## MATHEMATICS

## SOLUTION

## SECTION - A

1. (C)

Given $A=\left[\begin{array}{ccc}0 & \mathrm{a} & -3 \\ 2 & 0 & -1 \\ \mathrm{~b} & 1 & 0\end{array}\right]$ is a skew-symmetric matrix
$\Rightarrow \quad \mathrm{A}^{\prime}=-\mathrm{A}$

$$
\left[\begin{array}{ccc}
0 & 2 & \mathrm{~b} \\
\mathrm{a} & 0 & 1 \\
-3 & -1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & -\mathrm{a} & 3 \\
-2 & 0 & 1 \\
-\mathrm{b} & -1 & 0
\end{array}\right] \quad \Rightarrow \mathrm{a}=-2, \quad \mathrm{~b}=3
$$

2. (B)

$$
\mathrm{AB}=\left[\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right]\left[\begin{array}{ll}
3 & 4 \\
1 & 6
\end{array}\right]=\left[\begin{array}{ll}
5 & 16 \\
9 & 12
\end{array}\right] \Rightarrow(\mathrm{AB})^{\mathrm{T}}=\left[\begin{array}{cc}
5 & 9 \\
16 & 12
\end{array}\right]
$$

3. (D)

Given $\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{BD}}=\overrightarrow{\mathrm{b}}$
$\Rightarrow \quad \overrightarrow{\mathrm{AO}}=\frac{\overrightarrow{\mathrm{a}}}{2}, \overrightarrow{\mathrm{BO}}=\frac{\overrightarrow{\mathrm{b}}}{2}$
In $\triangle A O B$, using triangle law


$$
\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BO}}=\overrightarrow{\mathrm{AO}} \Rightarrow \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{AO}}-\overrightarrow{\mathrm{BO}} \Rightarrow \overrightarrow{\mathrm{AB}}=\frac{1}{2}(\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}})
$$

4. (B)

Given that $f(x)= \begin{cases}\frac{|x-1|}{1-x}+a, & x>1 \\ a+b & , x=1 \\ \frac{|x-1|}{1-x}+b, & x<1\end{cases}$
$\because f(x)$ is continuous at $x=1$; therefore, $\lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0} f(1-h)=f(1)$
$\because \quad \mathrm{f}(1)=\mathrm{a}+\mathrm{b}$ (given)
RHL $=\lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0} \frac{|1+h-1|}{1-(1+h)}+a=-1+a \Rightarrow a+b=-1+a \Rightarrow b=-1$
LHL $=\lim _{h \rightarrow 0} f(1-h)=\lim _{h \rightarrow 0} \frac{|1-h-1|}{1-(1-h)}+b=1+b \Rightarrow a+b=1+b \Rightarrow a=1$
5. (C)

$$
\begin{align*}
& \text { Let } \quad \mathrm{I}=\int_{2}^{5} \frac{\sqrt{\mathrm{x}}}{\sqrt{\mathrm{x}}+\sqrt{7-\mathrm{x}}} \mathrm{dx}  \tag{1}\\
& \Rightarrow \quad \mathrm{I}=\int_{2}^{5} \frac{\sqrt{7-\mathrm{x}}}{\sqrt{7-\mathrm{x}}+\sqrt{\mathrm{x}}} \mathrm{dx}
\end{align*}
$$

$\ldots . .$. (2) $\left[\because \int_{a}^{b} f(\mathrm{x}) \mathrm{dx}=\int_{a}^{b} f(\mathrm{a}+\mathrm{b}-\mathrm{x}) \mathrm{dx}\right]$
Adding (1) and (2) ; we get
$2 \mathrm{I}=\int_{2}^{5} \frac{\sqrt{\mathrm{x}}}{\sqrt{7-\mathrm{x}}+\sqrt{\mathrm{x}}} \mathrm{dx}+\int_{2}^{5} \frac{\sqrt{7-\mathrm{x}}}{\sqrt{7-\mathrm{x}}+\sqrt{x}} \mathrm{dx} \Rightarrow 2 \mathrm{I}=\int_{2}^{5} \frac{\sqrt{x}+\sqrt{7-x}}{\sqrt{7-\mathrm{x}}+\sqrt{x}} \mathrm{dx}=\int_{2}^{5} 1 \mathrm{dx}$
or $\quad 2 \mathrm{I}=[\mathrm{x}]_{2}^{5}=5-2 \Rightarrow \mathrm{I}=\frac{3}{2}$
6. (A)

Given differential equation can be written as

$$
(y-P x)^{3}=\left(a^{2} P^{2}+b^{2}\right) \quad\left\{\text { where } P=\frac{d y}{d x}\right\}
$$

Degree $=3$ and order $=1$
7. (A)


Hence ; as per the graph ; the region lies in the first and second quadrant.
8. (C)

Given, $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$
$\because \quad \vec{b}+\vec{c}=3 \hat{i}+\hat{j}+2 \hat{k}$
$\therefore \quad$ Projection of $(\vec{b}+\vec{c})$ on $\vec{a}=(\vec{b}+\vec{c}) \cdot \hat{a}=(3 \hat{i}+\hat{j}+2 \hat{k}) \cdot \frac{(2 \hat{i}-2 \hat{j}+\hat{k})}{3}=\frac{6}{3}=2$ units
9. (B)
$\int_{0}^{a} \frac{1}{1+4 x^{2}} d x=\frac{\pi}{8} \Rightarrow \int_{0}^{a} \frac{1}{1+(2 x)^{2}} d x=\frac{\pi}{8}$
$\Rightarrow \quad \frac{1}{2}\left[\tan ^{-1}(2 \mathrm{x})\right]_{0}^{\mathrm{a}}=\frac{\pi}{8} \Rightarrow \frac{1}{2}\left[\tan ^{-1} 2 \mathrm{a}-\tan ^{-1} 0\right]=\frac{\pi}{8} \Rightarrow \tan ^{-1} 2 \mathrm{a}=\frac{\pi}{4}$
$\Rightarrow \quad 2 \mathrm{a}=\tan \frac{\pi}{4} \Rightarrow 2 \mathrm{a}=1 \Rightarrow \mathrm{a}=\frac{1}{2}$
10. (C)

Required number of possible matrices $=(\text { Number of possible entries })^{\text {number of clements }}$

$$
=(2)^{2 \times 3}=(2)^{6}=64
$$

11. (B)

We have to maximize $\mathrm{Z}=12 \mathrm{x}+10 \mathrm{y}$
Subject to $4 x+3 y \leq 480,2 x+3 y \leq 360, x, y \geq 0$

| Corner points | $Z=\mathbf{1 2 x}+\mathbf{1 0 y}$ |
| :---: | :---: |
| $\mathrm{O}(0,0)$ | 0 |
| $\mathrm{~A}(120,0)$ | 1440 |
| $\mathrm{~B}(60,80)$ | 1520 |
| $\mathrm{C}(0,120)$ | 1200 |

Hence ; value of Z is maximum at $(60,80)$

12. (D)

The system of linear equations is given as :

$$
5 x+k y=5 \text { and } \quad 3 x+3 y=5
$$

It can be written in matrix equation form as :

$$
\left[\begin{array}{ll}
5 & \mathrm{k} \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{l}
5 \\
5
\end{array}\right]
$$

or $A X=B$
So ; given system of linear equations is consistent if $|\mathrm{A}| \neq 0$
$\Rightarrow\left|\begin{array}{ll}5 & \mathrm{k} \\ 3 & 3\end{array}\right| \neq 0 \Rightarrow 15-3 \mathrm{k} \neq 0 \Rightarrow \mathrm{k} \neq 5$
13. (D)

