

# **CLASSROOM CONTACT PROGRAMME**

(Academic Session: 2023 - 2024)

Sample Paper SOLUTION

### **CHEMISTRY**

### SECTION – A

| 1.  | (b) | [1 | 1] |
|-----|-----|----|----|
| 2.  | (c) | [] | [] |
| 3.  | (a) | [] | [] |
| 4.  | (c) | [] | [] |
| 5.  | (b) | [] | [] |
| 6.  | (b) |    | [] |
| 7.  | (d) |    | [] |
| 8.  | (a) |    | [] |
| 9.  | (a) |    | [] |
| 10. | (d) |    | [] |
| 11. | (b) |    | [] |
| 12. | (c) |    | [] |
| 13. | (a) |    | 1] |

## **14.** (d)

**15.** (b)

**16.** (a)

E

# SECTION – B

17. 
$$A = H_3C$$

$$CH_3 CH_3$$

$$CH_3$$

 $B = H_2C$   $CH_3$   $CH_3$ 

$$C = H_3C$$
 $CH_3$ 
 $CH_3$ 

$$OR \quad H_3C \qquad CH_3 \\ CH_3$$

$$OR \quad H_2C \xrightarrow{CH_3} CH_3$$

[1]

[1]

[1]

[1]

[½]



**18.** (a) • Positive deviation.

[1]

E

On adding acetone, some of the hydrogen bonds of ethanol are broken down causing an increase in vapour pressure / the ethanol-acetone shows weaker interactions than pure ethanol-ethanol and acetone-acetone interactions.

#### OR

(b) A liquid binary mixture that distills at constant temperature without undergoing a change in composition. [1]

Maximum boiling azeotrope [½]

$$68\% \text{ HNO}_3 + 32\% \text{ H}_2\text{O}$$
 [½]

19. (a) Fuel cell

(b) Lead storage

(c) Mercury cell

(d) Dry cell  $[4 \times \frac{1}{2} = 2]$ 

**20.** 
$$\log k = \log A - \frac{Ea}{2.303 \text{ RT}}$$

$$-\frac{\text{Ea}}{2.303 \text{ R}} = -2 \times 10^4 \text{ K}$$
 [½]

$$E_a = 2.303 \times 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \times 2 \times 10^4 \text{ K}$$
 [½]

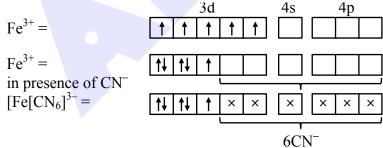
$$E_a = 3.830 \times 10^5 \text{ J mol}^{-1}$$

21. (a) (i) 
$$\sim$$
 CH<sub>2</sub>OH +  $\sim$  COONa [1]

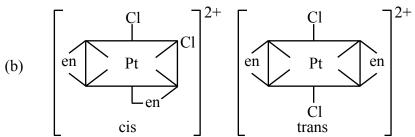
OR

(b)  $(i) \xrightarrow{\text{CH}_3} \xrightarrow{\text{(i) KMnO}_4\text{-KOH}} \xrightarrow{\text{COOK}} \xrightarrow{\text{H}_3\text{O}^+} \xrightarrow{\text{COOH}}$ 

(or any other correct method of conversion in not more than two steps)


### SECTION - C

22. (a) (i) 
$$CH_3-CH_2-\overset{\bullet}{O}-H \xrightarrow{H^+} CH_3-CH_2-\overset{\bullet}{O}-H$$
  $[\frac{1}{2}+1+\frac{1}{2}]$   $CH_3CH_2-\overset{\bullet}{O}+CH_3-CH_2-\overset{\bullet}{O}+CH_3-CH_2-\overset{\bullet}{O}-CH_2CH_3+H_2O$   $H$   $CH_3CH_2-\overset{\bullet}{O}-CH_2CH_3 \longrightarrow CH_3CH_2-O-CH_2CH_3+H^+$ 


(ii) Due to intramolecular H-bonding in o-nitrophenol while p-nitrophenol has intermolecular H-bonding. [1]

(b) (i) 
$$OCH_3$$
  $OCH_3$   $OCH_$ 

- 23. (a) Due to the resonance stabilization of benzyl carbocation. [1]
  - (b) Because it is a racemic mixture / it contains an equimolar mixture of the two enantiomers of Butan-2-ol. [1]
  - (c) Because it forms a poisonous gas phosgene in presence of air and light. [1]
- **24.** (a) Fe =  $3d^64s^2$



Hence hybridization is  $d^2sp^3$ .





