}}{13}$  cm and the angle made by it with respect to the principal axis is  $\alpha$  rad. The value of  $\alpha$  is  $\frac{\pi}{n}$  rad, where n is \_\_\_\_\_\_.



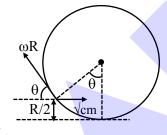
Ans. 6





$$\frac{h_i}{h_0} = \frac{v}{u} \Rightarrow \frac{-\frac{30\sqrt{3}}{13}}{\sqrt{3}} = \frac{v}{-\frac{43}{3}} \Rightarrow v_1 = \frac{430}{13} \text{ cm}$$

\* 
$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f} \Rightarrow \frac{1}{v} = \frac{1}{10} - \frac{3}{40} \Rightarrow v = 40cm$$


\* 
$$x = 40 - \frac{430}{13} = \frac{90}{13}$$
 cm

$$\tan \alpha = \frac{\frac{30\sqrt{3}}{13}}{\frac{90}{13}} = \frac{1}{\sqrt{3}} \Rightarrow \alpha = 30^\circ = \frac{\pi}{6}$$

N = 6 Ans.

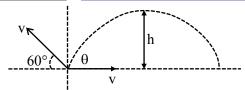
At time t = 0, a disk of radius 1 m starts to roll without slipping on a horizontal plane with an angular acceleration of  $\alpha = \frac{2}{3} \ rad \ s^{-2}$ . A small stone is stuck to the disk. At t = 0, it is at the contact point of the disk and the plane. Later, at time  $t = \sqrt{\pi} \ s$ , the stone detaches itself and flies off tangentially from the disk. The maximum height (in m) reached by the stone measured from the plane is  $\frac{1}{2} + \frac{x}{10}$ . The value of x is \_\_\_\_\_\_. [Take  $g = 10 \ m \ s^{-2}$ .]

Ans. 0.52



Sol.

At 
$$t = 0$$
,  $\omega = 0$ 


at 
$$t = \sqrt{\pi}$$
,  $\omega = \alpha t = \frac{2}{3}\sqrt{\pi}$ ,  $v = \omega r = \frac{2}{3}\sqrt{\pi}$ 

$$\theta = \frac{1}{2}\alpha t^2$$

$$\theta = \frac{1}{2} \times \frac{2}{3} \times \pi = \frac{\pi}{3}$$

$$\theta = 60^{\circ}$$

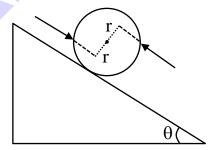




$$v_y = v \sin 60 = \frac{\sqrt{3}}{2} V$$

$$h = \frac{u_y^2}{2g} = \frac{\frac{3}{4}v^2}{2g}$$

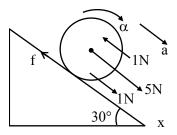
$$h = \frac{\frac{3}{4} \times \frac{4}{9}\pi}{2g}$$


$$h = \frac{3\pi}{9 \times 2g} = \frac{\pi}{6g}$$

Maximum height from plane,  $H = \frac{R}{2} + h$ 

$$H = \frac{1}{2} + \frac{\pi}{6 \times 10}$$

$$x = \frac{\pi}{6}$$
;  $x = 0.52$ 


A solid sphere of mass 1 kg and radius 1 m rolls without slipping on a fixed inclined plane with an angle of inclination  $\theta = 30^{\circ}$  from the horizontal. Two forces of magnitude 1 N each, parallel to the incline, act on the sphere, both at distance r = 0.5 m from the center of the sphere, as shown in the figure. The acceleration of the sphere down the plane is  $ms^{-2}$ . (Take g = 10 m  $s^{-2}$ .)



Ans. 2.85 to 2.86



Sol. Solid sphere 1kg, 1m



$$5 + 1 - 1 - f = 1a$$

$$5 - f = a$$

About COM

$$f 1 - 2(1(0.5)) = \frac{2}{5}Mr^2\alpha$$

$$\Rightarrow f - 1 = \frac{2}{5}a \Rightarrow f = 1 + \frac{2}{5}a$$

$$5 - a = 1 + \frac{2}{5}a$$

$$\Rightarrow 4 = \frac{7a}{5} \Rightarrow a = \frac{20}{7} = 2.86 \text{ m/s}^2$$

7. Consider an LC circuit, with inductance L = 0.1~H and capacitance  $C = 10^{-3}~F$ , kept on a plane. The area of the circuit is  $1~m^2$ . It is placed in a constant magnetic field of strength  $B_0$  which is perpendicular to the plane of the circuit. At time t = 0, the magnetic field strength starts increasing linearly as  $B = B_0 + \beta t$  with  $\beta = 0.04~Ts^{-1}$ . The maximum magnitude of the current in the circuit is mA.