Given $A^{2}=3 A,|A| \neq 0$, order of $A$ is 3

$$
\begin{aligned}
\therefore \quad & \left|\mathrm{A}^{2}\right|=|3 \mathrm{~A}| \\
& |\mathrm{A}|^{2}=3^{3}|\mathrm{~A}| \\
& |\mathrm{A}|=27
\end{aligned}
$$

$$
\left(\left|A^{2}\right|=|A|^{2} \&|K A|=K^{n}|A| \text {, where } n \text { is order of matrix } A\right)
$$

14. (C)

Given ; E and F are independent i.e. $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$
$P(E \cup F)=P(E)+P(F)-P(E) . P(F)$
$\Rightarrow \quad 0.5=0.3+\mathrm{P}(\mathrm{F})-0.3 \times \mathrm{P}(\mathrm{F}) \Rightarrow 0.7 \mathrm{P}(\mathrm{F})=0.2$
$\therefore \quad \mathrm{P}(\mathrm{F})=\frac{2}{7}$

Now; $\mathrm{P}(\mathrm{E} / \mathrm{F})-\mathrm{P}(\mathrm{F} / \mathrm{E})$

$$
\begin{aligned}
& =\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{~F})}{\mathrm{P}(\mathrm{~F})}-\frac{\mathrm{P}(\mathrm{~F} \cap \mathrm{E})}{\mathrm{P}(\mathrm{E})}=\frac{\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{~F})}{\mathrm{P}(\mathrm{~F})}-\frac{\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{~F})}{\mathrm{P}(\mathrm{E})}=\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{~F}) \\
& =\frac{3}{10}-\frac{2}{7}=\frac{1}{70}
\end{aligned}
$$

15. (C)

## Method-1 :

Given, $x$ dy $-\mathrm{ydx}=0$
$\Rightarrow \quad x d y=y d x \Rightarrow \frac{1}{y} d y=\frac{1}{x} d x$
Integrating both sides 122
$\Rightarrow \quad \int \frac{d y}{y}=\int \frac{d x}{x}$

$$
\log y=\log x+\log c
$$

$$
y=c x
$$

$\therefore \quad$ it represents a straight line passing through origin.

## Method-2 :

Given, $x$ dy $-\mathrm{ydx}=0$
$\Rightarrow \quad \frac{x d y-y d x}{x^{2}}=0 \Rightarrow d\left(\frac{y}{x}\right)=0$
Integrating both sides

$$
\begin{aligned}
\Rightarrow \quad & \int d\left(\frac{y}{x}\right)=\int 0 \\
& \frac{y}{x}=c \Rightarrow y=c x
\end{aligned}
$$

$\therefore \quad$ it represents a straight line passing through origin.
16. (B)
$y=\sin \left(m \sin ^{-1} x\right)$
$\Rightarrow \quad \frac{d y}{d x}=\cos \left(m \sin ^{-1} x\right) \times\left(\frac{m}{\sqrt{1-x^{2}}}\right)$
(Differentiating w.r.t. x )
$\Rightarrow \quad \sqrt{1-x^{2}} \frac{d y}{d x}=m \cos \left(m \sin ^{-1} x\right)$
(Again differentiating w.r.t. x)
$\therefore \quad \sqrt{1-x^{2}} \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right) \cdot \frac{1}{2 \sqrt{1-x^{2}}} \cdot(-2 x)=-m^{2} \sin \left(m \sin ^{-1} x\right) \times \frac{1}{\sqrt{1-x^{2}}}$
$\Rightarrow \quad\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+m^{2} y=0$
[from (1)]
17. (B)

Let $\vec{a}=\cos \alpha \cos \beta \hat{i}+\cos \alpha \sin \beta \hat{j}+\sin \alpha \hat{k}$

$$
\begin{aligned}
& |\overrightarrow{\mathrm{a}}|=\sqrt{\cos ^{2} \alpha \cos ^{2} \beta+\cos ^{2} \alpha \sin ^{2} \beta+\sin ^{2} \alpha} \\
& |\overrightarrow{\mathrm{a}}|=\sqrt{\cos ^{2} \alpha\left(\cos ^{2} \beta+\sin ^{2} \beta\right)+\sin ^{2} \alpha}=\sqrt{\cos ^{2} \alpha+\sin ^{2} \alpha} \\
& |\overrightarrow{\mathrm{a}}|=1 \text { i.e., unit vector. }
\end{aligned}
$$

18. (D)

Direction cosines of $(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})$ are $\frac{2}{\sqrt{4+4+1}}, \frac{2}{\sqrt{4+4+1}}, \frac{-1}{\sqrt{4+4+1}}$ i.e., $\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}$.
19. (C)

Assertion : $\tan ^{-1}\left[2 \sin \left(2 \cos ^{-1} \frac{\sqrt{3}}{2}\right)\right]=\tan ^{-1}\left[2 \sin \left(2 \times \frac{\pi}{6}\right)\right]=\tan ^{-1}\left[2 \sin \left(\frac{\pi}{3}\right)\right]$

$$
=\tan ^{-1}\left[2 \times \frac{\sqrt{3}}{2}\right]=\tan ^{-1}(\sqrt{3})=\frac{\pi}{3}
$$

$\therefore \quad$ Assertion is true
Reason : Reason is false because given that $\mathrm{x} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ while $\mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for $\tan ^{-1}(\tan \mathrm{x})=\mathrm{x}$. Hence, Assertion is true but Reason is false.
20. (B)

Assertion : Given lines are

$$
\begin{align*}
\quad \vec{r} & =(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})  \tag{1}\\
\text { and } \vec{r} & =(2 \hat{i}-\hat{j}-3 \hat{k})+\mu(\hat{i}+2 \hat{j}+2 \hat{k}) \tag{2}
\end{align*}
$$

Where

$$
\begin{aligned}
& \vec{a}_{1}=\hat{i}+\hat{j}-\hat{k}, \vec{b}_{1}=2 \hat{i}-2 \hat{j}+\hat{k} \\
& \vec{a}_{2}=2 \hat{i}-\hat{j}-3 \hat{k}, \vec{b}_{2}=\hat{i}+2 \hat{j}+2 \hat{k}
\end{aligned}
$$

The required line is perpendicular to (1) as well as (2)
So, this line must be parallel to $\vec{b}_{1} \times \vec{b}_{2}$
Now, $\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & -2 & 1 \\ 1 & 2 & 2\end{array}\right|=-6 \hat{i}-3 \hat{j}+6 \hat{k}$
$\therefore \quad$ Equation of line passing through the point $(2,-1,3)$ and parallel to $\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}$ is

$$
\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\mathrm{t}(-6 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})
$$

So, assertion is true.
Reason : Reason is true as it is a condition.
Hence, Assertion (A) and Reason (R) both are true but R is not the correct explanation of A .

