MATHEMATICS

SECTION - A

1. (d)

Given $A^{2}=3 A,|A| \neq 0$, order of A is 3

$$
\begin{array}{ll}
\therefore \quad\left|A^{2}\right|=|3 \mathrm{~A}| \\
& |\mathrm{A}|^{2}=3^{3}|\mathrm{~A}| \quad\left(\left|\mathrm{A}^{2}\right|=|\mathrm{A}|^{2} \&|\mathrm{KA}|=\mathrm{K}^{\mathrm{n}}|\mathrm{~A}|\right) \\
& |\mathrm{A}|=27
\end{array}
$$

2. (b)

As per question, direction cosines of the line :
$\ell=\cos 45^{\circ}=\frac{1}{\sqrt{2}}, \mathrm{~m}=\cos 120^{\circ}=\frac{-1}{2}, \mathrm{n}=\cos \theta$
where θ is the angle, which line makes with positive z-axis.
We know that, $\ell^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{2}+\frac{1}{4}+\cos ^{2} \theta=1 \\
& \\
& \cos ^{2} \theta=\frac{1}{4} \\
& \Rightarrow \quad \cos \theta=\frac{1}{2}=\cos \frac{\pi}{3} \\
& \Rightarrow \quad
\end{aligned} \quad \theta=\frac{\pi}{3} .
$$

3. (b)

$$
\begin{aligned}
& \overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+\alpha \hat{\mathrm{j}}+3 \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{~b}}=3 \hat{\mathrm{i}}-\alpha \hat{j}+\hat{\mathrm{k}}
\end{aligned}
$$

area of parallelogram $=|\vec{a} \times \vec{b}|=8 \sqrt{3}$.
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & \alpha & 3 \\ 3 & -\alpha & 1\end{array}\right|=\hat{i}(4 \alpha)-\hat{j}(-8)+\hat{k}(-4 \alpha)$
$\therefore|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{64+32 \alpha^{2}}=8 \sqrt{3}$
$\Rightarrow 2+\alpha^{2}=6 \Rightarrow \alpha^{2}=4$
$\therefore \vec{a} \cdot \vec{b}=3-\alpha^{2}+3=2$
4. (c)
$\mathrm{M}=\left[\begin{array}{lll}0 & -1 & 2 \\ 2 & -2 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 2 \\ -2 & 2\end{array}\right]$
$|\mathrm{M}|=6, \operatorname{adj} \mathrm{M}=\left[\begin{array}{cc}2 & -2 \\ 2 & 1\end{array}\right]$
Now $\mathrm{M}^{-1}=\frac{\operatorname{adj} \mathrm{M}}{|\mathrm{M}|}$
$\therefore \mathrm{M}^{-1}=\frac{1}{6}\left[\begin{array}{cc}2 & -2 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}1 / 3 & -1 / 3 \\ 1 / 3 & 1 / 6\end{array}\right]$
5. (d)

Let $\mathrm{I}=\int_{0}^{\pi} \cos \mathrm{x} \mathrm{e}^{\sin \mathrm{x}} \mathrm{dx}$
$I=\int_{0}^{\pi}-\cos x e^{\sin x} d x$
...(ii) (By property $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$)
Adding (i) and (ii)
$2 \mathrm{I}=0$
$\mathrm{I}=0$
6. (b)
$y=\sin \left(m \sin ^{-1} x\right)$
$\Rightarrow \frac{d y}{d x}=\cos \left(m \sin ^{-1} x\right) \times\left(\frac{m}{\sqrt{1-x^{2}}}\right)$ (Differentiating w.r.t. x)
$\Rightarrow \sqrt{1-x^{2}} \frac{d y}{d x}=m \cos \left(m \sin ^{-1} x\right)$
(Again differentiating w.r.t. x)
$\therefore \quad \sqrt{1-x^{2}} \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right) \cdot \frac{1}{2 \sqrt{1-x^{2}}} \cdot(-2 x)=-m^{2} \sin \left(m \sin ^{-1} x\right) \times \frac{1}{\sqrt{1-x^{2}}}$
$\Rightarrow\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+m^{2} y=0 \quad$ (from (i))
7. (d)

Given differential equation is $\left(\frac{d^{2} y}{d x^{2}}\right)^{5}+4 \frac{\left(\frac{d^{2} y}{d x^{2}}\right)^{3}}{\left(\frac{d^{3} y}{d x^{3}}\right)}+\frac{d^{3} y}{d x^{3}}=x^{2}-1$
$\Rightarrow\left(\frac{d^{2} y}{d x^{2}}\right)^{5}\left(\frac{d^{3} y}{d^{3}}\right)+4\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d^{3} y}{d x^{3}}\right)^{2}=\left(x^{2}-1\right)\left(\frac{d^{3} y}{d x^{3}}\right)$

The highest order derivative in the given equation is $\frac{d^{3} y}{d x^{3}}$ and its highest power is 2 Therefore $\mathrm{m}=3$ and $\mathrm{n}=2$.
$\mathrm{m}+\mathrm{n}=3+2=5$
8. (d)

Given that $\int \frac{f(x) d x}{\log \sin \mathrm{x}}=\log [\log (\sin \mathrm{x})]$
Differentiating both sides w.r.t. x , we get
$\frac{f(x)}{\log \sin \mathrm{x}}=\frac{\cot \mathrm{x}}{\log \sin \mathrm{x}} \Rightarrow \mathrm{f}(\mathrm{x})=\cot \mathrm{x}$.
9. (a)

Given, $\left|\begin{array}{lll}\mathrm{x} & 2 & 3 \\ 1 & \mathrm{x} & 1 \\ 3 & 2 & \mathrm{x}\end{array}\right|=0$
$\Rightarrow \mathrm{x}\left(\mathrm{x}^{2}-2\right)-2(\mathrm{x}-3)+3(2-3 \mathrm{x})=0$
$\Rightarrow \mathrm{x}^{3}-2 \mathrm{x}-2 \mathrm{x}+6+6-9 \mathrm{x}=0$
$\Rightarrow \mathrm{x}^{3}-13 \mathrm{x}+12=0$
$\therefore(\mathrm{x}+4)\left(\mathrm{x}^{2}-4 \mathrm{x}+3\right)=0 \quad[\because \mathrm{x}=-4$ is a root $]$
$\Rightarrow(\mathrm{x}+4)(\mathrm{x}-1)(\mathrm{x}-3)=0$
Hence ; the sum of other two roots $=1+3=4$
10. (c)

The corner points of the feasible region are $(0,0),(3,0),(3,2),(2,3)$ and $(0,3)$
11. (c)

Given, x dy $-\mathrm{ydx}=0$
$\Rightarrow \mathrm{xdy}=\mathrm{ydx} \Rightarrow \frac{1}{\mathrm{y}} \mathrm{dy}=\frac{1}{\mathrm{x}} \mathrm{dx}$
Integrating both sides
$\Rightarrow \quad \int \frac{d y}{y}=\int \frac{d x}{x}$
$\log y=\log x+\log c$
$\mathrm{y}=\mathrm{cx} \quad \therefore$ it represents a straight line passing through origin.
12. (c)