Ans. 4

Sol. Maximum energy will be

$$\frac{q_0^2}{2C} = \frac{1}{2}LI_0^2$$

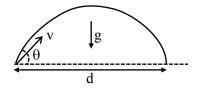
$$\frac{q_0^2}{CL} = I_0^2$$

$$\boldsymbol{I}_0 = \frac{\boldsymbol{q}_0}{\sqrt{LC}}$$

$$I_0 = \frac{CV}{\sqrt{LC}}$$

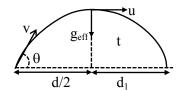
$$I_0 = \sqrt{\frac{C}{L}} \times V$$
  $V = emf = \left| \frac{AdB}{dt} \right|$ 




$$I_0 = \sqrt{\frac{10^{-3}}{0.1}} \times 0.04$$
  $V = (1 \times 0.04)$ 

Maximum current  $I_0 = 0.004 = 4mA$ 

Ans. (4)


8. A projectile is fired from horizontal ground with speed v and projection angle  $\theta$ . When the acceleration due to gravity is g, the range of the projectile is d. If at the highest point in its trajectory, the projectile enters a different region where the effective acceleration due to gravity is  $g' = \frac{g}{0.81}$ , then the new range is d' = nd. The value of n is \_\_\_\_\_\_.

Ans. 0.95



Sol.

$$d = \frac{v^2 \sin 2\theta}{g}$$



$$H_{max} = \frac{v^2 \sin^2 \theta}{2g} \; ; \; \frac{1}{2} \, g_{eff} t^2 = H_{max} \\ \Rightarrow t^2 = \frac{2 H_{max}}{g_{eff}} \; ; \; t = \sqrt{\frac{v^2 \sin^2 \theta \times 0.81}{g^2}} \; ; \; t = \frac{0.9 v \sin \theta}{g}$$

$$t^2 = \frac{2 \times v^2 \sin^2 \theta}{2g \left(\frac{g}{0.81}\right)}$$

$$d' = New range = \frac{d}{2} + d_1$$

$$d_1 = v\cos\theta^{\circ}t$$

$$= \frac{v^2 \sin^2 \theta \cos \theta \times 0.9}{g} \; ; \; d' = \frac{v^2 \sin 2\theta}{2g} + \frac{v^2 \sin 2\theta \times 0.9}{2g}$$

$$=\frac{\mathrm{v}^2\sin 2\theta}{\mathrm{g}}\left(\frac{1.0}{2}\right)=0.95\mathrm{d}$$

$$n = 0.95$$



### **SECTION-2: (Maximum Marks: 24)**

• This section contains **SIX (06)** questions.

• Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).

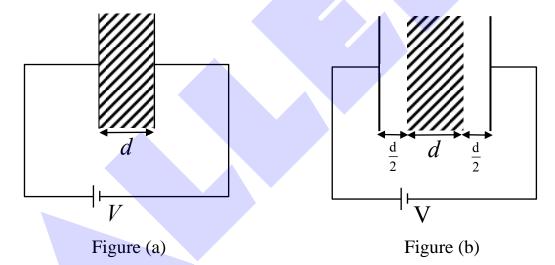
• For each question, choose the option(s) corresponding to (all) the correct answer(s).

• Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen; Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen,

both of which are correct;


Partial Marks : +1 If two or more options are correct but **ONLY** one option is chosen and it

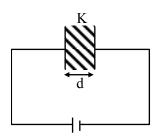
is a correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

*Negative Marks* : -2 In all other cases.

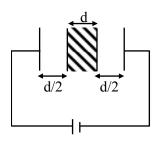
9. A medium having dielectric constant K > 1 fills the space between the plates of a parallel plate capacitor. The plates have large area, and the distance between them is d. The capacitor is connected to a battery of voltage V. as shown in Figure (a). Now, both the plates are moved by a distance of  $\frac{d}{2}$  from their original positions, as shown in Figure (b).




In the process of going from the configuration depicted in Figure (a) to that in Figure (b), which of the following statement(s) is(are) correct?

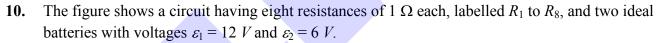
- (A) The electric field inside the dielectric material is reduced by a factor of 2K.
- (B) The capacitance is decreased by a factor of  $\frac{1}{K+1}$ .
- (C) The voltage between the capacitor plates is increased by a factor of (K + 1).
- (D) The work done in the process **DOES NOT** depend on the presence of the dielectric material.

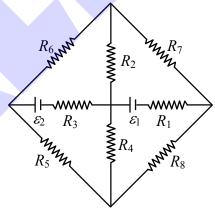
Ans. (B)




**Sol.** For figure(a)




$$E_0 = \frac{V}{d}$$
;  $C = \frac{K\epsilon_0 A}{d}$ 

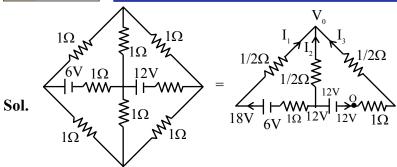

For figure(b)



$$C' = \frac{\varepsilon_0 A}{2d - d + d / k};$$

$$C' = \frac{K\varepsilon_0 A}{(K+1)d}; C' = \frac{C}{K+1}$$






Which of the following statement(s) is(are) correct?

