MATHEMATICS

SOLUTION

SECTION - A

1. (B)

Given $\mathrm{A}=\mathrm{A}^{\mathrm{T}}$ and $\mathrm{B}=\mathrm{B}^{\mathrm{T}}$

$$
(\mathrm{AB}-\mathrm{BA})^{\mathrm{T}}=(\mathrm{AB})^{\mathrm{T}}-(\mathrm{BA})^{\mathrm{T}}=\mathrm{B}^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}-\mathrm{A}^{\mathrm{T}} \mathrm{~B}^{\mathrm{T}}=\mathrm{BA}-\mathrm{AB}=-(\mathrm{AB}-\mathrm{BA})
$$

$\therefore \quad \mathrm{AB}-\mathrm{BA}$ is a skew-symmetric matrix.
2. (D)

Given, $|\mathrm{A}|=5, \mathrm{n}=3$
Let $\operatorname{adj} \mathrm{A}=\mathrm{B}$
Now, $|\mathrm{B}|=|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{\mathrm{n}-1}=5^{2}=25$
Now, $|\operatorname{adjB}|=|\mathrm{B}|^{\mathrm{n}-1}=25^{2}=625$
$\therefore \quad|\operatorname{adj}(\operatorname{adj} \mathrm{A})|=625$
3. (C)

We have, $\vec{a}+\vec{b}=6 \hat{i}-2 \hat{j}+(7+\lambda) \hat{k}$ and $\vec{a}-\vec{b}=4 \hat{i}+(7-\lambda) \hat{k}$
Since $\vec{a}+\vec{b} \& \vec{a}-\vec{b}$ are orthogonal

$$
\begin{aligned}
& \therefore \quad(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}) \cdot(\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}})=0 \Rightarrow[6 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+(7+\lambda) \hat{\mathrm{k}}] \cdot[4 \hat{\mathrm{i}}+(7-\lambda) \hat{\mathrm{k}}]=0 \\
& \Rightarrow \quad 24+(7+\lambda)(7-\lambda)=0 \Rightarrow \lambda^{2}=73 \Rightarrow \lambda= \pm \sqrt{73}
\end{aligned}
$$

4. (D)

We have, $\mathrm{f}(0)=1$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} \frac{|\sin h|}{h}=1 \\
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} \frac{|\sin (-h)|}{-h}=-1 \\
\therefore \quad & \lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x)
\end{aligned}
$$

Hence, $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=0$
Since $f(x)$ is discontinuous at $x=0$, so it is not differentiable at $x=0$.
5. (B) Given, $\mathrm{aRb} \Leftrightarrow \mathrm{a}$ is a factor of b
a is a factor of $a \Rightarrow a R$ a $\forall a \in N \Rightarrow R$ is reflexive.
Now; 2 is a factor of 4 but 4 is not a factor of 2
$\Rightarrow \quad \mathrm{R}$ is not symmetric
Let aRb and $\mathrm{bRc} \Rightarrow \mathrm{b}=\mathrm{ma}, \mathrm{c}=\mathrm{nb}$
$\Rightarrow \quad \mathrm{c}=\mathrm{n}(\mathrm{ma}) \Rightarrow \mathrm{c}=(\mathrm{mn}) \mathrm{a} \Rightarrow \mathrm{aRc}$
$\Rightarrow \quad \mathrm{R}$ is transitive
6. (D)

Order $=2$, degree is not defined.
7. (B) The co-ordinates of the corner points of the feasible region are
$\mathrm{A}\left(\frac{18}{7}, \frac{2}{7}\right), \mathrm{B}\left(\frac{7}{2}, \frac{3}{4}\right), \mathrm{C}\left(\frac{3}{2}, \frac{15}{4}\right), \mathrm{D}\left(\frac{3}{13}, \frac{24}{13}\right)$