## SECTION - B

21. $\operatorname{cosec}^{2}\left(\tan ^{-1} 2\right)+\sec ^{2}\left(\cot ^{-1} 3\right)$

$$
\begin{align*}
& =1+\cot ^{2}\left(\tan ^{-1} 2\right)+1+\tan ^{2}\left(\cot ^{-1} 3\right) \\
& =1+\cot ^{2}\left(\cot ^{-1} \frac{1}{2}\right)+1+\tan ^{2}\left(\tan ^{-1} \frac{1}{3}\right) \quad\left[\because \cot ^{-1} x=\tan ^{-1} \frac{1}{\mathrm{x}}\right] \\
& =1+\frac{1}{4}+1+\frac{1}{9}=\frac{85}{36} \tag{1}
\end{align*}
$$

## OR

Yes, $f$ is one-one and onto.
Let $x_{1}, x_{2} \in A$ be such that
If $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \quad \frac{x_{1}-2}{x_{1}-3}=\frac{x_{2}-2}{x_{2}-3}$
$\Rightarrow \quad\left(\mathrm{x}_{1}-2\right)\left(\mathrm{x}_{2}-3\right)=\left(\mathrm{x}_{2}-2\right)\left(\mathrm{x}_{1}-3\right)$
$\Rightarrow \quad \mathrm{x}_{1} \mathrm{x}_{2}-2 \mathrm{x}_{2}-3 \mathrm{x}_{1}+6=\mathrm{x}_{1} \mathrm{x}_{2}-2 \mathrm{x}_{1}-3 \mathrm{x}_{2}+6$
$\Rightarrow \quad \mathrm{x}_{1}=\mathrm{x}_{2}$
$\therefore \quad \mathrm{f}$ is one-one.
Let $\mathrm{y} \in \mathrm{B}=\mathrm{R}-\{1\}$, then $\mathrm{f}(\mathrm{x})=\mathrm{y}$
$\Rightarrow \quad y=\frac{x-2}{x-3}, x \neq 3$
$\Rightarrow \quad x-2=y x-3 y$
$\Rightarrow \quad x-x y=2-3 y$
$\Rightarrow \quad x(1-y)=2-3 y$
$\Rightarrow \quad x=\frac{2-3 y}{1-y}$
$\because \quad 1-\mathrm{y} \neq 0 \Rightarrow \mathrm{y} \neq 1 \quad \forall \mathrm{x} \in \mathrm{A}$
$\therefore \quad$ Range $=\mathrm{R}-\{1\}$
So, Co-domain $=$ Range
Hence, $f$ is onto.
22. Let $\mathrm{V}, \mathrm{S}$ and r denote the volume, surface area and radius of the salt ball respectively at any instant t .

Then $V=\frac{4}{3} \pi r^{3}$ and $S=4 \pi r^{2}$
It is given that the rate of decrease of the volume V is proportional to the surface area S .
i.e. $\frac{d V}{d t} \propto S$ or $\frac{d V}{d t}=-K S$, where $K>0$ is the constant of proportionality.
$\frac{\mathrm{dV}}{\mathrm{dt}}=-\mathrm{KS}$
$\Rightarrow \quad \frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{4}{3} \pi \mathrm{r}^{3}\right)=-\mathrm{K}\left(4 \pi \mathrm{r}^{2}\right)$
$\Rightarrow \quad 4 \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}}=-4 \pi \mathrm{Kr}^{2} \quad \Rightarrow \frac{\mathrm{dr}}{\mathrm{dt}}=-\mathrm{K}$
So, $r$ decreases with a constant rate.
23. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{b}=-\hat{i}+3 \hat{j}+4 \hat{k}$. Then

$$
\begin{align*}
& \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
1 & 2 & 1 \\
-1 & 3 & 4
\end{array}\right|=\hat{\mathrm{i}}(8-3)-\hat{\mathrm{j}}(4+1)+\hat{\mathrm{k}}(3+2)=5 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}  \tag{1/2}\\
& \Rightarrow \quad|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{(5)^{2}+(-5)^{2}+(5)^{2}}=5 \sqrt{3} . \tag{1/2}
\end{align*}
$$

Therefore, unit vector perpendicular to the vectors $\vec{a}$ and $\vec{b}$ is given by

$$
\begin{equation*}
\pm \frac{\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|}= \pm \frac{5 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}}{5 \sqrt{3}} . \tag{1/2}
\end{equation*}
$$

Hence required vectors are $\pm 10 \sqrt{3}\left(\frac{5 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}}{5 \sqrt{3}}\right)$ or $\pm 10(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$

## OR

Let $\vec{a}=-2 \hat{i}+3 \hat{j}+5 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{c}=7 \hat{i}-\hat{k}$, are position vector of points $A$, $B$ and $C$ respectively.

$$
\begin{array}{ll}
\therefore & \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{k}, \\
& \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}=9 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}=3(3 \hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{k}) \\
\Rightarrow & \overrightarrow{\mathrm{AC}}=3 \cdot \overrightarrow{\mathrm{AB}}
\end{array}
$$

$\therefore \quad \overrightarrow{\mathrm{AC}} \| \overrightarrow{\mathrm{AB}}$ but A is common in $\overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{AB}}$
$\therefore \quad \mathrm{A}, \mathrm{B}$ and C are collinear
24. Given $\left(x^{2}+y^{2}\right)^{2}=x y$

$$
x^{4}+y^{4}+2 x^{2} y^{2}=x y
$$

Differentiating both sides w.r.t. $x$

$$
\begin{align*}
& 4 x^{3}+4 y^{3} \frac{d y}{d x}+2\left[2 x y^{2}+x^{2} \cdot 2 y \frac{d y}{d x}\right]=x \frac{d y}{d x}+y  \tag{1}\\
& \frac{d y}{d x}\left(4 y^{3}+4 x^{2} y-x\right)=\left(y-4 x^{3}-4 x y^{2}\right) \\
\Rightarrow \quad & \frac{d y}{d x}=\frac{y-4 x^{3}-4 x y^{2}}{4 y^{3}+4 x^{2} y-x} \tag{1}
\end{align*}
$$

25. Given $(\hat{i}+3 \hat{j}+9 \hat{k}) \times(3 \hat{i}-\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}$
$\Rightarrow\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & 9 \\ 3 & -\lambda & \mu\end{array}\right|=\overrightarrow{0} \Rightarrow \hat{i}(3 \mu+9 \lambda)-\hat{\mathrm{j}}(\mu-27)+\hat{\mathrm{k}}(-\lambda-9)=\overrightarrow{0}$
$\therefore \quad \mu-27=0 \quad \ldots . .(1),-\lambda-9=0 \ldots . .(2)$ and $3 \mu+9 \lambda=0$
$\Rightarrow \quad \mu=27, \lambda=-9 \quad$ which are satisfy to eq ${ }^{\mathrm{n}}$. (3)

## SECTION - C

26. Let $\mathrm{I}=\int \mathrm{e}^{\mathrm{x}}\left(\frac{\sin 4 \mathrm{x}-4}{1-\cos 4 \mathrm{x}}\right) \mathrm{dx}=\int \mathrm{e}^{\mathrm{x}}\left(\frac{2 \sin 2 \mathrm{x} \cos 2 \mathrm{x}-4}{2 \sin ^{2} 2 \mathrm{x}}\right) \mathrm{dx}$

$$
\begin{aligned}
& =\int e^{x}\left(\frac{2 \sin 2 x \cos 2 x}{2 \sin ^{2} 2 x}-\frac{4}{2 \sin ^{2} 2 x}\right) d x \\
& =\int e^{x}\left(\cot 2 x-2 \operatorname{cosec}^{2} 2 x\right) d x \\
& =\int e^{x}\left(f(x)+f^{\prime}(x)\right) d x \quad\left[\text { where } f(x)=\cot 2 x \Rightarrow f^{\prime}(x)=-2 \operatorname{cosec}^{2} 2 x\right] \\
& =e^{x} f(x)+C=e^{x} \cot 2 x+C
\end{aligned}
$$