- (A) The magnitude of current flowing through  $R_1$  is 7.2 A.
- (B) The magnitude of current flowing through  $R_2$  is 1.2 A.
- (C) The magnitude of current flowing through  $R_3$  is 4.8 A.
- (D) The magnitude of current flowing through  $R_5$  is 2.4 A.

Ans. (A,B,C,D)





From KCL

$$i_1 + i_2 + i_3 = 0$$

$$\Rightarrow \frac{18 - V_0}{3/2} + \frac{12 - V_0}{1/2} + \frac{0 - V_0}{3/2} = 0$$

$$\Rightarrow 18 - V_0 + 36 - 3V_0 - V_0 = 0$$

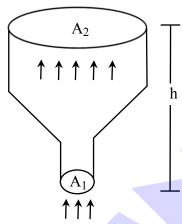
$$\Rightarrow$$
 54 = 5 $V_0$ 

$$\frac{2\left(\frac{54}{5} - \mathbf{v'}\right)}{1} + \frac{18 - \mathbf{v'}}{1} = 0$$

$$\Rightarrow \frac{108}{5} + 18 = 3V'$$

$$\Rightarrow$$
 v' =  $\frac{198}{5 \times 3} = \frac{66}{5}$  V

$$I_{R_1} = \frac{36}{5} = 7.2A$$


$$I_{R_2} = \frac{6}{5} = 1.2A$$

$$I_{R_3} = \frac{24}{5} = 4.8A$$

$$I_{R_5} = \frac{12}{5} = 2.4A$$



11. An ideal gas of density  $\rho = 0.2 \ kg \ m^{-3}$  enters a chimney of height h at the rate of  $\alpha = 0.8 \ kg \ s^{-1}$  from its lower end, and escapes through the upper end as shown in the figure. The cross-sectional area of the lower end is  $A_1 = 0.1 \ m^2$  and the upper end is  $A_2 = 0.4 \ m^2$ . The pressure and the temperature of the gas at the lower end are  $600 \ Pa$  and  $300 \ K$ , respectively, while its temperature at the upper end is  $150 \ K$ . The chimney is heat insulated so that the gas undergoes adiabatic expansion. Take  $g = 10 \ ms^{-2}$  and the ratio of specific heats of the gas  $\gamma = 2$ . Ignore atmospheric pressure.



Which of the following statement(s) is(are) correct?

- (A) The pressure of the gas at the upper end of the chimney is 300 Pa.
- (B) The velocity of the gas at the lower end of the chimney is  $40 \text{ ms}^{-1}$  and at the upper end is  $20 \text{ ms}^{-1}$ .
- (C) The height of the chimney is 590 m.
- (D) The density of the gas at the upper end is  $0.05 \text{ kg m}^{-3}$ .

### Ans. (B)

Sol.

$$A_1 = 0.1 \text{ m}^2$$
 $P_1 = 600 \text{ Pa}$ 
 $T_1 = 300 \text{ K}$ 
 $V_1$ 

$$\frac{dm}{dt} = \rho_1 A_1 v_1 = 0.8 \text{ kg/s A}$$

$$v_1 = \frac{0.8}{0.2 \times 0.1} = 40 \,\text{m/s}$$



$$g = 10 \text{ m/s}^2$$

$$\gamma = 2$$

Gas undergoes adiabatic expansion,

 $p^{1-\gamma} T^{\gamma} = Constant$ 

$$\frac{P_2}{P_1} = \left(\frac{T_1}{T_2}\right)^{\frac{r}{1-\gamma}}$$

$$P_2 = \left(\frac{300}{150}\right)^{\frac{2}{-1}} \times 600$$

$$P_2 = \frac{600}{4} = 150 Pa$$

Now 
$$\rho = \frac{PM}{RT} \Rightarrow \rho \propto \frac{P}{T}$$

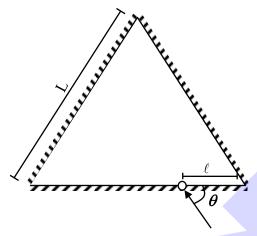
$$\frac{\rho_1}{\rho_2} = \left(\frac{P_1}{P_2}\right) \left(\frac{T_1}{T_2}\right) = \left(\frac{150}{600}\right) \left(\frac{300}{150}\right) = \frac{1}{2}$$

$$\rho_2 = \frac{\rho_1}{2} = 0.1 \text{ kg/m}^3$$

Now 
$$\rho_2 A_2 v_2 = 0.8 \implies v_2 = \frac{0.8}{0.1 \times 0.4} = 20 \text{ m/s}$$