Corner Points	$\mathrm{Z}=5 \mathrm{x}+2 \mathrm{y}$
$\mathrm{A}\left(\frac{18}{7}, \frac{2}{7}\right)$	$\mathrm{Z}_{\mathrm{A}}=\frac{94}{7}$
$\mathrm{~B}\left(\frac{7}{2}, \frac{3}{4}\right)$	$\mathrm{Z}_{\mathrm{B}}=19$
$\mathrm{C}\left(\frac{3}{2}, \frac{15}{4}\right)$	$\mathrm{Z}_{\mathrm{C}}=15$
$\mathrm{D}\left(\frac{3}{13}, \frac{24}{13}\right)$	$\mathrm{Z}_{\mathrm{D}}=\frac{63}{13}$

So, maximum value of $\mathrm{Z}=19$ at $\mathrm{B}\left(\frac{7}{2}, \frac{3}{4}\right)$
8. (D)

Projection of \vec{a} on $\vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=\frac{(\hat{i}-\hat{j}) \cdot(-\hat{j}+\hat{k})}{|-\hat{j}+\hat{k}|}=\frac{1}{\sqrt{2}}$
9. (B)

Let $I=\int x^{x}(1+\log x) d x$
Put $\quad \mathrm{x}^{\mathrm{x}}=\mathrm{t} \Rightarrow \mathrm{x}^{\mathrm{x}}(1+\log \mathrm{x}) \mathrm{dx}=\mathrm{dt} \quad \therefore \mathrm{I}=\int 1 \cdot \mathrm{dt}=\mathrm{t}+\mathrm{C} \Rightarrow \mathrm{I}=\mathrm{x}^{\mathrm{x}}+\mathrm{C}$
10. (A)

Given $B=\left[\begin{array}{ccc}2 & \mathrm{a} & 5 \\ -1 & 4 & \mathrm{~b} \\ \mathrm{c} & -4 & 9\end{array}\right]$ is a symmetric matrix
$\therefore \quad B^{T}=B$
$\Rightarrow\left[\begin{array}{ccc}2 & -1 & \mathrm{c} \\ \mathrm{a} & 4 & -4 \\ 5 & \mathrm{~b} & 9\end{array}\right]=\left[\begin{array}{ccc}2 & \mathrm{a} & 5 \\ -1 & 4 & \mathrm{~b} \\ \mathrm{c} & -4 & 9\end{array}\right] \Rightarrow \mathrm{a}=-1, \mathrm{~b}=-4, \mathrm{c}=5 \quad \therefore \mathrm{a}+\mathrm{b}+\mathrm{c}=0$
11. (B)

Unbounded feasible region.

12. (C)

We have, $\left|\begin{array}{ccc}5 & 3 & -1 \\ -7 & \mathrm{x} & 2 \\ 9 & 6 & -2\end{array}\right|=0$
$\Rightarrow 5(-2 \mathrm{x}-12)-3(14-18)-1(-42-9 \mathrm{x})=0 \Rightarrow \mathrm{x}=-6$
13. (B)

$$
\begin{aligned}
A^{2}-4 A & =\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right]-4\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right] \\
& =\left[\begin{array}{ll}
9 & 16 \\
8 & 17
\end{array}\right]-\left[\begin{array}{ll}
4 & 16 \\
8 & 12
\end{array}\right]=\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]=5\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=5 \mathrm{I}
\end{aligned}
$$

14. (D)

We have $\mathrm{P}\left(\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}\right)=\frac{1}{4} \Rightarrow \mathrm{P}\left((\mathrm{A} \cap \mathrm{B})^{\prime}\right)=\frac{1}{4}$
$\Rightarrow \quad \mathrm{P}(\mathrm{A} \cap \mathrm{B})=1-\frac{1}{4}=\frac{3}{4}$
Since $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \neq 0$, so $\mathrm{A} \& \mathrm{~B}$ are not mutually exclusive
Also $\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{7}{12}=\frac{7}{24} \neq \mathrm{P}(\mathrm{A} \cap \mathrm{B})$
So, A \& B are not independent.
15. (C)