Given ; E and F are independent i.e. $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$
$\mathrm{P}(\mathrm{E} \cup \mathrm{F})=\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{F})-\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$
$\Rightarrow \quad 0.5=0.3+\mathrm{P}(\mathrm{F})-0.3 \times \mathrm{P}(\mathrm{F})$
$\Rightarrow \quad 0.7 \mathrm{P}(\mathrm{F})=0.2 \quad \therefore \mathrm{P}(\mathrm{F})=\frac{2}{7}$
Now ; $P(E / F)-P(F / E)$

$$
\begin{aligned}
& =\frac{P(E \cap F)}{P(F)}-\frac{P(F \cap E)}{P(E)}=\frac{P(E) \cdot P(F)}{P(F)}-\frac{P(E) \cdot P(F)}{P(E)} \\
& =P(E)-P(F)=\frac{3}{10}-\frac{2}{7}=\frac{1}{70}
\end{aligned}
$$

13. (c)
$\because \mathrm{B}=\mathrm{A}^{\prime} \Rightarrow|\mathrm{B}|=\left|\mathrm{A}^{\prime}\right|=|\mathrm{A}|$
$\therefore|\mathrm{AB}|=|\mathrm{A}||\mathrm{B}|=(-4)(-4)=16$
14. (b)

Given, $|\vec{a}|=|\vec{b}|,|\vec{a} \times \vec{b}|=|\vec{a}|$ and $\vec{a} \perp \vec{b}$
Now, $|\vec{a} \times \vec{b}|=|\vec{a}| \Rightarrow|\vec{a}||\vec{b}| \sin 90^{\circ}=|\vec{a}| \Rightarrow|\vec{b}|=1=|\vec{a}|$
$\therefore \vec{a}$ and \vec{b} are mutually perpendicular unit vectors.
Let θ be the angle between $(\vec{a}+\vec{b}+(\vec{a} \times \vec{b}))$ and \vec{a}
Let $\vec{a}=\hat{i}, \vec{b}=\hat{j}$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{k}}$
$\cos \theta=\frac{(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}) \cdot \hat{\mathrm{i}}}{\sqrt{3} \sqrt{1}}=\frac{1}{\sqrt{3}} \Rightarrow \theta=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
15. (b)

Given ; Z = px + qy
Since the minimum value of Z occurs at $(3,0)$ and $(1,1)$:
$\Rightarrow \quad 3 \mathrm{p}=\mathrm{p}+\mathrm{q}$ or $\mathrm{p}=\frac{\mathrm{q}}{2}$
16. (c)

Given, $\mathrm{P}=\left[\begin{array}{ll}2 & -1 \\ 5 & -3\end{array}\right]$
$\mathrm{KI}-8 \mathrm{P}=\left[\begin{array}{cc}\mathrm{K} & 0 \\ 0 & \mathrm{~K}\end{array}\right]-\left[\begin{array}{cc}16 & -8 \\ 40 & -24\end{array}\right]=\left[\begin{array}{cc}\mathrm{K}-16 & 8 \\ -40 & \mathrm{~K}+24\end{array}\right]$
$\ldots .(\mathrm{i}) \quad\left(\because \mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)$

$$
\begin{align*}
& \mathrm{P}^{2}=\mathrm{P} \times \mathrm{P}=\left[\begin{array}{ll}
2 & -1 \\
5 & -3
\end{array}\right] \times\left[\begin{array}{ll}
2 & -1 \\
5 & -3
\end{array}\right]=\left[\begin{array}{ll}
-1 & 1 \\
-5 & 4
\end{array}\right] \\
& \mathrm{P}^{3}=\mathrm{P}^{2} \times \mathrm{P}=\left[\begin{array}{ll}
-1 & 1 \\
-5 & 4
\end{array}\right] \times\left[\begin{array}{ll}
2 & -1 \\
5 & -3
\end{array}\right]=\left[\begin{array}{cc}
3 & -2 \\
10 & -7
\end{array}\right] \\
& \mathrm{P}^{6}=\mathrm{P}^{3} \times \mathrm{P}^{3}=\left[\begin{array}{cc}
3 & -2 \\
10 & -7
\end{array}\right] \times\left[\begin{array}{cc}
3 & -2 \\
10 & -7
\end{array}\right]=\left[\begin{array}{cc}
-11 & 8 \\
-40 & 29
\end{array}\right] \tag{ii}
\end{align*}
$$

from (i) \& (ii)
$\because \mathrm{P}^{6}=\mathrm{KI}-8 \mathrm{P}$
$\left[\begin{array}{cc}-11 & 8 \\ -40 & 29\end{array}\right]=\left[\begin{array}{cc}\mathrm{K}-16 & 8 \\ -40 & \mathrm{~K}+24\end{array}\right] \Rightarrow-11=\mathrm{K}-16 \Rightarrow \mathrm{~K}=5$
17. (a)

Given, $\overrightarrow{\mathrm{OA}}=\hat{\mathrm{i}}+2 \hat{j}+3 \hat{\mathrm{k}}, \quad \overrightarrow{\mathrm{OB}}=-3 \hat{\mathrm{i}}-2 \hat{j}+\hat{k}$
Area of $\triangle \mathrm{OAB}=\frac{1}{2}|\overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}|$
Now, $\overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 2 & 3 \\ -3 & -2 & 1\end{array}\right|=8 \hat{\mathrm{i}}-10 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$
$\Rightarrow|\overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}|=\sqrt{64+100+16}=\sqrt{180}$
So area of $\triangle \mathrm{OAB}=\frac{1}{2} \sqrt{180}=3 \sqrt{5}$ sq. units
18. (b)

Given that $f(x)= \begin{cases}\frac{|x-1|}{1-x}+a, & x>1 \\ a+b & , x=1 \\ \frac{|x-1|}{1-x}+b & , x<1\end{cases}$
$\because f(x)$ is continuous at $x=1$; therefore, $\lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0} f(1-h)=f(1)$
$\because f(1)=a+b$ (given)
RHL $=\lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0} \frac{|1+h-1|}{1-(1+h)}+a=-1+a$
$\Rightarrow \mathrm{a}+\mathrm{b}=-1+\mathrm{a} \Rightarrow \mathrm{b}=-1$
LHL $=\lim _{h \rightarrow 0} f(1-h)=\lim _{h \rightarrow 0} \frac{|1-h-1|}{1-(1-h)}+b=1+b$
$\therefore \mathrm{a}+\mathrm{b}=1+\mathrm{b} \Rightarrow \mathrm{a}=1$
19. (a)

Given equations $3 \ell+\mathrm{m}+5 \mathrm{n}=0$

$$
\begin{align*}
& 6 \mathrm{mn}-2 \mathrm{n} \ell+5 \ell \mathrm{~m}=0 \tag{i}\\
& \mathrm{~m}(6 \mathrm{n}+5 \ell)-2 \mathrm{n} \ell=0 \tag{ii}
\end{align*}
$$

From (i) $\quad m=-3 \ell-5 n$
Putting in (ii) $\Rightarrow \quad-(6 n+5 \ell)(3 \ell+5 n)-2 n \ell=0$

$$
\begin{aligned}
& \Rightarrow \quad 30 \mathrm{n}^{2}+45 \ell \mathrm{n}+15 \ell^{2}=0 \\
& \Rightarrow \quad 2 \mathrm{n}^{2}+3 \mathrm{n} \ell+\ell^{2}=0 \\
& \Rightarrow \quad(2 \mathrm{n}+\ell)(\mathrm{n}+\ell)=0
\end{aligned}
$$

$\therefore \quad$ either $\ell=-2 \mathrm{n} \quad$ or $\quad \ell=-\mathrm{n}$

$$
\mathrm{m}=\mathrm{n} \quad \text { or } \quad \mathrm{m}=-2 \mathrm{n} \text { from (iii) }
$$