Now  $W_{\text{on gas}} = \Delta K + \Delta U + (Internal energy)$ 

$$P_{1}A_{1}\Delta x_{1} - P_{2}A_{2}\Delta x_{2} = \frac{1}{2}\Delta mV_{2}^{2} - \frac{1}{2}\Delta mV_{1}^{2} + \Delta mgh + \frac{f}{2}(P_{2}\Delta V_{2} - P_{1}\Delta V_{1})$$


$$\Rightarrow 2P_1 \frac{\Delta V_1}{\Delta m} - 2P_2 \frac{\Delta V_2}{\Delta m} = \frac{V_2^2 - V_1^2}{2} + gh$$

$$\Rightarrow \frac{2 \times 600}{0.2} - \frac{2 \times 150}{0.1} = \frac{20^2 - 40^2}{2} + 10h$$

$$h = 360 \text{ m}$$

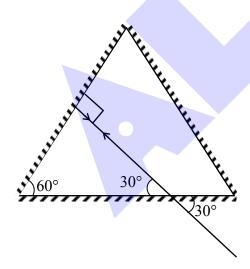


12. Three plane mirrors form an equilateral triangle with each side of length L. There is a small hole at a distance l > 0 from one of the corners as shown in the figure. A ray of light is passed through the hole at an angle  $\theta$  and can only come out through the same hole. The cross section of the mirror configuration and the ray of light lie on the same plane.

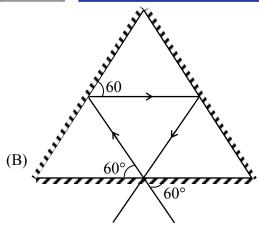


Which of the following statement(s) is(are) correct?

(A) The ray of light will come out for  $\theta = 30^{\circ}$ , for 0 < l < L.

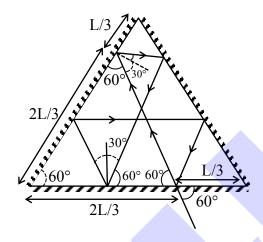

(B) There is an angle for  $l = \frac{L}{2}$  at which the ray of light will come out after two reflections.

(C) The ray of light will **NEVER** come out for  $\theta = 60^{\circ}$ , and  $l = \frac{L}{3}$ .

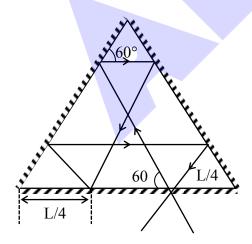

(D) The ray of light will come out for  $\theta = 60^{\circ}$ , and  $0 < l < \frac{L}{2}$  after six reflections.

Ans. (A,B)

**Sol.** (A) Ray will come out after one reflection for  $\theta = 30^{\circ} \& 0 < \ell < L$ 

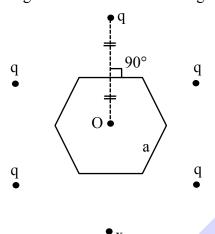





for  $\theta$  = 60° &  $\ell = \frac{L}{2}$  , ray will come out after two reflections.

(C) For  $\ell = \frac{L}{3} \& \theta = 60^{\circ}$  ray will come out after five reflections.

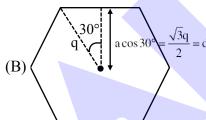



(D) For  $\theta = 60^{\circ} \& 0 < \ell < \frac{L}{2}$ , ray will come out after five reflections





13. Six charges are placed around a regular hexagon of side length a as shown in the figure. Five of them have charge q, and the remaining one has charge x. The perpendicular from each charge to the nearest hexagon side passes through the center O of the hexagon and is bisected by the side.




Which of the following statement(s) is(are) correct in SI units?

- (A) When x = q, the magnitude of the electric field at O is zero.
- (B) When x = -q, the magnitude of the electric field at O is  $\frac{q}{6\pi \in_0 a^2}$ .
- (C) When x = 2q, the potential at O is  $\frac{7q}{4\sqrt{3}\pi \in_0 a}$ .
- (D) When x = -3q, the potential at O is  $\frac{3q}{4\sqrt{3}\pi \in_0 a}$

**Ans.** (**A,B,C**)

**Sol.** (A) Due to symmetry  $\vec{E}_0 = 0$ 



$$E_{net} = \frac{kq}{(2d)^2} \times 2 = \frac{2q \times 4}{4\pi\epsilon_0 \cdot 4 \cdot 3a^2}$$

$$=\frac{q}{6\pi\epsilon_0 a^2}$$

(C) 
$$v = \frac{7kq}{2d} = \frac{7q}{4\pi\epsilon_0 \cdot \sqrt{3}a} = \frac{7q}{4\sqrt{3}\pi\epsilon_0 q}$$

(D) 
$$v = \frac{2kq}{2d} = \frac{2q}{4\pi\epsilon_0 \cdot \sqrt{3}a} = \frac{q}{2\sqrt{3}\pi\epsilon_0 q}$$

Ans. (A,B,C)



14. The binding energy of nucleons in a nucleus can be affected by the pairwise Coulomb repulsion. Assume that all nucleons are uniformly distributed inside the nucleus. Let the binding energy of a proton be  $E_b^p$  and the binding energy of a neutron be  $E_b^n$  in the nucleus.

Which of the following statement(s) is(are) correct?