Given, $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0 \Rightarrow \frac{1}{\sqrt{1-y^{2}}} d y=-\frac{1}{\sqrt{1-x^{2}}} d x$
Integrating both side

$$
\begin{aligned}
& \int \frac{1}{\sqrt{1-y^{2}}} d y=-\int \frac{1}{\sqrt{1-x^{2}}} d x \\
& \sin ^{-1} y=-\sin ^{-1} x+C \Rightarrow \sin ^{-1} y+\sin ^{-1} x=C
\end{aligned}
$$

16. (B)

We have, $y=\cos ^{-1}\left(\frac{x^{2}-1}{x^{2}+1}\right)$
Put $\mathrm{x}=\cot \theta \Rightarrow \theta=\cot ^{-1} \mathrm{x}$

$$
\begin{aligned}
& \therefore \quad y=\cos ^{-1}\left(\frac{\cot ^{2} \theta-1}{\cot ^{2} \theta+1}\right) \Rightarrow y=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right) \\
& \Rightarrow \quad y=\cos ^{-1}(\cos 2 \theta) \Rightarrow y=2 \theta \Rightarrow y=2 \cot ^{-1} x
\end{aligned}
$$

differentiating w.r.t. x

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-2}{1+\mathrm{x}^{2}}
$$

17. (B)
$|\vec{a} \times \vec{b}|=35, \quad|\vec{a}||\vec{b}| \sin \theta=35$
$\Rightarrow \quad \sin \theta=\frac{35}{\sqrt{26} \times 7}=\frac{5}{\sqrt{26}}$
$\therefore \quad \cos \theta=\sqrt{1-\sin ^{2} \theta}=\sqrt{1-\frac{25}{26}}=\frac{1}{\sqrt{26}}$
Now, $\vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cos \theta=\sqrt{26} \times 7 \times \frac{1}{\sqrt{26}}=7$
18. (C)

We have, $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$

$$
\begin{aligned}
& \left(1-\sin ^{2} \alpha\right)+\left(1-\sin ^{2} \beta\right)+\left(1-\sin ^{2} \gamma\right)=1 \\
\Rightarrow \quad & \sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2
\end{aligned}
$$

19. (A) We have, $f(x)=2 \log (x-2)-x^{2}+4 x+1$
$\Rightarrow \quad \mathrm{f}^{\prime}(\mathrm{x})=\frac{2}{\mathrm{x}-2}-2 \mathrm{x}+4$
$\Rightarrow \quad \mathrm{f}^{\prime}(\mathrm{x})=-2 \frac{(\mathrm{x}-1)(\mathrm{x}-3)}{\mathrm{x}-2}>0$

$\therefore \quad \mathrm{f}(\mathrm{x})$ is strictly increasing on $(2,3)$.
$\therefore \quad$ Assertion is True.
Hence, A and R both are true and R is correct explanation of A .
20. (D)

We know equation of line passes through $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

$\therefore \quad$ Reason is true.
Now, equation of line passes through $A(2,-1,4) \& B(1,1,-2)$ is $\frac{x-2}{1-(2)}=\frac{y+1}{1-(-1)}=\frac{z-4}{-2-4}$
$\Rightarrow \quad \frac{\mathrm{x}-2}{-1}=\frac{\mathrm{y}+1}{2}=\frac{\mathrm{z}-4}{-6}$
$\therefore \quad$ Assertion is false.
Hence, A is false but R is true.