$\therefore \quad$ Direction numbers of the two lines are

$$
\begin{aligned}
& <-2 \mathrm{n}, \mathrm{n}, \mathrm{n}>\text { and }<-\mathrm{n},-2 \mathrm{n}, \mathrm{n}> \\
\text { i.e., } & <-2,1,1>\text { and }<-1,-2,1>
\end{aligned}
$$

if θ is the acute angle between the lines, then
$\cos \theta=\frac{|(-2) \times(-1)+1 \times(-2)+1 \times 1|}{\sqrt{4+1+1} \sqrt{1+4+1}}=\frac{1}{6} \Rightarrow \quad \theta=\cos ^{-1}\left(\frac{1}{6}\right)$
Hence, Both A and R are true and R is the correct explanation of A

20. (d)

Assertion : Domain of $\sec ^{-1} \mathrm{x}$ is $(-\infty,-1] \cup[1, \infty)$
$\therefore \sec ^{-1}(2 x+1)$ is meaningful, if
$2 \mathrm{x}+1 \geq 1$ or $2 \mathrm{x}+1 \leq-1$
$\mathrm{x} \geq 0$ or $\mathrm{x} \leq-1$
$\therefore \mathrm{x} \in(-\infty,-1] \cup[0, \infty)$
So, Assertion is false
$\sec ^{-1}(-2)=\pi-\sec ^{-1}(2)=\pi-\frac{\pi}{3}=\frac{2 \pi}{3} \in[0, \pi]-\left\{\frac{\pi}{2}\right\}$
So, reason is true.

SECTION - B

21. Let angle between $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is α and given $|\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}|=\sqrt{15}$
$\Rightarrow|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \sin \alpha=\sqrt{15}$
$\sin \alpha=\frac{\sqrt{15}}{4} ; \therefore \cos \alpha=\frac{1}{4}$
Now, $\overrightarrow{\mathbf{b}}-2 \overrightarrow{\mathbf{c}}=\lambda \overrightarrow{\mathbf{a}}$
$\Rightarrow|\overrightarrow{\mathbf{b}}-2 \overrightarrow{\mathbf{c}}|^{2}=\lambda^{2}|\overrightarrow{\mathbf{a}}|^{2}$

$$
\left[\because \overrightarrow{\mathrm{a}}^{2}=|\overrightarrow{\mathrm{a}}|^{2}\right]
$$

$|\overrightarrow{\mathbf{b}}|^{2}+4|\overrightarrow{\mathbf{c}}|^{2}-4(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}})=\lambda^{2}|\overrightarrow{\mathbf{a}}|^{2}$
$16+4-4\{|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{c}}| \cos \alpha\}=\lambda^{2}$
$16+4-4 \times 4 \times 1 \times \frac{1}{4}=\lambda^{2} \Rightarrow \lambda^{2}=16 \Rightarrow \lambda= \pm 4$.

OR

Here, $\ell=\cos \theta, \mathrm{m}=\cos \beta, \mathrm{n}=\cos \theta,(\because \ell=\mathrm{n})$
Now, $\ell^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1 \Rightarrow 2 \cos ^{2} \theta+\cos ^{2} \beta=1$
$\Rightarrow 2 \cos ^{2} \theta=\sin ^{2} \beta$ [Given, $\sin ^{2} \beta=3 \sin ^{2} \theta$]
$\Rightarrow 2 \cos ^{2} \theta=3 \sin ^{2} \theta$
$\Rightarrow 2 \cos ^{2} \theta-3\left(1-\cos ^{2} \theta\right)=0$
$\Rightarrow 5 \cos ^{2} \theta=3$,
$\therefore \cos ^{2} \theta=\frac{3}{5}$
22. Given, $\mathrm{y}=\mathrm{x} \sin \mathrm{y}$; differentiating both sides w.r.t. x .
$\frac{d y}{d x}=x \cos y \frac{d y}{d x}+\sin y .1$
$\Rightarrow \frac{d y}{d x}-x \cos y \frac{d y}{d x}=\sin y$
$\Rightarrow \frac{d y}{d x}=\frac{\sin y}{1-x \cos y}$
or $x \frac{d y}{d x}=\frac{x \sin y}{1-x \cos y}$,(multiplying both sides by $\left.x\right)$
$\Rightarrow x \frac{d y}{d x}=\frac{y}{1-x \cos y} \quad(\because x \sin y=y)$
23. Let V, S and r denote the volume, surface area and radius of the salt ball respectively at any instant t .

Then $\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}$ and $\mathrm{S}=4 \pi \mathrm{r}^{2}$
It is given that the rate of decrease of the volume V is proportional to the surface area S .
i.e. $\frac{\mathrm{dV}}{\mathrm{dt}} \propto \mathrm{S}$ or $\frac{\mathrm{dV}}{\mathrm{dt}}=-\mathrm{KS}$, where $\mathrm{K}>0$ is the constant of proportionality.
$\frac{\mathrm{dV}}{\mathrm{dt}}=-\mathrm{KS}$
$\Rightarrow \quad \frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{4}{3} \pi \mathrm{r}^{3}\right)=-\mathrm{K}\left(4 \pi \mathrm{r}^{2}\right)$
$\Rightarrow \quad 4 \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}}=-4 \pi \mathrm{Kr}^{2}$
$\Rightarrow \quad \frac{\mathrm{dr}}{\mathrm{dt}}=-\mathrm{K}$
So, r decrease with a constant rate
24. Let required vector $\overrightarrow{\mathrm{c}}=\lambda(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})$
$\Rightarrow \quad \overrightarrow{\mathrm{c}}=\lambda\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 2 & -3 \\ 3 & -1 & 2\end{array}\right|$
or $\quad \overrightarrow{\mathrm{c}}=\lambda(\hat{\mathrm{i}}-11 \hat{\mathrm{j}}-7 \hat{\mathrm{k}})$
$\Rightarrow \quad|\overrightarrow{\mathrm{c}}|=|\lambda| \sqrt{1+121+49}$
$\Rightarrow \quad \sqrt{171}=|\lambda| \sqrt{171}$
(given $|\overrightarrow{\mathbf{c}}|=\sqrt{171}$)
$\Rightarrow \quad \lambda= \pm 1$ put in equation (i), we have

$$
\overrightarrow{\mathrm{c}}= \pm(\hat{\mathrm{i}}-11 \hat{\mathrm{j}}-7 \hat{\mathrm{k}})
$$

25. $\sin ^{-1}\left[\cos \left\{\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right\}\right]$

$$
\begin{array}{ll}
=\sin ^{-1}\left\{\cos \left(\frac{-\pi}{3}\right)\right\} & {\left[\because \sin ^{-1}(-x)=-\sin ^{-1} x\right]} \\
=\sin ^{-1}\left(\cos \left(\frac{\pi}{3}\right)\right) & {[\because \cos (-\theta)=\cos \theta]} \\
=\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6} &
\end{array}
$$