- (A)  $E_b^p E_b^n$  is proportional to Z(Z-1) where Z is the atomic number of the nucleus.
- (B)  $E_b^p E_b^n$  is proportional to  $A^{-\frac{1}{3}}$  where A is the mass number of the nucleus.
- (C)  $E_b^p E_b^n$  is positive.
- (D)  $E_b^p$  increases if the nucleus undergoes a beta decay emitting a positron.

Ans. (A,B,D)

**Sol.** Binding energy of proton & neutron due to nuclear force is same. So difference in binding energy is only due to electrostatic P.E. and it is positive

$$E_0^P - E_0^n$$
 = electrostatic P.E.

= 
$$Z \times P.E.$$
 of one proton

$$= Z \times \frac{1}{4\pi\varepsilon_0} \frac{(Z-1)e^2}{R}$$

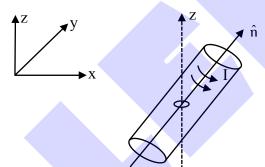
Where 
$$R = R_0 A^{1/3}$$

$$= \frac{1}{4\pi\epsilon_0} \frac{Z(Z-1)e^2}{R_0 A^{\frac{1}{3}}}$$



# **SECTION-3**: (Maximum Marks: 12)

- This section contains **FOUR (04)** Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has **TWO** lists: List-I and List-II.
- List-I has Four entries (I), (II), (III) and (IV) and List-II has Five entries (P), (Q), (R), (S) and (T).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:


Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

15. A small circular loop of area A and resistance R is fixed on a horizontal xy-plane with the center of the loop always on the axis  $\hat{n}$  of a long solenoid. The solenoid has m turns per unit length and carries current I counterclockwise as shown in the figure. The magnetic field due to the solenoid is in  $\hat{n}$  direction. List-I gives time dependences of  $\hat{n}$  in terms of a constant angular frequency  $\omega$ .

List-II gives the torques experienced by the circular loop at time  $t = \frac{\pi}{6\omega}$ , Let  $\alpha = \frac{A^2 \mu_0^2 m^2 I^2 \omega}{2R}$ 



|       | List-I                                                                              |     | List-II                     |
|-------|-------------------------------------------------------------------------------------|-----|-----------------------------|
| (I)   | $\frac{1}{\sqrt{2}} \left( \sin \omega t  \hat{j} + \cos \omega t  \hat{k} \right)$ | (P) | 0                           |
| (II)  | $\frac{1}{\sqrt{2}} \left( \sin \omega t  \hat{i} + \cos \omega t  \hat{j} \right)$ | (Q) | $-\frac{\alpha}{4}\hat{i}$  |
| (III) | $\frac{1}{\sqrt{2}} \left( \sin \omega t  \hat{i} + \cos \omega t  \hat{k} \right)$ | (R) | $\frac{3\alpha}{4}\hat{i}$  |
| (IV)  | $\frac{1}{\sqrt{2}} \Big( \cos \omega t  \hat{i} + \sin \omega t  \hat{k} \Big)$    | (S) | $\frac{\alpha}{4}\hat{j}$   |
|       |                                                                                     | (T) | $-\frac{3\alpha}{4}\hat{i}$ |

Which one of the following options is correct?

(A) 
$$I \rightarrow Q$$
,  $II \rightarrow P$ ,  $III \rightarrow S$ ,  $IV \rightarrow T$ 

(B) 
$$I \rightarrow S$$
,  $II \rightarrow T$ ,  $III \rightarrow O$ ,  $IV \rightarrow P$ 

(C) 
$$I \rightarrow Q$$
,  $II \rightarrow P$ ,  $III \rightarrow S$ ,  $IV \rightarrow R$ 

(D) 
$$I \rightarrow T$$
,  $II \rightarrow Q$ ,  $III \rightarrow P$ ,  $IV \rightarrow R$ 

Ans. (C)



**Sol.** (I)  $\vec{B} = \frac{\mu_0 mI}{\sqrt{2}} \left( \sin \omega t \, \hat{j} + \cos \omega t \, \hat{k} \right)$ 

$$\varphi = \vec{B} \cdot \vec{A} = \frac{\mu_0 m I}{\sqrt{2}} \cos \left(\omega t\right) \cdot A$$

$$\epsilon = \frac{d\phi}{dt} = \frac{\mu_0 m I \omega A}{\sqrt{2}} \sin(\omega t)$$

$$i = \frac{\varepsilon}{R} = \frac{\mu_0 m I \omega A}{\sqrt{2} R} \sin(\omega t)$$

$$\vec{M} = i\vec{A} = iA(\hat{k}) = \frac{\mu_0 m I \omega A^2}{\sqrt{2}R} \sin(\omega t)(\hat{k})$$

$$\vec{\tau} = \vec{M} \times \vec{B} = \frac{\mu_0 m^2 I^2 \omega A^2}{\sqrt{2} R} \sin^2 \left(\omega t\right) \left(-\hat{i}\right)$$

$$=-\left(\frac{\alpha}{4}\right)\hat{i}$$

(II) 
$$\vec{B} = \frac{\mu_0 mI}{\sqrt{2}} \left( \sin \omega t \hat{i} + \cos \omega t \hat{j} \right)$$