27. Let $E$ : event that a total of 6 is obtained and $F$ : event that a total of 7 is obtained.
$\Rightarrow \quad \mathrm{E}=\{(1,5),(5,1),(2,4),(4,2),(3,3)\}$ and $\mathrm{F}=\{(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)\}$
$\Rightarrow \quad \mathrm{P}(\mathrm{E})=\frac{5}{36}$ and $\mathrm{P}(\mathrm{F})=\frac{6}{36}=\frac{1}{6}$
Since A starts the game ;
$\Rightarrow \quad \mathrm{P}(\mathrm{A}$ wins in the third throw of pair of dice $)=\mathrm{P}(\overline{\mathrm{E}}) \cdot \mathrm{P}(\overline{\mathrm{F}}) \cdot \mathrm{P}(\mathrm{E})=\frac{31}{36} \times \frac{5}{6} \times \frac{5}{36}=\frac{775}{7776}$

## OR

We are given $E(X)=\sum_{i=1}^{n} x_{i} p_{i}=2.94$
$\Rightarrow \quad 1 \times \frac{1}{2}+2 \times \frac{1}{5}+4 \times \frac{3}{25}+(2 \mathrm{k}) \times \frac{1}{10}+(3 \mathrm{k}) \times \frac{1}{25}+(5 \mathrm{k}) \times \frac{1}{25}=2.94$
$\Rightarrow \quad \frac{1}{2}+\frac{2}{5}+\frac{12}{25}+\mathrm{k}\left\{\frac{2}{10}+\frac{3}{25}+\frac{1}{5}\right\}=2.94 \Rightarrow \mathrm{k}\left\{\frac{2}{10}+\frac{3}{25}+\frac{1}{5}\right\}=2.94-\frac{1}{2}-\frac{2}{5}-\frac{12}{25}$
$\Rightarrow \quad \mathrm{k}\left(\frac{10+6+10}{50}\right)=\frac{294-50-40-48}{100} \Rightarrow \mathrm{k}=\frac{50}{26} \times \frac{156}{100}=3$
28. $I=\int_{0}^{\pi} \frac{4 x \sin x}{1+\cos ^{2} x} d x$
$I=\int_{0}^{\pi} \frac{4(\pi-x) \sin (\pi-x)}{1+\cos ^{2}(\pi-x)} d x \quad\left[\right.$ Applying $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$ ]
$I=\int_{0}^{\pi} \frac{4 \pi \sin x}{1+\cos ^{2} x} d x-\int_{0}^{\pi} \frac{4 x \sin x}{1+\cos ^{2} x} d x$
$I=\int_{0}^{\pi} \frac{4 \pi \sin x}{1+\cos ^{2} x} d x-I \quad$ [From equation (1)]
$2 \mathrm{I}=4 \pi \int_{0}^{\pi} \frac{\sin \mathrm{x}}{1+\cos ^{2} \mathrm{x}} \mathrm{dx}$
$2 I=4 \pi .2 \times \int_{0}^{\pi / 2} \frac{\sin x}{1+\cos ^{2} x} d x \quad\left\{\right.$ Applying $\int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x \quad$ if $\left.f(2 a-x)=f(x)\right\}$
put $\cos x=t \Rightarrow-\sin x d x=d t$
when $\mathrm{x}=0$ and when $\mathrm{x}=\pi / 2$
then $t=1$, then $t=0$

$$
\begin{aligned}
\therefore \quad \mathrm{I} & =4 \pi \int_{1}^{0} \frac{-\mathrm{dt}}{1+\mathrm{t}^{2}}=4 \pi \int_{0}^{1} \frac{\mathrm{dt}}{1+\mathrm{t}^{2}} \quad\left[\because \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=-\int_{\mathrm{b}}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}\right] \\
\mathrm{I} & =4 \pi\left[\tan ^{-1} \mathrm{t}\right]_{0}^{1} \\
\mathrm{I} & =4 \pi\left[\tan ^{-1} 1-\tan ^{-1} 0\right] \\
& \mathrm{I}
\end{aligned}=4 \pi \times \frac{\pi}{4}=\pi^{2} \text {. }
$$

## OR

Let $I=\int_{1}^{4}\{|x-1|+|x-2|+|x-4|\} d x$

$$
\begin{aligned}
& I=\int_{1}^{2}[(x-1)-(x-2)-(x-4)] d x+\int_{2}^{4}[(x-1)+(x-2)-(x-4)] d x \\
& I=\int_{1}^{2}(5-x) d x+\int_{2}^{4}(x+1) d x \\
& I=\left(5 x-\frac{x^{2}}{2}\right)_{1}^{2}+\left(\frac{x^{2}}{2}+x\right)_{2}^{4} \\
& I=\left[(10-2)-\left(5-\frac{1}{2}\right)\right]+[(8+4)-(2+2)] \\
& I=\frac{7}{2}+8=\frac{23}{2}
\end{aligned}
$$

29. $\left(1+x^{2}\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x}$
$\frac{d y}{d x}+\frac{y}{1+x^{2}}=\frac{e^{\tan ^{-1} x}}{1+x^{2}}$
This is linear differential equation of the form $\frac{d y}{d x}+P y=Q$
Where $\mathrm{P}=\frac{1}{1+\mathrm{x}^{2}}$ and $\mathrm{Q}=\frac{\mathrm{e}^{\tan ^{-1} \mathrm{x}}}{1+\mathrm{x}^{2}}$
$I F=e^{\int \mathrm{Pdx}}=e^{\int \frac{1}{1+x^{2}} \mathrm{dx}}=\mathrm{e}^{\tan ^{-1} \mathrm{x}}$

Solution of D.E. is given by
$y($ I.F. $)=\int Q \cdot($ I.F. $) d x$
$y \times e^{\tan ^{-1} x}=\int \frac{e^{\tan ^{-1} x}}{1+x^{2}} x e^{\tan ^{-1} x} d x$
$\Rightarrow \quad y e^{\tan ^{-1} x}=\int \frac{\left(e^{\tan ^{-1} x}\right)^{2}}{1+x^{2}} d x$
$\Rightarrow \quad y e^{\tan ^{-1} \mathrm{x}}=\int \mathrm{e}^{2 \mathrm{t}} \mathrm{dt}=\frac{\mathrm{e}^{2 \mathrm{t}}}{2}+\mathrm{C} \quad\left[\because \tan ^{-1} \mathrm{x}=\mathrm{t} \Rightarrow \frac{1}{1+\mathrm{x}^{2}} \mathrm{dx}=\mathrm{dt}\right]$
$\Rightarrow \quad y^{\tan ^{-1} x}=\frac{e^{2 \tan ^{-1} x}}{2}+C$

## OR

Given differential equation is $2 x y d y=\left(x^{2}+y^{2}\right) d x \Rightarrow \frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$
This is homogeneous differential equation
Put $y=v x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$ in eq. (1)