SECTION - B

21. Let $\sin ^{-1} \frac{3}{5}=\mathrm{A}, \sin ^{-1} \frac{5}{13}=\mathrm{B}$

Then, $\mathrm{A}, \mathrm{B} \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \Rightarrow \cos \mathrm{A}>0$ and $\cos \mathrm{B}>0$
$\Rightarrow \sin \mathrm{A}=\frac{3}{5}$ and $\sin \mathrm{B}=\frac{5}{13}$
Now, $\cos \mathrm{A}=\sqrt{1-\sin ^{2} \mathrm{~A}}=\sqrt{1-\frac{9}{25}}=\frac{4}{5}$

$$
\begin{equation*}
\cos \mathrm{B}=\sqrt{1-\sin ^{2} \mathrm{~B}}=\sqrt{1-\frac{25}{169}}=\frac{12}{13} \tag{1}
\end{equation*}
$$

Now, $\cos \left(\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{5}{13}\right)=\cos (\mathrm{A}+\mathrm{B})$

$$
=\cos \mathrm{A} \cos \mathrm{~B}-\sin \mathrm{A} \sin \mathrm{~B}=\frac{4}{5} \times \frac{12}{13}-\frac{3}{5} \times \frac{5}{13}=\frac{33}{65}
$$

OR

Let $x_{1}, x_{2} \in R$, such that
If $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \Rightarrow \mathrm{x}_{1}^{3}=\mathrm{x}_{2}^{3} \Rightarrow \mathrm{x}_{1}^{3}-\mathrm{x}_{2}^{3}=0$
$\Rightarrow \quad\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{x}_{2}^{2}\right)=0 \Rightarrow\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\left[\left(\mathrm{x}_{1}+\frac{\mathrm{x}_{2}}{2}\right)^{2}+\frac{3}{4} \mathrm{x}_{2}^{2}\right]=0$
$\Rightarrow \quad \mathrm{x}_{1}-\mathrm{x}_{2}=0 \quad\left[\because\left(\mathrm{x}_{1}+\frac{\mathrm{x}_{2}}{2}\right)^{2}+\frac{3}{4} \mathrm{x}_{2}^{2} \neq 0\right]$
$\Rightarrow \quad \mathrm{x}_{1}=\mathrm{x}_{2}$
$\therefore \quad \mathrm{f}$ is one-one
Let $y \in R$
Put $y=f(x) \Rightarrow y=x^{3} \Rightarrow x=y^{1 / 3}$
Thus, for each y in the co-domain R there exists $y^{1 / 3}$ in domain R, such that $\mathrm{f}\left(\mathrm{y}^{1 / 3}\right)=\left(\mathrm{y}^{1 / 3}\right)^{3}=\mathrm{y}$
$\therefore \quad \mathrm{f}$ is onto
Hence f is one-one and onto
22. At any instant t , let r be the radius, v the volume and s the surface area of the balloon.

Then, $\frac{\mathrm{ds}}{\mathrm{dt}}=2 \mathrm{~cm}^{2} / \mathrm{sec}$ (given)
Now $\mathrm{s}=4 \pi \mathrm{r}^{2}$

$$
\begin{align*}
& \Rightarrow \quad \frac{\mathrm{ds}}{\mathrm{dt}}=8 \pi \mathrm{r} \cdot \frac{\mathrm{dr}}{\mathrm{dt}} \\
& 2=8 \pi \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dr}}{\mathrm{dt}}=\frac{1}{4 \pi \mathrm{r}} \tag{1}
\end{align*}
$$

[1]
Now, $v=\frac{4}{3} \pi r^{3}$

$$
\begin{align*}
& \quad \frac{\mathrm{dv}}{\mathrm{dt}}=4 \pi \mathrm{r}^{2} \cdot \frac{\mathrm{dr}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dv}}{\mathrm{dt}}=4 \pi \mathrm{r}^{2} \cdot\left(\frac{1}{4 \pi \mathrm{r}}\right) \tag{1}\\
& \frac{\mathrm{dv}}{\mathrm{dt}}= \mathrm{r} \\
& \text { at } \mathrm{r}= 6 \mathrm{~cm} \frac{\mathrm{dv}}{\mathrm{dt}}=6 \mathrm{~cm}^{3} / \mathrm{sec}
\end{align*}
$$