$$\phi = 0, \, \epsilon = 0, \, i = 0, \, t = 0$$

(III) 
$$\vec{B} = \frac{\mu_0 mI}{\sqrt{2}} \left( \sin \omega t \, \hat{i} + \cos \omega t \, \hat{k} \right)$$

$$\phi = \vec{B} \cdot \vec{A} = \frac{\mu_0 mI}{\sqrt{2}} \cdot \cos(\omega t) \cdot A$$

$$\epsilon = -\frac{d\phi}{dt} = \frac{\mu_0 m I \omega A}{\sqrt{2}} \sin(\omega t)$$



$$i = \frac{\varepsilon}{R} = \frac{\mu_0 m I \omega A}{\sqrt{2} R} \sin(\omega t)$$

$$\vec{M} = i\vec{A} = iA(\hat{k}) = \frac{\mu_0 m I \omega A^2}{\sqrt{2}R} \sin(\omega t)(\hat{k})$$

$$\vec{\tau} = \vec{M} \times \vec{B} = \frac{\mu_0 m^2 I^2 \omega A^2}{2R} \sin^2(\omega t) (+\hat{j})$$

$$=\frac{\alpha}{4}\hat{j}$$

(IV) 
$$\vec{B} = \frac{\mu_0 mI}{\sqrt{2}} \left( \cos \omega t \hat{j} + \sin \omega t \hat{k} \right)$$

$$\phi = \vec{B} \cdot \vec{A} = \frac{\mu_0 mI}{\sqrt{2}} \cdot sin(\omega t) \cdot A$$

$$\epsilon = -\frac{d\phi}{dt} = \frac{\mu_0 m I \omega A}{\sqrt{2}} \cos(\omega t)$$

$$i = \frac{\varepsilon}{R} = -\frac{\mu_0 m I \omega A}{\sqrt{2} R} \cos(\omega t)$$

$$\vec{M} = i\vec{A} = iA(\hat{k}) = -\frac{\mu_0 m I \omega A^2}{\sqrt{2}R} \cos(\omega t)(\hat{k})$$

$$\vec{\tau} = \vec{M} \times \vec{B} = -\frac{\mu_0 m^2 I^2 \omega A^2}{2R} \cos^2(\omega t) \left(-\hat{i}\right)$$

$$=\alpha \cdot \cos^2\left(\frac{\pi}{6}\right)\hat{i}$$

$$=\frac{3\alpha}{4}\hat{i}$$

Ans. (C) I-Q, II-P, III-S, IV-R



16. List I describes four systems, each with two particles A and B in relative motion as shown in figure. List II gives possible magnitudes of then relative velocities (in  $ms^{-1}$ ) at time  $t = \frac{\pi}{3}s$ .

|       | T to 4 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T:.4         | TT                     |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|
| (I)   | List-I  A and B are moving on a horizontal circle of radius 1 m with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (P)          | _                      |
| (1)   | uniform angular speed $\omega = 1$ rad $s^{-1}$ . The initial angular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1)          | $\frac{\sqrt{3}+1}{2}$ |
|       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 2                      |
|       | positions of A and B at time $t = 0$ are $\theta = 0$ and $\theta = \frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                        |
|       | respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                        |
|       | y <b>↑</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                        |
|       | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Q)          |                        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |
|       | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |
| (77)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0)          | / _ `                  |
| (II)  | Projectiles $A$ and $B$ are fired (in the same vertical plane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Q)          | $(\sqrt{3}-1)$         |
|       | at $t = 0$ and $t = 0.1$ s respectively, with the same speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | $\frac{1}{\sqrt{2}}$   |
|       | $v = \frac{5\pi}{\sqrt{2}}$ m s <sup>-1</sup> and at 45° from the horizontal plane. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | V 2                    |
|       | V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                        |
|       | initial separation between A and B is large enough so that they do not collide, $(g = 10 \text{ m s}^{-2})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                        |
|       | they do not conide, $(g - 10 \text{ m/s})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |
|       | t=0 <b>4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                        |
|       | <u>45°</u> 45° <u>\</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                        |
|       | A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |
| (III) | The bound of the state of the s | ( <b>D</b> ) |                        |
| (III) | Two harmonic oscillators A and B moving in the x direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (R)          | <b>√</b> 10            |
|       | according to $x_A = x_0 \sin \frac{t}{t_0}$ and $x_B = x_0 \sin \left(\frac{t}{t_0} + \frac{\pi}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |
|       | respectively, starting from $t = 0$ . Take $x_0 = 1$ $m$ , $t_0 = 1$ s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                        |
|       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                        |
|       | $\mathbf{x}_{\mathrm{B}} = \mathbf{x}_{0} \sin \left( \frac{\mathbf{t}}{\mathbf{t}_{0}} + \frac{\pi}{2} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                        |
|       | $\begin{bmatrix} 0 0 0 0 \mathbf{B} & \mathbf{B} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{t}_0 & 2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                        |
|       | <b>→</b> X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                        |
|       | . t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                        |
|       | $X_{A}=x_{0}\sin\frac{t}{t_{0}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                        |
|       | -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                        |