OR

Given; $\mathrm{f}: \mathrm{R} \rightarrow\{\mathrm{x} \in \mathrm{R}:-1<\mathrm{x}<1\}$ defined by $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{1+|\mathrm{x}|}, \mathrm{x} \in \mathrm{R}$
$\therefore \mathrm{f}(\mathrm{x})=\left\{\begin{array}{lll}\frac{\mathrm{x}}{1+\mathrm{x}} & ; & \mathrm{x} \geq 0 \\ \frac{\mathrm{x}}{1-\mathrm{x}} & ; & \mathrm{x}<0\end{array}\right.$
For one-one function: Let $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\Rightarrow \quad \frac{\mathrm{x}_{1}}{1+\left|\mathrm{x}_{1}\right|}=\frac{\mathrm{x}_{2}}{1+\left|\mathrm{x}_{2}\right|}$
Case I : When $\mathrm{x}_{1} \& \mathrm{x}_{2}$ are positive:

$$
\begin{aligned}
& f\left(x_{1}\right)=f\left(x_{2}\right) \\
& \frac{x_{1}}{1+x_{1}}=\frac{x_{2}}{1+x_{2}} \Rightarrow x_{1}=x_{2}
\end{aligned}
$$

Case II : When $x_{1} \& x_{2}$ are negative:

$$
\frac{\mathrm{x}_{1}}{1-\mathrm{x}_{1}}=\frac{\mathrm{x}_{2}}{1-\mathrm{x}_{2}} \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}
$$

Case III : When $\mathrm{x}_{1}>0$ and $\mathrm{x}_{2}<0$
We have $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \frac{\mathrm{x}_{1}}{1+\mathrm{x}_{1}}=\frac{\mathrm{x}_{2}}{1-\mathrm{x}_{2}}$
$\Rightarrow \mathrm{x}_{1}-\mathrm{x}_{1} \mathrm{x}_{2}=\mathrm{x}_{2}+\mathrm{x}_{1} \mathrm{x}_{2}$
$\Rightarrow \mathrm{x}_{1}-\mathrm{x}_{2}=2 \mathrm{x}_{1} \mathrm{x}_{2}$
This is not possible when $x_{1}>0$ and $x_{2}<0$
$\therefore \mathrm{x}_{1} \neq \mathrm{x}_{2} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right) \neq \mathrm{f}\left(\mathrm{x}_{2}\right)$
$\therefore \mathrm{f}$ is one-one

SECTION - C

26. Let $\mathrm{I}=\int_{\pi / 6}^{\pi / 3} \frac{\sin \mathrm{x}+\cos \mathrm{x}}{\sqrt{\sin 2 \mathrm{x}}} \mathrm{dx}$

Put $\sin \mathrm{x}-\cos \mathrm{x}=\mathrm{t} \Rightarrow(\cos \mathrm{x}+\sin \mathrm{x}) \mathrm{dx}=\mathrm{dt}$
When $\mathrm{x}=\frac{\pi}{6}, \mathrm{t}=\frac{(1-\sqrt{3})}{2} \&$ when $\mathrm{x}=\frac{\pi}{3}, \mathrm{t}=\frac{(\sqrt{3}-1)}{2}$
also, $\sin x-\cos x=t \Rightarrow \sin ^{2} x+\cos ^{2} x-2 \sin x \cos x=t^{2}$

$$
\begin{equation*}
\Rightarrow \sin 2 \mathrm{x}=1-\mathrm{t}^{2} \tag{1/2}
\end{equation*}
$$

$\therefore \mathrm{I}=\int_{\frac{(1-\sqrt{3})}{2}}^{\frac{(\sqrt{3}-1)}{2}} \frac{1}{\sqrt{1-\mathrm{t}^{2}}} \mathrm{dt}$
$=\left[\sin ^{-1} t\right]_{(1-\sqrt{3}) / 2}^{(\sqrt{3}-1 / 2}$
$=\sin ^{-1}\left(\frac{\sqrt{3}-1}{2}\right)-\sin ^{-1}\left(\frac{1-\sqrt{3}}{2}\right)$
$=2 \sin ^{-1}\left(\frac{\sqrt{3}-1}{2}\right)$
27. Let E_{1} and E_{2} be the events of getting a total 10 by A and B respectively
favorable outcomes of total 10 is $\{(6,4),(5,5),(4,6)\}$
Total outcomes $=6^{2}=36$
Now $\quad P\left(E_{1}\right)=P\left(E_{2}\right)=\frac{3}{36}=\frac{1}{12}$
$\mathrm{P}\left(\overline{\mathrm{E}}_{1}\right)=\mathrm{P}\left(\overline{\mathrm{E}}_{2}\right)=\frac{11}{12}$
$\mathrm{P}(\mathrm{A}$ wins $) \quad=\mathrm{P}\left(\mathrm{E}_{1}\right)+\mathrm{P}\left(\overline{\mathrm{E}}_{1}\right) \mathrm{P}\left(\overline{\mathrm{E}}_{2}\right) \mathrm{P}\left(\mathrm{E}_{1}\right)+\ldots .$.

$$
\begin{align*}
& =\frac{1}{12}+\frac{1}{12} \times\left(\frac{11}{12}\right)^{2}+\frac{1}{12} \times\left(\frac{11}{12}\right)^{4}+\ldots . . \\
& =\frac{1}{12}[\underbrace{1+\left(\frac{11}{12}\right)^{2}+\left(\frac{11}{12}\right)^{4}+\ldots . .}_{\text {Infinite G.P. }}]=\frac{1}{12}\left[\frac{1}{1-\frac{11^{2}}{12^{2}}}\right] \quad\left(\because \mathrm{S}_{\infty}=\frac{\mathrm{a}}{1-\mathrm{r}}\right) \tag{1}
\end{align*}
$$

$P(A$ wins $)=\frac{1}{12} \times\left[\frac{12^{2}}{144-121}\right]=\frac{12}{23}$
$\mathrm{P}(\mathrm{B}$ wins $) \quad=1-\mathrm{P}($ win A$)=1-\frac{12}{23}=\frac{11}{23}$
28. Let P be the principal at any time t. According to the given problem,
$\frac{\mathrm{dP}}{\mathrm{dt}}=\left(\frac{5}{100}\right) \times \mathrm{P}$
or $\quad \frac{\mathrm{dP}}{\mathrm{dt}}=\frac{\mathrm{P}}{20}$

Separating the variables in equation (i), we get

$$
\begin{equation*}
\frac{\mathrm{dP}}{\mathrm{P}}=\frac{\mathrm{dt}}{20} \tag{ii}
\end{equation*}
$$

Integrating both sides of equation (ii), we get
$\log \mathrm{P}=\frac{\mathrm{t}}{20}+\mathrm{C}_{1}$
or $\quad P=e^{\frac{t}{20}} \cdot e^{C_{1}}$
or $\quad \mathrm{P}=\mathrm{Ce}^{\frac{\mathrm{t}}{20}}\left(\right.$ where $\left.\mathrm{e}^{\mathrm{C}_{1}}=\mathrm{C}\right)$
Now $P=1000$, when $t=0$
Substituting the values of P and t in (iii), we get $\mathrm{C}=1000$. Therefore, equation (iii), gives
$P=1000 e^{\frac{t}{20}}$
Let t years be the time required to double the principal. Then

$$
2000=1000 e^{\frac{t}{20}} \Rightarrow t=20 \log _{e} 2
$$

OR

The given differential equation can be written as $\frac{d y}{d x}=\frac{y \cos \left(\frac{y}{x}\right)+x}{x \cos \left(\frac{y}{x}\right)}$
Let $F(x, y)=\frac{y \cos \left(\frac{y}{x}\right)+x}{x \cos \left(\frac{y}{x}\right)}=\frac{y}{x}+\sec \left(\frac{y}{x}\right)=f\left(\frac{y}{x}\right)$
Thus, $\mathrm{F}(\mathrm{x}, \mathrm{y})$ is a homogeneous function of degree zero.
Therefore, the given differential equation is a homogeneous differential equation.
To solve it we make the substitution

$$
\begin{equation*}
y=v x \tag{ii}
\end{equation*}
$$

Differentiating equation (ii) with respect to x , we get

$$
\begin{equation*}
\frac{d y}{d x}=v+x \frac{d v}{d x} \tag{iii}
\end{equation*}
$$