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{x^{2}+v^{2} x^{2}}{2 x^{2} v} \Rightarrow v+x \frac{d v}{d x}=\frac{1+v^{2}}{2 v} \\
\Rightarrow & x \frac{d v}{d x}=\frac{1+v^{2}}{2 v}-v \\
\Rightarrow & x \frac{d v}{d x}=\frac{1+v^{2}-2 v^{2}}{2 v} \\
\Rightarrow & x \frac{d v}{d x}=\frac{1-v^{2}}{2 v} \Rightarrow \frac{2 v}{1-v^{2}} d v=\frac{d x}{x}
\end{aligned}
$$

On integrating both sides

$$
\begin{aligned}
& \Rightarrow \quad \int \frac{2 v d v}{1-v^{2}}=\int \frac{d x}{x} \\
& \Rightarrow \quad-\log \left(1-v^{2}\right)=\log x+\log C \\
& \Rightarrow \quad-\left[\log \left(1-v^{2}\right)+\log x\right]=\log C \Rightarrow-\log x\left(1-v^{2}\right)=\log C \\
& \Rightarrow \quad \log \frac{1}{x\left(1-v^{2}\right)}=\log C \\
& \Rightarrow \quad \frac{1}{x\left(1-v^{2}\right)}=C \quad \Rightarrow \frac{1}{x\left(1-\frac{y^{2}}{x^{2}}\right)}=C \quad\left(\because v=\frac{y}{x}\right) \\
& \Rightarrow \quad \frac{x}{x^{2}-y^{2}}=C
\end{aligned}
$$

30. Minimize $Z=6 x+21 y$
subject to constraints
$x+2 y \leq 3, x+4 y \geq 4$
$3 x+y \geq 3, x \geq 0, y \geq 0$

| Corner <br> points | $\mathrm{Z}=\mathbf{6 x + 2 1 y}$ |
| :---: | :---: |
| $\mathrm{A}\left(\frac{3}{5}, \frac{6}{5}\right)$ | $\mathrm{Z}_{\mathrm{A}}=\frac{144}{5}=28.8$ |
| $\mathrm{~B}\left(\frac{8}{11}, \frac{9}{11}\right)$ | $\mathrm{Z}_{\mathrm{B}}=\frac{237}{11}=21.54$ |
| $\mathrm{C}\left(2, \frac{1}{2}\right)$ | $\mathrm{Z}_{\mathrm{C}}=\frac{45}{2}=22.5$ |

Since, feasible region is bounded, so Minimum value of Z is 21.54

at point $\mathrm{B}\left(\frac{8}{11}, \frac{9}{11}\right)$
31. Let $I=\int \frac{x^{3}}{(x-1)\left(x^{2}+1\right)} d x$

$$
\frac{x^{3}}{(x-1)\left(x^{2}+1\right)}=1+\frac{x^{2}-x+1}{(x-1)\left(x^{2}+1\right)}
$$

Let $\frac{x^{2}-x+1}{(x-1)\left(x^{2}+1\right)}=\frac{A}{(x-1)}+\frac{B x+C}{x^{2}+1}$
$x^{2}-x+1=A\left(x^{2}+1\right)+(x-1)(B x+C)$
Using (1); we have :
When $\mathrm{x}=1, \quad \mathrm{~A}=\frac{1}{2}$
and $\mathrm{x}=0, \quad 1=\mathrm{A}-\mathrm{C} \Rightarrow \mathrm{C}=\mathrm{A}-1=-\frac{1}{2}$
On equating Coefficient of $\mathrm{x}^{2} ; \quad 1=\mathrm{A}+\mathrm{B} \Rightarrow \mathrm{B}=1-\mathrm{A}=\frac{1}{2}$
$\therefore \quad \frac{\mathrm{x}^{2}-\mathrm{x}+1}{(\mathrm{x}-1)\left(\mathrm{x}^{2}+1\right)}=\frac{1}{2}\left(\frac{1}{\mathrm{x}-1}\right)+\frac{1}{2}\left(\frac{\mathrm{x}-1}{\mathrm{x}^{2}+1}\right)$
Now, $\frac{x^{3}}{(x-1)\left(x^{2}+1\right)}=1+\frac{1}{2}\left(\frac{1}{x-1}\right)+\frac{1}{2}\left(\frac{x-1}{x^{2}+1}\right)$

$$
\begin{aligned}
I & =\int\left[1+\frac{1}{2}\left(\frac{1}{x-1}\right)+\frac{1}{2}\left(\frac{x-1}{x^{2}+1}\right)\right] d x \\
& =\int\left[1+\frac{1}{2}\left(\frac{1}{x-1}\right)+\frac{1}{2} \times \frac{1}{2}\left(\frac{2 x}{x^{2}+1}\right)-\frac{1}{2}\left(\frac{1}{x^{2}+1}\right)\right] d x \\
& =x+\frac{1}{2} \log (x-1)+\frac{1}{4} \log \left(x^{2}+1\right)-\frac{1}{2} \tan ^{-1} x+C \\
& =x+\frac{1}{4} \log (x-1)^{2}\left(x^{2}+1\right)-\frac{1}{2} \tan ^{-1} x+C
\end{aligned}
$$

## SECTION - D

32. 


[Correct Fig. 1 Mark]

Line $A B$ is : $y=\frac{5}{2} x-7 ; x=\frac{2}{5}(y+7)$, line $B C$ is: $y=\frac{1}{3}(x+5) \Rightarrow x=3 y-5$
Line AC is: $y=-4 x+6 ; x=\frac{y-6}{-4}$
Required area $=\left[\int_{-2}^{3}(\right.$ line $\left.A B) d y\right]-\left[\int_{2}^{3}(\right.$ lineBC $) \mathrm{dy}+\int_{-2}^{2}($ lineAC $\left.) \mathrm{dy}\right]$
$\Rightarrow\left[\frac{2}{5} \int_{-2}^{3}(y+7) d y\right]-\left[\int_{2}^{3}(3 y-5) d y-\frac{1}{4} \int_{-2}^{2}(y-6) d y\right]$

$$
\begin{align*}
& =\frac{2}{5}\left[\left(\frac{y^{2}}{2}+7 \mathrm{y}\right)_{-2}^{3}\right]-\left[\left(\frac{3 y^{2}}{2}-5 \mathrm{y}\right)_{2}^{3}-\frac{1}{4}\left(\frac{\mathrm{y}^{2}}{2}-6 \mathrm{y}\right)_{-2}^{2}\right] \\
& =\frac{2}{5}\left[\left(\frac{9}{2}+21\right)-(2-14)\right]-\left[\left\{\left(\frac{27}{2}-15\right)-(6-10)\right\}-\frac{1}{4}\{(2-12)-(2+12)\}\right] \\
& =\frac{2}{5}\left[\frac{9}{2}+33\right]-\left[\left(\frac{27}{2}-11\right)-\frac{1}{4}(-24)\right] \\
& =\left(\frac{2}{5} \times \frac{75}{2}\right)-\left(\frac{5}{2}+6\right)=15-\frac{17}{2}=\frac{13}{2} \text { square units } \tag{2}
\end{align*}
$$

33. Given, $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathrm{A},|\mathrm{a}-\mathrm{b}|$ is divisible by 4$\}$
(i) For Reflexive relation:

Let $a \in A$
Now, $|a-a|=0$, which is divisible by 4
So, $(a, a) \in R \forall a \in A$
Hence, R is reflexive.
(ii) For Symmetric relation:

Let $\mathrm{a}, \mathrm{b} \in \mathrm{A}$ such that $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$
i.e. $|a-b|$ is divisible by 4 .
$\Rightarrow \quad|-(b-a)|=|b-a|$ is also divisible by 4 .
Hence; $(b, a) \in R$.
So, R is symmetric.
(iii) For Transitive relation:

Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$ such that $(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{c}) \in \mathrm{R}$
i.e. $|\mathrm{a}-\mathrm{b}| \&|\mathrm{~b}-\mathrm{c}|$ is divisible by 4 .