23. We have, $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{2}+\frac{2}{\mathrm{x}} \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2}-\frac{2}{\mathrm{x}^{2}}=\frac{\mathrm{x}^{2}-4}{2 \mathrm{x}^{2}}$

For strictly increasing, $\mathrm{f}^{\prime}(\mathrm{x})>0$
$\Rightarrow \quad \frac{x^{2}-4}{2 x^{2}}>0 \Rightarrow \frac{(x-2)(x+2)}{x^{2}}>0$

$\Rightarrow \quad \mathrm{x} \in(-\infty,-2) \cup(2, \infty)$
So, $f(x)$ is strictly increasing on $(-\infty,-2) \cup(2, \infty)$.
For strictly decreasing, $\mathrm{f}^{\prime}(\mathrm{x})<0$
$\Rightarrow \quad \frac{\mathrm{x}^{2}-4}{2 \mathrm{x}^{2}}<0 \Rightarrow \frac{(\mathrm{x}-2)(\mathrm{x}+2)}{\mathrm{x}^{2}}<0 \Rightarrow \mathrm{x} \in(-2,2)-\{0\}$
Therefore, f is strictly decreasing in $(-2,2)-\{0\}$ and f is strictly increasing in $(-\infty,-2) \cup(2, \infty)$.
24. $f(x)=4 x^{3}-18 x^{2}+27 x-7$

$$
\begin{align*}
& \mathrm{f}^{\prime}(\mathrm{x})=12 \mathrm{x}^{2}-36 \mathrm{x}+27=3\left(4 \mathrm{x}^{2}-12 \mathrm{x}+9\right)=3(2 \mathrm{x}-3)^{2} \\
& \mathrm{f}^{\prime}(\mathrm{x})=0 \Rightarrow \mathrm{x}=\frac{3}{2} \text { (critical point) } \tag{1}
\end{align*}
$$

Since $\mathrm{f}^{\prime}(\mathrm{x})>0$ for all $\mathrm{x}<\frac{3}{2}$ and for all $\mathrm{x}>\frac{3}{2}$.
Here, $f^{\prime}(x)$ does not change its sign at neighbourhood point of $x=\frac{3}{2}$
Hence, $x=\frac{3}{2}$ is a point of inflexion i.e., neither a point of maxima nor a point of minima.

$$
\mathrm{x}=\frac{3}{2} \text { is the only critical point, and } \mathrm{f} \text { has neither maxima nor minima. }
$$

OR

Let $f(x)=3 x^{4}-8 x^{3}+12 x^{2}-48 x+1, x \in[1,4]$
Then, $\mathrm{f}^{\prime}(\mathrm{x})=12 \mathrm{x}^{3}-24 \mathrm{x}^{2}+24 \mathrm{x}-48$
Now, $\mathrm{f}^{\prime}(\mathrm{x})=0$

$$
\begin{aligned}
& \Rightarrow \quad 12 \mathrm{x}^{3}-24 \mathrm{x}^{2}+24 \mathrm{x}-48=0 \Rightarrow \mathrm{x}^{3}-2 \mathrm{x}^{2}+2 \mathrm{x}-4=0 \\
& \Rightarrow \quad \mathrm{x}^{2}(\mathrm{x}-2)+2(\mathrm{x}-2)=0 \Rightarrow(\mathrm{x}-2)\left(\mathrm{x}^{2}+2\right)=0 \\
& \Rightarrow \quad \mathrm{x}=2 \quad\left[\because \mathrm{x}^{2}+2 \neq 0\right]
\end{aligned}
$$