Substituting the value of y and $\frac{d y}{d x}$ in equation (i), we get

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{v \cos v+1}{\cos v} \\
\Rightarrow \quad & x \frac{d v}{d x}=\frac{v \cos v+1}{\cos v}-v
\end{aligned}
$$

$\Rightarrow \quad x \frac{d v}{d x}=\frac{1}{\cos v}$
$\Rightarrow \quad \cos \mathrm{vdv}=\frac{1}{\mathrm{x}} \mathrm{dx}$
(Separating variables)
Integrate both sides
$\Rightarrow \quad \int \cos v d v=\int \frac{1}{x} d x$
$\Rightarrow \quad \sin \mathrm{v}=\log |\mathrm{x}|+\log |\mathrm{C}|$
$\Rightarrow \quad \sin \mathrm{v}=\log |\mathrm{Cx}|$
Replacing v by $\frac{y}{x}$, we get $\sin \left(\frac{y}{x}\right)=\log |C x|$
Which is the general solution of the differential equation (i).
29. \quad Minimize $Z=6 x+21 y$
subject to constraints
$x+2 y \leq 3, x+4 y \geq 4$
$3 x+y \geq 3, x \geq 0, y \geq 0$

Since, feasible region is bounded, so
Minimum value of Z is 21.54 at point $\mathrm{B}\left(\frac{8}{11}, \frac{9}{11}\right)$
30. $\int_{0}^{\pi / 2} \frac{\cos x}{1+\cos x+\sin x} d x$
$=\int_{0}^{\pi / 2} \frac{\cos ^{2}(\mathrm{x} / 2)-\sin ^{2}(\mathrm{x} / 2)}{2 \cos ^{2}(\mathrm{x} / 2)+2 \sin (\mathrm{x} / 2) \cos (\mathrm{x} / 2)} \mathrm{dx}$
$=\frac{1}{2} \int_{0}^{\pi / 2} \frac{1-\tan ^{2}(\mathrm{x} / 2)}{1+\tan (\mathrm{x} / 2)} \mathrm{dx} \quad\left[\right.$ Divide $\mathrm{Nr} \& \operatorname{Dr}$ by $\left.\cos ^{2} \frac{\mathrm{x}}{2}\right]$
$=\frac{1}{2} \int_{0}^{\pi / 2}\left[1-\tan \left(\frac{x}{2}\right)\right] d x$
$=\frac{1}{2}\left[\mathrm{x}+2 \log \cos \frac{\mathrm{x}}{2}\right]_{0}^{\pi / 2}$
$=\frac{\pi}{4}+\log \frac{1}{\sqrt{2}}$.

OR

Let $\mathrm{I}=\int_{0}^{\pi / 2}\left|\sin \left(\mathrm{x}-\frac{\pi}{4}\right)\right| \mathrm{dx}$
$x-\frac{\pi}{4}$ is $-v e$ when $x \leq \frac{\pi}{4}$ and $+v e$ when $x>\frac{\pi}{4}$
$\therefore \mathrm{I}=-\int_{0}^{\pi / 4} \sin \left(\mathrm{x}-\frac{\pi}{4}\right) \mathrm{dx}+\int_{\pi / 4}^{\pi / 2} \sin \left(\mathrm{x}-\frac{\pi}{4}\right) \mathrm{dx}$
$=\left[\cos \left(\mathrm{x}-\frac{\pi}{4}\right)\right]_{0}^{\pi / 4}-\left[\cos \left(\mathrm{x}-\frac{\pi}{4}\right)\right]_{\pi / 4}^{\pi / 2}=\left(1-\frac{1}{\sqrt{2}}\right)-\left(\frac{1}{\sqrt{2}}-1\right)$
$=2-\sqrt{2}$.
31. Let $I=\int \frac{3 x+5}{\left(x^{3}-x^{2}-x+1\right)} d x$

Let $\frac{3 x+5}{\left(x^{3}-x^{2}-x+1\right)}=\frac{3 x+5}{(x-1)^{2}(x+1)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x+1)}$
$\Rightarrow(3 x+5)=A(x-1)(x+1)+B(x+1)+C(x-1)^{2}$
Put $x=1$ in equation (1) we get $B=4$
Put $\mathrm{x}=-1$ in equation (1) we get $\mathrm{C}=\frac{1}{2}$
Comparing the coefficient of ' x^{21} on both sides of (1); we get:
$\mathrm{A}+\mathrm{C}=0 \Rightarrow \mathrm{~A}=-\mathrm{C}=-\frac{1}{2}$
$\Rightarrow \frac{(3 x+5)}{\left(x^{3}-x^{2}-x+1\right)}=\frac{-1}{2(x-1)}+\frac{4}{(x-1)^{2}}+\frac{1}{2(x+1)}$
$\therefore \mathrm{I}=\int \frac{(3 \mathrm{x}+5)}{\left(\mathrm{x}^{3}-\mathrm{x}^{2}-\mathrm{x}+1\right)} \mathrm{dx}$
$=\frac{-1}{2} \int \frac{\mathrm{dx}}{\mathrm{x}-1}+4 \int \frac{\mathrm{dx}}{(\mathrm{x}-1)^{2}}+\frac{1}{2} \int \frac{\mathrm{dx}}{(\mathrm{x}+1)}$
$=\frac{-1}{2} \log |\mathrm{x}-1|-\frac{4}{(\mathrm{x}-1)}+\frac{1}{2} \log |\mathrm{x}+1|+\mathrm{C}$

SECTION - D

32. \quad Given $\mathrm{A}=\left[\begin{array}{ccc}3 & 4 & 2 \\ 0 & 2 & -3 \\ 1 & -2 & 6\end{array}\right]$
$\Rightarrow \quad|\mathrm{A}|=3(12-6)-4(0+3)+2(0-2)$

$$
=18-12-4=2 \neq 0
$$

Hence, A^{-1} exists.
Now, co-factor are given as:
$\mathrm{C}_{11}=6, \mathrm{C}_{12}=-3, \mathrm{C}_{13}=-2$,
$\mathrm{C}_{21}=-28, \mathrm{C}_{22}=16, \mathrm{C}_{23}=10$,
$C_{31}=-16, C_{32}=9, C_{33}=6$
So, adj $A=\left[\begin{array}{ccc}6 & -3 & -2 \\ -28 & 16 & 10 \\ -16 & 9 & 6\end{array}\right]^{T}=\left[\begin{array}{ccc}6 & -28 & -16 \\ -3 & 16 & 9 \\ -2 & 10 & 6\end{array}\right]$
$\because \mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \cdot \operatorname{adj} \mathrm{A} \Rightarrow \mathrm{A}^{-1}=\frac{1}{2}\left[\begin{array}{ccc}6 & -28 & -16 \\ -3 & 16 & 9 \\ -2 & 10 & 6\end{array}\right]$
The given system of linear equation are :
$3 x+4 y+2 z=8$
$2 y-3 z=3$
$x-2 y+6 z=-2$
It can be represented as :
$\Rightarrow\left[\begin{array}{ccc}3 & 4 & 2 \\ 0 & 2 & -3 \\ 1 & -2 & 6\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}8 \\ 3 \\ -2\end{array}\right]$
$\Rightarrow \mathrm{AX}=\mathrm{B}$
$\Rightarrow \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}$
$X=\frac{1}{2}\left[\begin{array}{ccc}6 & -28 & -16 \\ -3 & 16 & 9 \\ -2 & 10 & 6\end{array}\right] \cdot\left[\begin{array}{l}8 \\ 3 \\ -2\end{array}\right]$
(From equation (i))
$=\frac{1}{2}\left[\begin{array}{l}48-84+32 \\ -24+48-18 \\ -16+30-12\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}-4 \\ 6 \\ 2\end{array}\right] \quad \Rightarrow x=-2, y=3, z=1$
33.