(c) Cl<sup>-</sup> being a weak field ligand does not cause pairing of electrons and hence [NiCl<sub>4</sub>]<sup>2-</sup> is paramagnetic while CO being a strong field ligand causes pairing of electrons therefore [Ni(CO)<sub>4</sub>] is diamagnetic.

(d) Linkage isomerism. Example, 
$$CN^-/NO_2^-/SCN^-$$
 [1 × 3 = 3]

**25.** 
$$\pi = i \frac{n_B}{V} RT$$

$$6.5 = i \times \frac{W_B}{M_B} \times \frac{1000}{V} \times 0.0821$$

$$6.5 = i \times \frac{6.1}{122} \times \frac{1000}{100 L} \times 0.0821 \times 300 K$$
 [1]

$$i = \frac{6.5 \times 122}{6.1 \times 0.0821 \times 300 \times 10} = 0.528$$

$$\alpha = \frac{1 - i}{1 - \frac{1}{n}} = \frac{1 - 0.528}{1 - \frac{1}{2}} = 0.944 \text{ or } 94.4\%$$

**26.** 
$$k = \frac{2.303}{t} \log \frac{P_i}{(2p_i - p_t)}$$

$$k = \frac{2.303}{100} \log \frac{0.4}{0.8 - 0.6}$$
 [1]

$$=\frac{2.303}{100}\log 2$$
 [½]

$$=\frac{2.303\times0.3010}{100}$$

$$= 0.0069 \text{ s}^{-1} \text{ or } 0.007 \text{ s}^{-1}$$

#### [Deduct ½ mark for no or incorrect unit]

27. (1) Because of small size, high ionic charge and availability of d-orbital. [1]

(3) (i) 
$$\operatorname{Cu}^{+} \operatorname{ion} (\operatorname{aq.}) \longrightarrow \operatorname{Cu}^{2+} (\operatorname{aq.}) + \operatorname{Cu}.$$
 [1]

(ii)  $Cu^+$  ion (aq.) undergoes disproportionation to  $Cu^{2+}$  (aq.) and  $Cu / 2Cu^+$ (aq.)  $\longrightarrow Cu^{2+}$ (aq.) + Cu(s)

28. (a) (i) 
$$A = \bigcup_{P} CONH_2 \qquad NH_2 \qquad NH_2 \qquad N_2^+Cl^- \qquad [1/2 \times 3]$$

(ii) 
$$A = CH_3CH_2CN$$
  $B = CH_3CH_2CH_2NH_2$   $C = CH_3CH_2CH_2OH$  [½ × 3]

4

E

**OR** 

(ii) 
$$CH_3COOH \xrightarrow{NH_3} CH_3CONH_2 \xrightarrow{Br_2/KOH} CH_3N$$
 [1]

(iii) 
$$CH_3CH_2CH_2CN \xrightarrow{LiAlH_4} CH_3CH_2CH_2CH_2NH_2$$
 [1]

### SECTION – D

**29.** (i) **Peptide linkage :** A linkage formed when two amino acids are joined through –CONH –bond.

Glycosidic linkage: When two monosaccharides are joined through oxygen atom.

(or any other correct difference)

- (ii) Those which are not synthesized in the body and must be obtained through diet. [1]
- (iii)  $\alpha$ -helix and  $\beta$ -pleated sheet.

Hydrogen bond, van der Waals forces, disulphide linkages, electrostatic force or attraction.

(any two)

#### OR

(iii) Loos of biological activity when native form of protein is subjected to change in temperature, pH, etc. Example, curdling of milk. (or any other correct difference)[1]
 Secondary and tertiary structure lose their biological activity. [1]

**30.** (i) 
$$(C_2H_5)_2NH < (C_2H_5)_2N < (C_2H_5NH_2)$$

(ii) Due to the protonation of aniline to form anilinium ion which makes it deactivating and meta-directing. [1]