Now, $f(2)=-63$,

$$
f(1)=-40 \text { and } f(4)=257 .
$$

So, the minimum and maximum values of $f(x)$ on $[1,4]$ are -63 and 257 respectively.
25. Let $I=\int \sqrt{2 x^{2}+3 x+4} d x$

$$
I=\sqrt{2} \int \sqrt{\left(x+\frac{3}{4}\right)^{2}+\left(\frac{\sqrt{23}}{4}\right)^{2}} d x
$$

$$
\text { Put } \mathrm{x}+\frac{3}{4}=\mathrm{t} \Rightarrow \mathrm{dx}=\mathrm{dt}
$$

$$
\therefore \quad I=\sqrt{2} \int \sqrt{t^{2}+\left(\frac{\sqrt{23}}{4}\right)^{2}} d t
$$

$$
\mathrm{I}=\sqrt{2}\left[\frac{\mathrm{t}}{2} \sqrt{\mathrm{t}^{2}+\frac{23}{16}}+\frac{23}{32} \log \left|\mathrm{t}+\sqrt{\mathrm{t}^{2}+\frac{23}{16}}\right|\right]+\mathrm{C}
$$

$$
\left[\because \int \sqrt{\mathrm{t}^{2}+\mathrm{a}^{2}} \mathrm{dt}=\frac{\mathrm{t}}{2} \sqrt{\mathrm{t}^{2}+\mathrm{a}^{2}}+\frac{\mathrm{a}^{2}}{2} \log \left|\mathrm{t}+\sqrt{\mathrm{t}^{2}+\mathrm{a}^{2}}\right|+\mathrm{C}\right]
$$

$$
\Rightarrow \quad I=\frac{\sqrt{2}}{2}\left(x+\frac{3}{4}\right) \cdot \sqrt{\left(x+\frac{3}{4}\right)^{2}+\frac{23}{16}}+\frac{23 \sqrt{2}}{32} \log \left|\left(x+\frac{3}{4}\right)+\sqrt{\left.\left(x+\frac{3}{4}\right)^{2}+\frac{23}{16} \right\rvert\,}\right|+C
$$

$$
I=\frac{(4 x+3) \sqrt{2 x^{2}+3 x+4}}{8}+\frac{23 \sqrt{2}}{32} \log \left|\frac{4 x+3}{4}+\frac{\sqrt{2 x^{2}+3 x+4}}{\sqrt{2}}\right|+C
$$

SECTION - C

26. We have, $x=3 \sin t-\sin 3 t \Rightarrow \frac{d x}{d t}=3 \cos t-3 \cos 3 t$

Also, $y=3 \cos t-\cos 3 t \Rightarrow \frac{d y}{d t}=-3 \sin t+3 \sin 3 t$
$\therefore \quad \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{-3 \sin t+3 \sin 3 t}{3 \cos t-3 \cos 3 t}=\frac{\sin 3 t-\sin t}{\cos t-\cos 3 t}=\frac{2 \cos 2 t \sin t}{2 \sin 2 t \sin t}=\cot 2 t$
$\therefore \quad \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=-2 \operatorname{cosec}^{2} 2 \mathrm{t} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{-2 \operatorname{cosec}^{2} 2 \mathrm{t}}{3 \cos \mathrm{t}-3 \cos 3 \mathrm{t}}$
at $\mathrm{t}=\frac{\pi}{3}, \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{-2 \operatorname{cosec}^{2}\left(2 \frac{\pi}{3}\right)}{3\left(\cos \frac{\pi}{3}-\cos \pi\right)}=-\frac{16}{27}$
27. Let E_{1}, E_{2} and E_{3} be the event that the problem is solved by three students respectively. Then,

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{1}{2}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{1}{3}, \mathrm{P}\left(\mathrm{E}_{3}\right)=\frac{1}{4} \\
\Rightarrow \quad & \mathrm{P}\left(\overline{\mathrm{E}}_{1}\right)=\frac{1}{2}, \mathrm{P}\left(\overline{\mathrm{E}}_{2}\right)=\frac{2}{3}, \mathrm{P}\left(\overline{\mathrm{E}}_{3}\right)=\frac{3}{4}
\end{aligned}
$$