[Correct Fig. 1 Mark]

Line $A B$ is : $y=\frac{5}{2} x-7 ; x=\frac{2}{5}(y+7)$, line $B C$ is: $y=\frac{1}{3}(x+5) \Rightarrow x=3 y-5$
Line AC is: $y=-4 x+6 ; x=\frac{y-6}{-4}$
Required area $=\left[\int_{-2}^{3}(\right.$ line $\left.A B) d y\right]-\left[\int_{2}^{3}(\right.$ lineBC $) d y+\int_{-2}^{2}($ lineAC $\left.) d y\right]$
$\Rightarrow \quad\left[\frac{2}{5} \int_{-2}^{3}(y+7) d y\right]-\left[\int_{2}^{3}(3 y-5) d y-\frac{1}{4} \int_{-2}^{2}(y-6) d y\right]$
$=\frac{2}{5}\left[\left(\frac{y^{2}}{2}+7 \mathrm{y}\right)_{-2}^{3}\right]-\left[\left(\frac{3 y^{2}}{2}-5 \mathrm{y}\right)_{2}^{3}-\frac{1}{4}\left(\frac{\mathrm{y}^{2}}{2}-6 \mathrm{y}\right)_{-2}^{2}\right]$
$=\frac{2}{5}\left[\left(\frac{9}{2}+21\right)-(2-14)\right]-\left[\left\{\left(\frac{27}{2}-15\right)-(6-10)\right\}-\frac{1}{4}\{(2-12)-(2+12)\}\right]$
$=\frac{2}{5}\left[\frac{9}{2}+33\right]-\left[\left(\frac{27}{2}-11\right)-\frac{1}{4}(-24)\right]$
$=\left(\frac{2}{5} \times \frac{75}{2}\right)-\left(\frac{5}{2}+6\right)=15-\frac{17}{2}=\frac{13}{2}$ square units
34. Given lines are

$$
\begin{equation*}
\overrightarrow{\mathrm{r}}=3 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}+\lambda(3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}) \tag{i}
\end{equation*}
$$

and $\quad \overrightarrow{\mathrm{r}}=-3 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}+\mu(-3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})$
Equation of lines (i) and (ii) respectively in cartesian form are

Let

$$
\begin{equation*}
\mathrm{AB}: \frac{\mathrm{x}-3}{3}=\frac{\mathrm{y}-8}{-1}=\frac{\mathrm{z}-3}{1}=\lambda \tag{iii}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{CD}: \frac{\mathrm{x}+3}{-3}=\frac{\mathrm{y}+7}{2}=\frac{\mathrm{z}-6}{4}=\mu \tag{iv}
\end{equation*}
$$

\therefore Also let $\mathrm{L} \& \mathrm{M}$ be end points of line of shortest distance on $\mathrm{AB} \& \mathrm{CD}$
\therefore Co-ordinates of L is $(3 \lambda+3,-\lambda+8, \lambda+3)$
and

$$
\mathrm{M}(-3 \mu-3,2 \mu-7,4 \mu+6)
$$

Direction ratio of LM are
$3 \lambda+3 \mu+6,-\lambda-2 \mu+15, \lambda-4 \mu-3$

Since $\mathrm{LM} \perp \mathrm{AB}$
$\therefore \quad 3(3 \lambda+3 \mu+6)-1(-\lambda-2 \mu+15)+1(\lambda-4 \mu-3)=0$
$\Rightarrow \quad 11 \lambda+7 \mu=0$
Also $\mathrm{LM} \perp \mathrm{CD}$

$$
\begin{array}{ll}
\therefore & -3(3 \lambda+3 \mu+6)+2(-\lambda-2 \mu+15)+4(\lambda-4 \mu-3)=0 \\
\Rightarrow & -7 \lambda-29 \mu=0 \tag{vi}
\end{array}
$$

Solving (v) and (vi) we get

$$
\lambda=0 \text { and } \mu=0
$$

$\therefore \quad \mathrm{L}(3,8,3)$ and $\mathrm{M}(-3,-7,6)$
Hence shortest distance $\mathrm{LM}=\sqrt{(3+3)^{2}+(8+7)^{2}+(3-6)^{2}}=\sqrt{36+225+9}$

$$
\begin{equation*}
=3 \sqrt{30} \text { units } \tag{1/2}
\end{equation*}
$$

Vector equation of LM is
$\overrightarrow{\mathrm{r}}=3 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}+\mathrm{t}(6 \hat{\mathrm{i}}+15 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})$

OR

At $t=6$
Position of first insect is at $\mathrm{A}(6+6,8-6,3+6) \Rightarrow \mathrm{A}(12,2,9)$
Position of $2^{\text {nd }}$ insect at $B(1+6,2+6,2(6)) \Rightarrow B(7,8,12)$
$\therefore \quad$ Distance between insects after $6 \mathrm{~min} .=\sqrt{(12-7)^{2}+(2-8)^{2}+(9-12)^{2}}$

$$
\begin{equation*}
=\sqrt{25+36+9}=\sqrt{70} \text { inches } \tag{1/2}
\end{equation*}
$$

For the closest distance between two insects
Given equation of lines are $\ell_{1}: \mathrm{x}=6+\mathrm{t}, \mathrm{y}=8-\mathrm{t}, \mathrm{z}=3+\mathrm{t}$
$\Rightarrow \overrightarrow{\mathrm{r}}=(6 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\mathrm{t}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
and $\quad \ell_{2}: \mathrm{x}=1+\mathrm{t}, \mathrm{y}=2+\mathrm{t}, \mathrm{z}=2 \mathrm{t}$
$\Rightarrow \quad \overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+\hat{\mathrm{j}})+\mathrm{t}(\hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
On Comparing it with $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
$\vec{a}_{1}=6 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \quad \overrightarrow{\mathrm{b}}_{1}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$
$\vec{a}_{2}=\hat{\mathrm{i}}+\hat{\mathrm{j}}, \overrightarrow{\mathrm{b}}_{2}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
Now $\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & -1 & 1 \\ 1 & 1 & 2\end{array}\right|=-3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$

$$
\begin{equation*}
\overrightarrow{\mathrm{a}}_{2}-\overrightarrow{\mathrm{a}}_{1}=-5 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-3 \hat{\mathrm{k}} \tag{1/2}
\end{equation*}
$$

Shortest distance $=\left|\frac{\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}\right)}{\left|\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}\right|}\right|=\left|\frac{(-5 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}) \cdot(-3 \hat{\mathrm{i}}-\hat{j}+2 \hat{\mathrm{k}})}{|-3 \hat{\mathrm{i}}-\hat{j}+2 \hat{\mathrm{k}}|}\right|$

$$
\begin{equation*}
=\left|\frac{15+7-6}{\sqrt{9+1+4}}\right|=\frac{16}{\sqrt{14}}=\frac{8}{7} \sqrt{14} \text { inches } \tag{1/2}
\end{equation*}
$$

35. Reflexive :

Let (a, b) be an arbitrary element of $\mathrm{N} \times \mathrm{N}, \forall \mathrm{a}, \mathrm{b} \in \mathrm{N}$. Then
$\Rightarrow \quad(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{a}, \mathrm{b})$
$\Rightarrow \quad \mathrm{ab}(\mathrm{b}+\mathrm{a})=\mathrm{ba}(\mathrm{a}+\mathrm{b}) \quad$ [by commutativity of addition and multiplication on N]
$\Rightarrow \quad$ L.H.S. $=$ R.H.S.
Thus, $(a, b) R(a, b)$ for all $(a, b) \in N \times N$. So R is reflexive on $N \times N$.