(iii) 
$$A = \langle \overline{\phantom{a}} \rangle - COOH$$

$$B = \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle - CONH_2$$
 [½]

$$C = \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - NH_2$$



OR

### SECTION - E

31. (a) (i) 
$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.059}{6} \log \frac{[Al^{3+}]^2}{[Ni^{2+}]^3}$$
 [1]

$$E_{cell} = [-0.25 + 1.66] - \frac{0.059}{6} log \frac{[0.001]}{[0.1]^3}$$


$$=1.41 - \frac{0.059}{6} \log 10^{-6+3}$$
 [1]

$$=1.41 - \frac{0.059}{6} \times 3$$

$$= 1.41 + 0.0295$$

$$= 1.4395 \text{ V}$$
 [1]

[Deduct ½ mark for no or incorrect unit]



As seen from the curve, it runs parallel to the y-axis. So, even on extrapolation, it will not intercept, hence  $\Lambda_m^0$  cannot be obtained.

**OR** 

(b) (i) 
$$\Lambda \text{m}^{\circ} (\text{NH}_4\text{Cl}) = 73.8 + 76.2 = 150.0 \text{ S cm}^2 \text{ mol}^{-1}$$
 [½]

$$\Lambda_{\rm m} = \frac{\rm k}{\rm c} \times 1000 \,\rm S \,\rm cm^2 \,\rm mol^{-1}$$
 [½]

$$\Lambda_{\rm m} = \frac{1.29 \times 10^{-2}}{0.1} \times 1000 \,\mathrm{S} \,\mathrm{cm}^2 \,\mathrm{mol}^{-1}$$
 [½]

$$\Lambda_{\rm m} = 1.29 \times 102 = 129 \text{ S cm}^2 \text{ mol}^{-1}$$
 [½]

$$\alpha = \frac{\Lambda_{\rm m}}{\Lambda_{\rm m^{\circ}}}$$

$$\alpha = \frac{129}{150} = 0.86$$

(ii) 
$$E_{Zn^{2+}|Zn} = E_{Zn^{2+}/Zn}^{\circ} - \frac{0.059}{2} log \frac{1}{[Zn^{2+}]}$$
 [½]

$$E_{Zn^{2+}|Zn} = -0.76V - \frac{0.059}{2} \log \frac{1}{0.1}$$

$$E_{Zn^{2+}|Zn} = -0.76V - 0.0295$$

$$=-0.7895V$$
 [1]

- 32. (a) (i) Because of no unpaired electron in d-orbitals in Zn<sup>2+</sup> whereas, Ni<sup>2+</sup> has 2 unpaired electrons in d-orbitals / Ni<sup>2+</sup> shows d-d transition while Zn<sup>2+</sup> does not
  - (2) Because Cr is more stable in +3 oxidation state due to stable  $t_{2g}^3$  configuration.

[1]

(3) Because of their ability to show multiple or variable oxidation states / ability to form complex / provide larger surface area for the reactants. [1]

(ii) (1) 
$$2\text{MnO}_4^- + 10 \text{ I}^- + 16\text{H}^+ \longrightarrow 2\text{Mn}^{2+} + 5\text{I}_2 + 8\text{H}_2\text{O}$$
 [1]

(2) 
$$MnO_4^- + 5Fe^{2+} 8H^+ \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$
 [1]

OR

(b) (i) Dichromate ion / Chromate ion / Permanganate ion

[any two]

- (ii) Changes to  $CrO_4^{2-}/K_2CrO_4$
- (iii)  $2MnO_2 + 4KOH + O_2 \longrightarrow 2K_2MnO_4 + 2H_2O$  $3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^- + MnO_2 + 2H_2O$

[or any other suitable method of preparation]

- (iv) Cerium / Terbium
- (v) Chromium Copper

Е

 $[1 \times 5]$ 

7

Chemistry

33. (a) 
$$\stackrel{\text{H}}{\bigcirc}_{\text{C=NNH}} \stackrel{\text{NO}_2}{\longrightarrow}_{\text{NO}_2}$$
 [1]

(b) 
$$F_3C$$
 COOH

(c) 
$$H_2$$
 CHO [1]

(or any other correct chemical equation)

- (d) Due to resonance stabilization of conjugate base enolate ion. [1]
- (e) On adding NaHCO<sub>3</sub> solution, Benzoic acid gives effervescence of CO<sub>2</sub> whereas

  Benzaldehyde does not. [1]

(or any other soitable chemical test)

Ε