Let $|\mathrm{a}-\mathrm{b}|=4 \mathrm{k}_{1}$
\& $\quad|b-c|=4 k_{2}$
$\Rightarrow \quad(\mathrm{a}-\mathrm{b})= \pm 4 \mathrm{k}_{1}$
\& $\quad(b-c)= \pm 4 \mathrm{k}_{2}$
Adding equations (1) \& (2);
$\Rightarrow \quad(\mathrm{a}-\mathrm{b})+(\mathrm{b}-\mathrm{c})= \pm 4 \mathrm{k}_{1} \pm 4 \mathrm{k}_{2}= \pm 4\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)$
$\Rightarrow \quad \mathrm{a}-\mathrm{c}$ is divisible by 4 .
$\Rightarrow \quad|\mathrm{a}-\mathrm{c}|$ is divisible by 4 .
Hence; $(\mathrm{a}, \mathrm{c}) \in \mathrm{R}$
So, $R$ is transitive.
Hence; $R$ is an equivalence relation.
Further, let $(x, 1) \in R \forall x \in A$
$\Rightarrow \quad \mathrm{x}-1 \mid$ is divisible by 4
$\Rightarrow \quad \mathrm{x}-1=0,4,8,12$
$\Rightarrow \quad x=1,5,9 \quad[\because x=13 \notin \mathrm{~A}]$
$\therefore \quad$ Equivalence class of $[1]=\{1,5,9\}$
[ $\because$ The set of all elements related to 1 represents its equivalence class]
Now, we will find equivalence class of [2]
Let $(\mathrm{x}, 2) \in \mathrm{R} \forall \mathrm{x} \in \mathrm{A}$
$\Rightarrow \quad|\mathrm{x}-2|=0,4,8,12$
$\Rightarrow \quad \mathrm{x}=2,6,10 \quad[\because \mathrm{x}=14 \notin \mathrm{~A}]$
$\therefore$ Equivalence class of $[2]=\{2,6,10\}$.

## OR

$\mathrm{f}: \mathrm{W} \rightarrow \mathrm{W}$, such that
$\mathrm{f}(\mathrm{n})=\left\{\begin{array}{l}\mathrm{n}-1, \text { if } \mathrm{n} \text { is odd } \\ \mathrm{n}+1, \text { if } \mathrm{n} \text { is even }\end{array}\right.$

## For one-one :

Case-I : Let $\mathrm{n}_{1}$ and $\mathrm{n}_{2}$ both are odd, $\forall \mathrm{n}_{1}, \mathrm{n}_{2} \in \mathrm{~W}$.

$$
\begin{aligned}
& \text { if } f\left(\mathrm{n}_{1}\right)=f\left(\mathrm{n}_{2}\right) \\
& \Rightarrow \mathrm{n}_{1}-1=\mathrm{n}_{2}-1 \Rightarrow \mathrm{n}_{1}=\mathrm{n}_{2}
\end{aligned}
$$

Case-II : Let $\mathrm{n}_{1}$ and $\mathrm{n}_{2}$ both are even, $\forall \mathrm{n}_{1}, \mathrm{n}_{2} \in \mathrm{~W}$
if $f\left(\mathrm{n}_{1}\right)=f\left(\mathrm{n}_{2}\right)$
$\Rightarrow \mathrm{n}_{1}+1=\mathrm{n}_{2}+1 \Rightarrow \mathrm{n}_{1}=\mathrm{n}_{2}$
Case-III : Let $\mathrm{n}_{1}=$ odd and $\mathrm{n}_{2}=$ even $\forall \mathrm{n}_{1}, \mathrm{n}_{2} \in \mathrm{~W}$
if $f\left(\mathrm{n}_{1}\right)=f\left(\mathrm{n}_{2}\right)$
$\mathrm{n}_{1}-1=\mathrm{n}_{2}+1$
$\mathrm{n}_{1}-\mathrm{n}_{2}=2$
This is contradiction,
Since the difference between an odd and even whole number
can never be 2 .
Thus, in this case $f\left(\mathrm{n}_{1}\right) \neq f\left(\mathrm{n}_{2}\right)$
$\mathrm{n}_{1} \neq \mathrm{n}_{2} \Rightarrow f\left(\mathrm{n}_{1}\right) \neq f\left(\mathrm{n}_{2}\right)$
$\therefore \quad f$ is one-one.

## For onto :

Case-I : When n is odd; in this case $\mathrm{n}-1$ is even.
$f(\mathrm{n}-1)=\mathrm{n}-1+1=\mathrm{n}$
Case-II : When n is even; in this case $\mathrm{n}+1$ is odd.
$f(\mathrm{n}+1)=\mathrm{n}+1-1=\mathrm{n}$
Thus every $\mathrm{n} \in \mathrm{W}$ has its pre image in W .
So range $=$ codomain
Hence $f$ is onto.
$\Rightarrow \quad \mathrm{f}$ is one-one onto
$\Rightarrow \mathrm{f}$ is bijective function.
34. Given lines are $\ell_{1}: \frac{\mathrm{x}-8}{3}=\frac{\mathrm{y}+9}{-16}=\frac{\mathrm{z}-10}{7}=\mathrm{t}$ (say)

And $\ell_{2}: \frac{\mathrm{x}-15}{3}=\frac{\mathrm{y}-29}{8}=\frac{\mathrm{z}-5}{-5}=\mathrm{s}$ (say)
Any point on line (1) is $\mathrm{M}(8+3 \mathrm{t},-9-16 \mathrm{t}, 10+7 \mathrm{t})$ and any point on line (2) is N $(15+3 \mathrm{~s}, 29+8 \mathrm{~s}, 5-5 \mathrm{~s})$.

Direction ratios of MN are $<15+3 \mathrm{~s}-8-3 \mathrm{t}, 29+8 \mathrm{~s}+9+16 \mathrm{t}, 5-5 \mathrm{~s}-10-7 \mathrm{t}>$,
i.e., $<7+3 \mathrm{~s}-3 \mathrm{t}, 38+8 \mathrm{~s}+16 \mathrm{t},-5-5 \mathrm{~s}-7 \mathrm{t}\rangle$.