Symmetric :

Let $(a, b),(c, d) \in N \times N$ be such that $(a, b) R(c, d)$. Then,
$\Rightarrow \quad \mathrm{ad}(\mathrm{b}+\mathrm{c})=\mathrm{bc}(\mathrm{a}+\mathrm{d})$
$\Rightarrow \quad \mathrm{cb}(\mathrm{d}+\mathrm{a})=\mathrm{da}(\mathrm{c}+\mathrm{b})$
$\Rightarrow \quad(\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{a}, \mathrm{b})$
Thus, $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d}) \Rightarrow(\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{a}, \mathrm{b})$ for all $(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}) \in \mathrm{N} \times \mathrm{N}$
So, R is symmetric on $\mathrm{N} \times \mathrm{N}$.

Transitive :

Let $(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}),(\mathrm{e}, f) \in \mathrm{N} \times \mathrm{N}$ such that $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d})$ and $(\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{e}, f)$. Then,

$$
\begin{equation*}
(\mathrm{a}, \mathrm{~b}) \mathrm{R}(\mathrm{c}, \mathrm{~d}) \Rightarrow \mathrm{ad}(\mathrm{~b}+\mathrm{c})=\mathrm{bc}(\mathrm{a}+\mathrm{d}) \Rightarrow \frac{\mathrm{b}+\mathrm{c}}{\mathrm{bc}}=\frac{\mathrm{a}+\mathrm{d}}{\mathrm{ad}} \Rightarrow \frac{1}{\mathrm{c}}+\frac{1}{\mathrm{~b}}=\frac{1}{\mathrm{~d}}+\frac{1}{\mathrm{a}} \tag{i}
\end{equation*}
$$

and,

$$
\begin{equation*}
(\mathrm{c}, \mathrm{~d}) \mathrm{R}(\mathrm{e}, f) \Rightarrow \mathrm{c} f(\mathrm{~d}+\mathrm{e})=\operatorname{de}(\mathrm{c}+f) \Rightarrow \frac{\mathrm{d}+\mathrm{e}}{\mathrm{de}}=\frac{\mathrm{c}+f}{\mathrm{c} f} \Rightarrow \frac{1}{\mathrm{e}}+\frac{1}{\mathrm{~d}}=\frac{1}{f}+\frac{1}{\mathrm{c}} \tag{ii}
\end{equation*}
$$

Adding (i) and (ii), we get

$$
\begin{align*}
& \left(\frac{1}{\mathrm{c}}+\frac{1}{\mathrm{~b}}\right)+\left(\frac{1}{\mathrm{e}}+\frac{1}{\mathrm{~d}}\right)=\left(\frac{1}{\mathrm{~d}}+\frac{1}{\mathrm{a}}\right)+\left(\frac{1}{f}+\frac{1}{\mathrm{c}}\right) \\
\Rightarrow & \frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{e}}=\frac{1}{\mathrm{a}}+\frac{1}{f} \Rightarrow \frac{\mathrm{~b}+\mathrm{e}}{\mathrm{be}}=\frac{\mathrm{a}+f}{\mathrm{a} f} \\
\Rightarrow & \mathrm{a} f(\mathrm{~b}+\mathrm{e})=\mathrm{be}(\mathrm{a}+f) \Rightarrow(\mathrm{a}, \mathrm{~b}) \mathrm{R}(\mathrm{e}, f) \tag{2}
\end{align*}
$$

So, R is transitive on $\mathrm{N} \times \mathrm{N}$.
Hence; R being reflexive, symmetric and transitive; is an equivalence relation on $\mathrm{N} \times \mathrm{N}$.

OR

Given, $\mathrm{A}=\{\mathrm{x} \in \mathrm{Z}: 0 \leq \mathrm{x} \leq 12\}$ and $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathrm{A},|\mathrm{a}-\mathrm{b}|$ is divisible by 4$\}$

(i) For Reflexive relation :

Let $a \in A$
Now, $|a-a|=0$, which is divisible by 4
So, (a, a) $\in \mathrm{R} \forall \mathrm{a} \in \mathrm{A}$
Hence, R is reflexive.

(ii) For Symmetric relation:

Let $\mathrm{a}, \mathrm{b} \in \mathrm{A}$ such that $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$
i.e. $\quad|a-b|$ is divisible by 4 .
$\Rightarrow \quad|-(b-a)|=|b-a|$ is also divisible by 4 .
So, $(b, a) \in R$.
Hence, R is symmetric.

(iii) For Transitive relation:

Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$ such that (a, b) and $(\mathrm{b}, \mathrm{c}) \in \mathrm{R}$
i.e. $|\mathrm{a}-\mathrm{b}| \&|\mathrm{~b}-\mathrm{c}|$ is divisible by 4.

Let $\quad|a-b|=4 k_{1}$
\& $|\mathrm{b}-\mathrm{c}|=4 \mathrm{k}_{2}$
$\Rightarrow \quad(\mathrm{a}-\mathrm{b})= \pm 4 \mathrm{k}_{1}$
\& $(b-c)= \pm 4 \mathrm{k}_{2}$
Adding equations (i) \& (ii);
$\Rightarrow \quad(\mathrm{a}-\mathrm{b})+(\mathrm{b}-\mathrm{c})= \pm 4 \mathrm{k}_{1} \pm 4 \mathrm{k}_{2}= \pm 4\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)$
$\Rightarrow \quad \mathrm{a}-\mathrm{c}$ is divisible by 4 .
$\Rightarrow \quad|a-c|$ is divisible by 4.
So, (a, c) $\in \mathrm{R}$
Hence, R is transitive.
R is an equivalence relation.
Further, let $(x, 1) \in R \forall x \in A$
$\Rightarrow \quad|\mathrm{x}-1|$ is divisible by 4
$\Rightarrow \quad \mathrm{x}-1=0,4,8$
$\Rightarrow \quad \mathrm{x}=1,5,9$
\therefore Equivalence class of $1=[1]=\{1,5,9\}$
[\because The set of all elements related to 1 represents its equivalence class]

Now, we will find equivalence class of 2 i.e. [2]
Let $(\mathrm{x}, 2) \in \mathrm{R} \forall \mathrm{x} \in \mathrm{A}$
$\Rightarrow \quad|\mathrm{x}-2|=0,4,8$
$\Rightarrow \quad \mathrm{x}=2,6,10$
Equivalence class of $[2]=\{2,6,10\}$.