P (exactly one of them solves the problem)

$$
\begin{align*}
& =P\left[\left(\mathrm{E}_{1} \cap \overline{\mathrm{E}}_{2} \cap \overline{\mathrm{E}}_{3}\right) \cup\left(\overline{\mathrm{E}}_{1} \cap \mathrm{E}_{2} \cap \overline{\mathrm{E}}_{3}\right) \cup\left(\overline{\mathrm{E}}_{1} \cap \overline{\mathrm{E}}_{2} \cap \mathrm{E}_{3}\right)\right] \tag{1}\\
& =\mathrm{P}\left(\mathrm{E}_{1} \cap \overline{\mathrm{E}}_{2} \cap \overline{\mathrm{E}}_{3}\right)+\mathrm{P}\left(\overline{\mathrm{E}}_{1} \cap \mathrm{E}_{2} \cap \overline{\mathrm{E}}_{3}\right)+\mathrm{P}\left(\overline{\mathrm{E}}_{1} \cap \overline{\mathrm{E}}_{2} \cap \mathrm{E}_{3}\right) \\
& =\mathrm{P}\left(\mathrm{E}_{1}\right) \times \mathrm{P}\left(\overline{\mathrm{E}}_{2}\right) \times \mathrm{P}\left(\overline{\mathrm{E}}_{3}\right)+\mathrm{P}\left(\overline{\mathrm{E}}_{1}\right) \times \mathrm{P}\left(\mathrm{E}_{2}\right) \times \mathrm{P}\left(\overline{\mathrm{E}}_{3}\right)+\mathrm{P}\left(\overline{\mathrm{E}}_{1}\right) \times \mathrm{P}\left(\overline{\mathrm{E}}_{2}\right) \times \mathrm{P}\left(\mathrm{E}_{3}\right) \tag{1}\\
& =\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4}+\frac{1}{2} \times \frac{1}{3} \times \frac{3}{4}+\frac{1}{2} \times \frac{2}{3} \times \frac{1}{4}=\frac{11}{24} \tag{1}
\end{align*}
$$

OR

Since X denotes the number of red balls then X can take the value $0,1,2$ or 3
$\mathrm{P}(\mathrm{X}=0)=\mathrm{P}($ getting no red ball $)=\frac{{ }^{4} \mathrm{C}_{3}}{{ }^{7} \mathrm{C}_{3}}=\frac{4}{35}$
$P(X=1)=P($ getting 1 red and 2 white balls $)=\frac{{ }^{3} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{2}}{{ }^{7} \mathrm{C}_{3}}=\frac{18}{35}$
$\mathrm{P}(\mathrm{X}=2)=\mathrm{P}($ getting 2 red and 1 white ball $)=\frac{{ }^{3} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{1}}{{ }^{7} \mathrm{C}_{3}}=\frac{12}{35}$
$P(x=3)=P($ getting 3 red balls $)=\frac{{ }^{3} C_{3}}{{ }^{7} C_{3}}=\frac{1}{35}$

Thus, probability distribution of X is given below.

$\mathrm{X}=\mathrm{x}_{\mathrm{i}}$	0	1	2	3
$\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)$	$\frac{4}{35}$	$\frac{18}{35}$	$\frac{12}{35}$	$\frac{1}{35}$

$\therefore \quad$ Mean $\mu=\sum \mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}=\left(0 \times \frac{4}{35}\right)+\left(1 \times \frac{18}{35}\right)+\left(2 \times \frac{12}{35}\right)+\left(3 \times \frac{1}{35}\right)=\frac{9}{7}$
28. Let $I=\int_{0}^{\pi / 2}\left(\frac{1}{3+2 \cos x}\right) d x=\int_{0}^{\pi / 2} \frac{1}{3+2\left(\frac{1-\tan ^{2} x / 2}{1+\tan ^{2} x / 2}\right)} d x=\int_{0}^{\pi / 2} \frac{\sec ^{2}\left(\frac{x}{2}\right)}{\tan ^{2}\left(\frac{x}{2}\right)+5} d x$