Let M and N are end points of lines of shortest distance on $\ell_{1}$ and $\ell_{2}$
So, MN is perpendicular to both line (1) \& (2).
i.e., $3(7+3 s-3 t)+(-16)(38+8 s+16 t)+7(-5-5 s-7 t)=0$
and $3(7+3 \mathrm{~s}-3 \mathrm{t})+8(38+8 \mathrm{~s}+16 \mathrm{t})+(-5)(-5-5 \mathrm{~s}-7 \mathrm{t})=0$
$\Rightarrow \quad-154 \mathrm{~s}-314 \mathrm{t}-622=0$, i.e., $77 \mathrm{~s}+157 \mathrm{t}+311=0$

and $98 \mathrm{~s}+154 \mathrm{t}+350=0$, i.e. $7 \mathrm{~s}+11 \mathrm{t}+25=0$
On solving (3) and (4) simultaneously, we get
$\mathrm{t}=-1$ and $\mathrm{s}=-2$
$\mathrm{t}=-1$, gives $\mathrm{M}(5,7,3)$ and $\mathrm{s}=-2$ gives $\mathrm{N}(9,13,15)$
$\therefore \quad$ The shortest distance between the given lines

$$
\begin{align*}
& =\sqrt{(9-5)^{2}+(13-7)^{2}+(15-3)^{2}} \\
& =\sqrt{16+36+144}=\sqrt{196}=14 \text { units } \tag{1}
\end{align*}
$$

Also, the equations of the line MN is $\frac{\mathrm{x}-5}{9-5}=\frac{\mathrm{y}-7}{13-7}=\frac{\mathrm{z}-3}{15-3}$,
i.e., $\quad \frac{x-5}{2}=\frac{y-7}{3}=\frac{z-3}{6}$.

## OR

Given line $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$
Vector equation of the given line is $\overrightarrow{\mathrm{r}}=\vec{a}_{1}+\lambda \overrightarrow{\mathrm{v}}$, where $\overrightarrow{\mathrm{r}}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}$,

$$
\overrightarrow{\mathrm{a}}_{1}=-5 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}} \text { and } \overrightarrow{\mathrm{v}}=\hat{\mathrm{i}}+4 \hat{\mathrm{j}}-9 \hat{\mathrm{k}} .
$$

Position vector of the given point is $\vec{a}_{2}=2 \hat{i}+4 \hat{j}-\hat{k}$.
Hence, the required distance $=\left|\frac{\overrightarrow{\mathrm{v}} \times\left(\overrightarrow{\mathrm{a}}_{2}-\overrightarrow{\mathrm{a}}_{1}\right)}{|\overrightarrow{\mathrm{v}}|}\right|=\frac{|(\hat{\mathrm{i}}+4 \hat{\mathrm{j}}-9 \hat{\mathrm{k}}) \times(7 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}-7 \hat{\mathrm{k}})|}{|\hat{\mathrm{i}}+4 \hat{\mathrm{j}}-9 \hat{\mathrm{k}}|}$

$$
\begin{equation*}
=\frac{7}{\sqrt{1^{2}+4^{2}+9^{2}}}|(\hat{i}+4 \hat{j}-9 \hat{k}) \times(\hat{i}+\hat{j}-\hat{k})| \tag{1}
\end{equation*}
$$

Now, $(\hat{i}+4 \hat{j}-9 \hat{k}) \times(\hat{i}+\hat{j}-\hat{k})=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 4 & -9 \\ 1 & 1 & -1\end{array}\right|=5 \hat{i}-8 \hat{j}-3 \hat{k}$
From equation (1)

$$
=\frac{7}{\sqrt{98}}|5 \hat{\mathrm{i}}-8 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}|=\frac{7 \sqrt{5^{2}+8^{2}+3^{2}}}{\sqrt{98}}=\frac{7 \sqrt{98}}{\sqrt{98}}=7 \text { units }
$$

35. Given $\mathrm{A}=\left[\begin{array}{ccc}3 & 4 & 2 \\ 0 & 2 & -3 \\ 1 & -2 & 6\end{array}\right]$
$\Rightarrow \quad|\mathrm{A}|=3(12-6)-4(0+3)+2(0-2)=18-12-4=2 \neq 0$
Hence, $\mathrm{A}^{-1}$ exists.
Now, co-factor are given as:

$$
\begin{align*}
\mathrm{C}_{11} & =6, \mathrm{C}_{12}=-3, \mathrm{C}_{13}=-2, \\
\mathrm{C}_{21} & =-28, \mathrm{C}_{22}=16, \mathrm{C}_{23}=10, \\
\mathrm{C}_{31} & =-16, \mathrm{C}_{32}=9, \mathrm{C}_{33}=6 \\
\text { So, adj } \mathrm{A} & =\left[\begin{array}{ccc}
6 & -3 & -2 \\
-28 & 16 & 10 \\
-16 & 9 & 6
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
6 & -28 & -16 \\
-3 & 16 & 9 \\
-2 & 10 & 6
\end{array}\right] \\
\because \quad \mathrm{A}^{-1} & =\frac{1}{|\mathrm{~A}|} \cdot \operatorname{adj} \mathrm{A} \\
\Rightarrow \quad \mathrm{~A}^{-1} & =\frac{1}{2}\left[\begin{array}{ccc}
6 & -28 & -16 \\
-3 & 16 & 9 \\
-2 & 10 & 6
\end{array}\right] \tag{1}
\end{align*}
$$

The given system of linear equations are :

$$
\begin{aligned}
& 3 x+4 y+2 z=8 \\
& 2 y-3 z=3 \\
& x-2 y+6 z=-2
\end{aligned}
$$

It can be represented as :

$$
\begin{align*}
& \Rightarrow {\left[\begin{array}{ccc}
3 & 4 & 2 \\
0 & 2 & -3 \\
1 & -2 & 6
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{l}
8 \\
3 \\
-2
\end{array}\right] } \\
& \Rightarrow \quad \mathrm{AX}=\mathrm{B} \Rightarrow \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}  \tag{1}\\
& \mathrm{X}=\frac{1}{2}\left[\begin{array}{ccc}
6 & -28 & -16 \\
-3 & 16 & 9 \\
-2 & 10 & 6
\end{array}\right] \cdot\left[\begin{array}{l}
8 \\
3 \\
-2
\end{array}\right] \\
&=\frac{1}{2}\left[\begin{array}{l}
48-84+32 \\
-24+48-18 \\
-16+30-12
\end{array}\right] \\
& \Rightarrow \quad\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
-4 \\
6 \\
2
\end{array}\right] \\
& \Rightarrow \quad \mathrm{x}=-2, \mathrm{y}=3, \mathrm{z}=1
\end{align*}
$$

[From equation (1)]

## SECTION - E

36. (i) Let V be the volume of cylinder

Given volume of cylinder $\mathrm{V}=\frac{539}{2}$ cubic units
$\because \quad \mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}=\frac{539}{2} \Rightarrow \mathrm{~h}=\frac{539}{2 \pi \mathrm{r}^{2}}$
Total surface area of the tank, $\mathrm{S}=2 \pi \mathrm{rh}+2 \pi \mathrm{r}^{2}$
$\Rightarrow \quad \mathrm{S}=2 \pi \mathrm{r}\left(\frac{539}{2 \pi \mathrm{r}^{2}}\right)+2 \pi \mathrm{r}^{2}=\frac{539}{\mathrm{r}}+2 \pi \mathrm{r}^{2}$ square units
(ii) $\because \quad \mathrm{S}=\frac{539}{\mathrm{r}}+2 \pi \mathrm{r}^{2}$

$$
\frac{\mathrm{dS}}{\mathrm{dr}}=-\frac{539}{\mathrm{r}^{2}}+4 \pi \mathrm{r}=-\frac{539}{\mathrm{r}^{2}}+\frac{4 \times 22 \mathrm{r}}{7}=11\left(\frac{-343+8 \mathrm{r}^{3}}{7 \mathrm{r}^{2}}\right)
$$