| (IV) | Particle A is rotating in a horizontal circular path of radius 1 m on the xy plane, with constant angular speed $\omega = 1 \ rad \ s^{-1}$ . Particle B is moving up at a constant speed 3 m $s^{-1}$ in the vertical direction as shown in the figure. (Ignore gravity.) | (S) | $\sqrt{2}$         |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|
|      | Z \$3ms <sup>-1</sup> A y                                                                                                                                                                                                                                                  |     |                    |
|      |                                                                                                                                                                                                                                                                            | (T) | $\sqrt{25\pi^2+1}$ |

Which one of the following options is correct?

(A) 
$$I \rightarrow R$$
,  $II \rightarrow T$ ,  $III \rightarrow P$ ,  $IV \rightarrow S$ 

(B) 
$$I \rightarrow S$$
,  $II \rightarrow P$ ,  $III \rightarrow Q$ ,  $IV \rightarrow R$ 

(C) 
$$I \rightarrow S$$
,  $II \rightarrow T$ ,  $III \rightarrow P$ ,  $IV \rightarrow R$ 

(D) I 
$$\rightarrow$$
 T, II  $\rightarrow$  P, III  $\rightarrow$  R, IV  $\rightarrow$  S

Ans. (C)

**Sol.** (I) 
$$v_{BA}^2 = v_A^2 + v_B^2 - 2v_{AB}\cos\theta$$

As  $\omega_A = \omega_B$ ,  $\theta = 90^\circ$  remains constant.

Also, 
$$v_A = v_B = 1 \text{ m/s}$$

So, 
$$v_{BA} = \sqrt{2}m/s$$

(II) 
$$\vec{u}_A = \frac{5\pi}{2} \hat{i} + \frac{5\pi}{2} \hat{j}$$

$$\vec{v}_A = \frac{5\pi}{2}\hat{i} + \left(\frac{5\pi}{2} - 10 \cdot \frac{\pi}{3}\right)\hat{j}$$

$$=\frac{5\pi}{2}\hat{i}-\frac{5\pi}{6}\hat{j}$$

$$\vec{u}_{\mathrm{B}} = -\frac{5\pi}{2}\,\hat{i} + \frac{5\pi}{2}\,\hat{j}$$



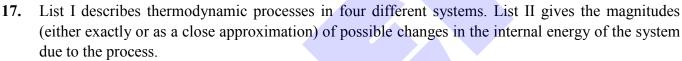
$$\vec{u}_{\rm B} = -\frac{5\pi}{2}\hat{i} - \left(\frac{5\pi}{6} + 1\right)\hat{j}$$

$$\vec{v}_{B,A} = -5\pi \hat{i} - \hat{j}$$

$$v_{BA} = \sqrt{25\pi^2 + 1}$$

(III) 
$$x_A = \sin t$$

$$v_A = \cos t = \frac{1}{2} m / s$$


$$x_B = cost$$

$$v_{B} = -\sin t = -\frac{\sqrt{3}}{2} \, m \, / \, s$$

$$v_{_{BA}} = -\frac{\sqrt{3}}{2} - \frac{1}{2}$$

(IV)  $\vec{v}_{_{A}}\,\&\,\vec{v}_{_{B}}$  are always perpendicular

So, 
$$|\vec{v}_{BA}| = \sqrt{v_A^2 + v_B^2} = \sqrt{10} \text{m/s}$$



| List-I |                                                                    | List-II |             |
|--------|--------------------------------------------------------------------|---------|-------------|
| (I)    | 10 <sup>-3</sup> kg of water at 100°C is converted to steam at the | (P)     | 2 <i>kJ</i> |
|        | same temperature, at a pressure of $10^5 Pa$ . The volume of       |         |             |
|        | the system changes from $10^{-6}$ $m^3$ to $10^{-3}$ $m^3$ in the  |         |             |
|        | process. Latent heat of water = $2250 \text{ kJ/kg}$ .             |         |             |
| (II)   | 0.2 moles of a rigid diatomic ideal gas with volume $V$ at         | (Q)     | 7 kJ        |
|        | temperature 500 K undergoes an isobaric expansion to               |         |             |
|        | volume 3 V. Assume $R = 8.0 J mol^{-1} K^{-1}$ .                   |         |             |
| (III)  | On mole of a monatomic ideal gas is compressed                     | (R)     | 4 <i>kJ</i> |
|        | adiabatically from volume $V = \frac{1}{3}m^3$ and pressure 2 kPa  |         |             |
|        | to volume $\frac{v}{8}$                                            |         |             |
| (IV)   | Three moles of a diatomic ideal gas whose molecules can            | (S)     | 5 <i>kJ</i> |
|        | vibrate, is given 9 kJ of heat and undergoes isobaric              |         |             |
|        | expansion.                                                         |         |             |
|        |                                                                    | (T)     | 3 <i>kJ</i> |

Which one of the following options is correct?