SECTION - E

36. (i) Given volume of cylinder $\mathrm{V}=\frac{539}{2}$ cubic units
$\because \mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}=\frac{539}{2}$

$$
\mathrm{h}=\frac{539}{2 \pi \mathrm{r}^{2}}
$$

Total surface area of the tank

$$
\begin{aligned}
& \mathrm{S}=2 \pi \mathrm{rh}+2 \pi \mathrm{r}^{2} \\
& \mathrm{~S}=2 \pi \mathrm{r}\left(\frac{539}{2 \pi \mathrm{r}^{2}}\right)+2 \pi \mathrm{r}^{2}=\frac{539}{\mathrm{r}}+2 \pi \mathrm{r}^{2} \text { square units }
\end{aligned}
$$

(ii) $\because \mathrm{S}=\frac{539}{\mathrm{r}}+2 \pi \mathrm{r}^{2}$

$$
\begin{equation*}
\frac{\mathrm{dS}}{\mathrm{dr}}=-\frac{539}{\mathrm{r}^{2}}+4 \pi \mathrm{r} \tag{i}
\end{equation*}
$$

$$
=-\frac{539}{\mathrm{r}^{2}}+\frac{4 \times 22 \mathrm{r}}{7}
$$

$$
=11\left(\frac{-343+8 r^{3}}{7 r^{2}}\right)
$$

For critical points

$$
\frac{\mathrm{dS}}{\mathrm{dr}}=11\left(\frac{-343+8 \mathrm{R}^{3}}{7 \mathrm{r}^{2}}\right)=0
$$

$$
8 r^{3}=343
$$

$$
\mathrm{r}^{3}=\frac{343}{8}
$$

$$
\mathrm{r}=\frac{7}{2} \text { unit }
$$

(iii) By first derivative test

When $\mathrm{r}<\frac{7}{2} ; \quad \frac{\mathrm{dS}}{\mathrm{dr}}<0$
When $\mathrm{r}>\frac{7}{2} ; \quad \frac{\mathrm{dS}}{\mathrm{dr}}>0$

$\because \frac{\mathrm{dS}}{\mathrm{dr}}$ changes its sign from negative to positive at neighborhood of $\mathrm{r}=\frac{7}{2}$

$$
\begin{equation*}
\text { So, } \mathrm{r}=\frac{7}{2} \text { is point of minima } \tag{1}
\end{equation*}
$$

\therefore Surface area is minimum at $\mathrm{r}=\frac{7}{2}$ and corresponding height

$$
\begin{equation*}
\mathrm{h}=\frac{539}{2 \pi \mathrm{r}^{2}}=\frac{539 \times 7 \times 2 \times 2}{2 \times 22 \times 7 \times 7}=7 \text { unit } \tag{1}
\end{equation*}
$$

OR

(iii) Again differentiate equation (i) w.r.t. ' r '

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dr}^{2}}=\frac{2 \times 539}{\mathrm{r}^{3}}+4 \pi \\
& \left.\frac{\mathrm{~d}^{2} \mathrm{~S}}{\mathrm{dr}^{2}}\right|_{\mathrm{r}=\frac{7}{2}}>0
\end{aligned}
$$

So, S is minimum at $\mathrm{r}=\frac{7}{2}$

$$
\mathrm{h}=\frac{539}{2 \pi \mathrm{r}^{2}}=\frac{539 \times 7 \times 2 \times 2}{2 \times 22 \times 7 \times 7}=7 \text { unit }
$$

37. (i) Since the perimeter of the floor $=200 \mathrm{~m}$

$$
\begin{array}{ll}
\text { i.e. } & 2 \times \pi\left(\frac{y}{2}\right)+2 x=200 \\
\Rightarrow & \pi y+2 x=200 \tag{i}
\end{array}
$$

(ii) $\because \quad A=x \times y$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{A}=\mathrm{x}\left(\frac{200-2 \mathrm{x}}{\pi}\right) \quad \quad \text { [using (i)] } \\
\Rightarrow & \mathrm{A}=\frac{2}{\pi}\left(100 \mathrm{x}-\mathrm{x}^{2}\right)
\end{array}
$$

(iii) $\quad \because \quad A=\frac{2}{\pi}\left(100 x-x^{2}\right)$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{dA}}{\mathrm{dx}}=\frac{2}{\pi}(100-2 \mathrm{x}) \\
& \Rightarrow \quad \frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{dx}^{2}}=\frac{2}{\pi} \times(-2)=-\frac{4}{\pi}
\end{aligned}
$$

For maximum value of A

$$
\frac{\mathrm{dA}}{\mathrm{dx}}=0
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{2}{\pi} \times(100-2 \mathrm{x})=0 \\
& \Rightarrow \quad \mathrm{x}=50
\end{aligned}
$$

Now, at $\mathrm{x}=50, \quad \frac{\mathrm{~d}^{2} \mathrm{~A}}{\mathrm{dx}^{2}}=\frac{-4}{\pi}<0$
i.e., A is maximum at $\mathrm{x}=50$

So, Maximum value of $\mathrm{A}=\frac{2}{\pi}\left[100 \times 50-(50)^{2}\right]$

$$
=\frac{2}{\pi}[5000-2500]=\frac{2}{\pi} \times 2500=\frac{5000}{\pi} \mathrm{~m}^{2}
$$

OR

(iii) Let B is the area of whole floor including the semi-circular ends, Then

$$
\begin{align*}
& B=2 \times \frac{1}{2} \pi\left(\frac{y}{2}\right)^{2}+x y \\
& B=\frac{\pi}{4} y^{2}+x y \\
& B=\frac{\pi}{4}\left(\frac{200-2 x}{\pi}\right)^{2}+x\left(\frac{200-2 x}{\pi}\right) \quad \text { [using (i)] } \\
& \Rightarrow \quad B=\frac{1}{4 \pi}(200-2 x)^{2}+\frac{x}{\pi}(200-2 x) \\
& \Rightarrow \quad B=\frac{(200-2 x)}{\pi}\left[\frac{200-2 x}{4}+x\right] \\
& \Rightarrow \quad B=\frac{(200-2 x)}{\pi} \frac{(200+2 x)}{4}=\frac{40000-4 x^{2}}{4 \pi} \\
& \Rightarrow \quad \frac{d B}{d x}=\frac{1}{4 \pi}(-8 x) \text { and } \frac{d^{2} B}{d x^{2}}=-\frac{8}{4 \pi} \tag{ii}
\end{align*}
$$

For maximum value of B
$\frac{\mathrm{dB}}{\mathrm{dx}}=0 \Rightarrow \frac{1}{4 \pi}(-8 \mathrm{x})=0 \Rightarrow \mathrm{x}=0$
at $\mathrm{x}=0, \frac{\mathrm{~d}^{2} \mathrm{~B}}{\mathrm{dx}^{2}}=-\frac{8}{4 \pi}<0$
i.e., B is maximum at $x=0$

So, maximum value of $B=\frac{40000-\mathrm{x}^{2}}{4 \pi}=\frac{40000}{4 \pi}=\frac{10000}{\pi} \mathrm{~m}^{2}$ [From equation (ii)] [1]
38. Let X be the random variable which represents number of tails.

Here X can be 0,1 or 2
(i) Probability distribution is

X	0	1	2
$P(X)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

(ii) $\mathrm{S}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{THH}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$

Let E : at least 2 heads
$\mathrm{E}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
and F : at most 2 head
F $=\{$ HHT, HTH, HTT, THH, THT, TTH, TTT $\}$
$\therefore \mathrm{E} \cap \mathrm{F}=\{\mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
Clearly $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{3}{8}$ and $\mathrm{P}(\mathrm{F})=\frac{7}{8}$
$\mathrm{P}(\mathrm{E} / \mathrm{F})=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})}=\frac{3 / 8}{7 / 8}=\frac{3}{7}$