For critical points $\frac{\mathrm{dS}}{\mathrm{dr}}=11\left(\frac{-343+8 \mathrm{r}^{3}}{7 \mathrm{r}^{2}}\right)=0$

$$
8 r^{3}=343 \Rightarrow r^{3}=\frac{343}{8} \Rightarrow r=\frac{7}{2} \text { units }
$$

(iii) By first derivative test

When $\mathrm{r}<\frac{7}{2} ; \quad \frac{\mathrm{dS}}{\mathrm{dr}}<0$
When $\mathrm{r}>\frac{7}{2} ; \quad \frac{\mathrm{dS}}{\mathrm{dr}}>0$

$\because \quad \frac{\mathrm{dS}}{\mathrm{dr}}$ changes its sign from negative to positive at neighborhood of $\mathrm{r}=\frac{7}{2}$
So, $r=\frac{7}{2}$ is point of minima
$\therefore \quad$ Surface area is minimum at $\mathrm{r}=\frac{7}{2}$ and corresponding height
$\mathrm{h}=\frac{539}{2 \pi \mathrm{r}^{2}}=\frac{539 \times 7 \times 2 \times 2}{2 \times 22 \times 7 \times 7}=7$ units

## OR

(iii) Again differentiate equation (1) w.r.t. 'r'

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dr}^{2}}=\frac{2 \times 539}{\mathrm{r}^{3}}+4 \pi \\
& \left.\frac{\mathrm{~d}^{2} \mathrm{~S}}{\mathrm{dr}^{2}}\right|_{\mathrm{r}=\frac{7}{2}}>0
\end{aligned}
$$

So, S is minimum at $\mathrm{r}=\frac{7}{2}$

$$
\mathrm{h}=\frac{539}{2 \pi \mathrm{r}^{2}}=\frac{539 \times 7 \times 2 \times 2}{2 \times 22 \times 7 \times 7}=7 \text { units }
$$

37. (i) From figure it is clear that

Length of box $=24-2 x$
Breadth of box $=24-2 x$
Height of box $=x$
Volume of box,
$\mathrm{V}=$ length $\times$ breadth $\times$ height


$$
=(24-2 x)(24-2 x)(x)=x(24-2 x)^{2} \mathrm{~cm}^{3}
$$

(ii) $\quad V=x(24-2 x)^{2}=4 x(12-x)^{2}$

$$
\begin{align*}
\frac{\mathrm{dV}}{\mathrm{dx}} & =4\left[\mathrm{x} 2(12-\mathrm{x})(-1)+(12-\mathrm{x})^{2} \cdot 1\right] \\
& =4[(12-\mathrm{x})(-2 \mathrm{x}+12-\mathrm{x})]=4[(12-\mathrm{x})(12-3 \mathrm{x})] \\
\frac{\mathrm{dV}}{\mathrm{dx}} & =12[(12-\mathrm{x})(4-\mathrm{x})] \tag{1}
\end{align*}
$$

For strictly increasing $\frac{\mathrm{dV}}{\mathrm{dx}}>0$
$12(12-x)(4-x)>0$
$x \in(-\infty, 4) \cup(12, \infty)$
(iii) We have,
$V=x(24-2 x)^{2}$
$\frac{d V}{d x}=12[(12-x)(4-x)]$
[from equation (1)]
For maxima or minima $\frac{d V}{d x}=0$
$\Rightarrow \quad 12(12-\mathrm{x})(4-\mathrm{x})=0$
$\Rightarrow \quad \mathrm{x}=4,12 \quad[\because \mathrm{x}=12$ is not possible $]$
$\therefore \quad \mathrm{x}=4$
Again, $\frac{\mathrm{d}^{2} \mathrm{~V}}{\mathrm{dx}^{2}}=12[(12-\mathrm{x})(-1)+(4-\mathrm{x})(-1)]$

$$
\begin{aligned}
&=12(\mathrm{x}-12+\mathrm{x}-4) \\
&=12(2 \mathrm{x}-16)=24(\mathrm{x}-8) \\
&\left.\therefore \frac{\mathrm{d}^{2} \mathrm{~V}}{\mathrm{dx}^{2}}\right|_{\mathrm{x}=4}<0
\end{aligned}
$$

So, $V$ is maximum at $x=4$

$$
\begin{aligned}
\mathrm{V}_{\max } & =\mathrm{x}(24-2 \mathrm{x})^{2} \\
& =4(24-8)^{2}=4 \times 16^{2} \\
& =1024 \mathrm{~cm}^{3}
\end{aligned}
$$

## OR

(iii) Length of box $=24-2 \mathrm{x}=24-2 \times 4=16 \mathrm{~cm}$

Breadth of box $=24-2 \mathrm{x}=24-2 \times 4=16 \mathrm{~cm}$
Height of box $=4 \mathrm{~cm}$
$\therefore \quad$ Surface area of box $=2(\ell+b) h+2 \times \ell b$

$$
\begin{align*}
& =2(16+16) \times 4+2 \times 16 \times 16  \tag{1}\\
& =256+512=768
\end{align*}
$$

$\therefore \quad$ Total cost of making the box $=768 \times 5=₹ 3840$
38. (i) Probability of hitting a target by $\mathrm{A}, \mathrm{B}$ and C will be $\mathrm{P}(\mathrm{A})=\frac{4}{5}$ them $\mathrm{P}(\overline{\mathrm{A}})=\frac{1}{5}$
$\mathrm{P}(\mathrm{B})=\frac{3}{4}$ then $\mathrm{P}(\overline{\mathrm{B}})=\frac{1}{4}$ and $\mathrm{P}(\mathrm{C})=\frac{2}{3}$ them $\mathrm{P}(\overline{\mathrm{C}})=\frac{1}{3}$
Now, $\mathrm{P}($ all hitting the target $)=\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})$

$$
\begin{aligned}
& =\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B}) \cdot \mathrm{P}(\mathrm{C}) \\
& =\frac{4}{5} \times \frac{3}{4} \times \frac{2}{3}=\frac{2}{5}
\end{aligned}
$$

Hence the probability that A, B and C all hit the target is $\frac{2}{5}$
The probability that none of them will hit the target

$$
\begin{aligned}
\mathrm{P}(\overline{\mathrm{~A}} \cap \overline{\mathrm{~B}} \cap \overline{\mathrm{C}}) & =\mathrm{P}(\overline{\mathrm{~A}}) \times \mathrm{P}(\overline{\mathrm{~B}}) \times \mathrm{P}(\overline{\mathrm{C}}) \\
& =\frac{1}{5} \times \frac{1}{4} \times \frac{1}{3}=\frac{1}{60}
\end{aligned}
$$

(ii) The probability that any two of $\mathrm{A}, \mathrm{B}$ and C will hit

$$
\begin{align*}
& =\mathrm{P}(\overline{\mathrm{ABC}})+\mathrm{P}(\mathrm{~A} \overline{\mathrm{~B}} \mathrm{C})+\mathrm{P}(\mathrm{AB} \overline{\mathrm{C}}) \\
& =\frac{1}{5} \times \frac{3}{4} \times \frac{2}{3}+\frac{4}{5} \times \frac{1}{4} \times \frac{2}{3}+\frac{4}{5} \times \frac{3}{4} \times \frac{1}{3}  \tag{1}\\
& =\frac{1}{10}+\frac{2}{15}+\frac{1}{5}=\frac{3+4+6}{30}=\frac{13}{30} \tag{1}
\end{align*}
$$