(A) 
$$I \rightarrow T$$
,  $II \rightarrow R$ ,  $III \rightarrow S$ ,  $IV \rightarrow Q$ 

(B) 
$$I \rightarrow S$$
,  $II \rightarrow P$ ,  $III \rightarrow T$ ,  $IV \rightarrow P$ 

(C) 
$$I \rightarrow P$$
,  $II \rightarrow R$ ,  $III \rightarrow T$ ,  $IV \rightarrow Q$ 

(D) 
$$I \rightarrow Q$$
,  $II \rightarrow R$ ,  $III \rightarrow S$ ,  $IV \rightarrow T$ 

Ans. (C)



**Sol.** (I) 
$$\Delta U = \Delta Q - \Delta W$$

$$= \left\{ \left(10^{-3} \times 2250\right) - \frac{10^{5} \left(10^{-3} - 10^{-6}\right)}{10^{3}} \right\} kJ$$

$$= (2.25 - 0.0999) \text{ kJ}$$

$$= (2.1501) \text{ kJ}$$

(II) 
$$\Delta U = nC_V \Delta T$$

$$= \frac{5}{2} nR\Delta T$$
$$= \frac{5}{2} \cdot (0.2)(8)(1500 - 500) J$$

$$=4 \text{ kJ}$$

(III) 
$$P_1V_2^{\gamma} = P_2V_2^{\gamma}$$

$$\Rightarrow 2\left(\frac{1}{3}\right)^{5/3} = P_2\left(\frac{1}{24}\right)^{5/3}$$

$$\Rightarrow$$
 P<sub>2</sub> = 64 kPa

$$\Delta U = nC_V \Delta T = \frac{3}{2} \cdot \left( P_2 V_2 - P_1 V_1 \right)$$

$$=\frac{3}{2}\left(64\times\frac{1}{24}-2\times\frac{1}{3}\right)kJ$$

$$= 3 \text{ kJ}$$

(IV) 
$$\Delta U = nC_V \Delta T$$

$$= \mathbf{n} \cdot \frac{7}{2} \mathbf{R} \Delta \mathbf{T}$$

$$=\frac{7}{9}\Delta Q$$

$$=7 \text{ kJ}$$

Ans. (C); I-P, II-R, III-T, IV-Q



**18.** List I contains four combinations of two lenses (1 and 2) whose focal lengths (in cm) are indicated in the figures. In all cases, the object is placed 20 *cm* from the first lens on the left, and the distance between the two lenses is 5 *cm*. List II contains the positions of the final images.

| List-I |                                                        |     | List-II                                                       |  |  |
|--------|--------------------------------------------------------|-----|---------------------------------------------------------------|--|--|
| (I)    | f=+10 $+15$                                            | (P) | Final image is farmed at 7.5 cm on the right side of lens 2.  |  |  |
| (II)   | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | (Q) | Final image is formed at 60.0 cm on the right side of lens 2. |  |  |
| (III)  | f = +10 $-20$ $20  cm$ $1  5 cm$ $2$                   | (R) | Final image is formed at 30.0 cm on the left side of lens 2.  |  |  |
| (IV)   | f = -20 +10 $20 cm = 1 5 cm = 2$                       | (S) | Final image is formed at 6.0 cm on the right side of lens 2.  |  |  |
|        |                                                        | (T) | Final image is formed at 30.0 cm on the right side of lens 2. |  |  |

Which one of the following options is correct?

(A) 
$$I \rightarrow P$$
,  $II \rightarrow R$ ,  $III \rightarrow Q$ ,  $IV \rightarrow T$ 

(B) I 
$$\rightarrow$$
 Q, II  $\rightarrow$  P, III  $\rightarrow$  T, IV  $\rightarrow$  S

(C) I 
$$\rightarrow$$
 P, II  $\rightarrow$  T, III  $\rightarrow$  R, IV  $\rightarrow$  Q

(D) I 
$$\rightarrow$$
 T, II  $\rightarrow$  S, III  $\rightarrow$  Q, IV  $\rightarrow$  R

Ans. (A)



**Sol.** (I) 
$$v_1 = \frac{uf}{u+f}$$

$$=\frac{(-20)(10)}{(-20)+(10)}=+20$$

$$u_2 = +15$$

$$v_2 = \frac{(15)(15)}{(15)+(15)} = +7.5$$

(II) 
$$v_1 = +20$$

$$u_2 = +15$$

$$v_2 = \frac{(15)(-10)}{(15)+(-10)} = -30$$

(III) 
$$v_1 = +20$$

$$u_2 = +15$$

$$v_2 = \frac{(15)(-20)}{(15)+(-20)} = 60$$

(IV) 
$$v_1 = \frac{(-20)(-20)}{(-20)+(-20)} = -10$$

$$u_2 = -15$$

$$v_2 = \frac{(-15)(10)}{(-15)+(10)} = 30$$

Ans. (A), I-P, II-R, III-Q, IV-T