Put $\tan \frac{x}{2}=t \Rightarrow \sec ^{2} \frac{x}{2} d x=2 d t$
also, when $\mathrm{x}=0 \Rightarrow \mathrm{t}=0$

$$
\begin{align*}
& \mathrm{x}=\frac{\pi}{2} \Rightarrow \mathrm{t}=1 \\
\therefore \quad \mathrm{I} & =2 \int_{0}^{1} \frac{1}{\mathrm{t}^{2}+(\sqrt{5})^{2}} \mathrm{dt}=2 \frac{1}{\sqrt{5}}\left[\tan ^{-1} \frac{\mathrm{t}}{\sqrt{5}}\right]_{0}^{1}=\frac{2}{\sqrt{5}} \tan ^{-1} \frac{1}{\sqrt{5}} \tag{2}
\end{align*}
$$

OR

Let $I=\int_{0}^{\pi / 4} \frac{\sin x+\cos x}{3+\sin 2 x} d x \Rightarrow I=\int_{0}^{\pi / 4} \frac{\sin x+\cos x}{4-(\sin x-\cos x)^{2}}$
Put $\sin x-\cos x=1,(\cos x+\sin x) d x=d t, x=0, t=-1, x=\frac{\pi}{4}, t=0$

$$
\begin{array}{ll}
I=\int_{-1}^{0} \frac{\mathrm{dt}}{(2)^{2}-\mathrm{t}^{2}} & \Rightarrow \mathrm{I}=\frac{1}{4}\left[\log \frac{2+\mathrm{t}}{2-\mathrm{t}}\right]_{-1}^{0} \\
\mathrm{I}=\frac{1}{4}\left[\log 1-\log \frac{1}{3}\right] & \Rightarrow \mathrm{I}=-\frac{1}{4} \log \frac{1}{3}=\frac{1}{4} \log 3
\end{array}
$$

29. We have,

$$
\begin{align*}
& \frac{d y}{d x}=\frac{e^{x}\left(\sin ^{2} x+\sin 2 x\right)}{y(2 \log y+1)} \\
\Rightarrow \quad & y(2 \log y+1) d y=e^{x}\left(\sin ^{2} x+\sin 2 x\right) d x \tag{1}
\end{align*}
$$

Integrating both sides.
$\Rightarrow \quad \int \mathrm{y}(2 \log \mathrm{y}+1) \mathrm{dy}=\int \mathrm{e}^{\mathrm{x}}\left(\sin ^{2} \mathrm{x}+\sin 2 \mathrm{x}\right) \mathrm{dx}$
$\Rightarrow \quad 2 \int y \log y d y+\int y d y=\int e^{x}\left(\sin ^{2} x+\sin 2 x\right) d x$

$$
\begin{aligned}
& \Rightarrow \quad 2\left[\log y \cdot \frac{y^{2}}{2}-\int \frac{1}{y} \cdot \frac{y^{2}}{2} d y\right]+\frac{y^{2}}{2}=e^{x} \sin ^{2} x+C \\
& \Rightarrow \quad y^{2} \log y-\int y d y+\frac{y^{2}}{2}=e^{x} \sin ^{2} x+C \\
& \Rightarrow \quad y^{2} \log y=e^{x} \sin ^{2} x+C
\end{aligned}
$$

This is the required solution.

OR

The given differential equation may be written as $\frac{d y}{d x}=\frac{x^{2}-2 y^{2}+x y}{x^{2}}$, which is homogeneous differential equation.
Put $y=v x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$
$\therefore \quad v+x \frac{d v}{d x}=\frac{x^{2}-2 v^{2} x^{2}+v x^{2}}{x^{2}}$

$$
\begin{equation*}
\Rightarrow \quad v+x \frac{d v}{d x}=1-2 v^{2}+v \Rightarrow x \frac{d v}{d x}=1-2 v^{2} \Rightarrow \frac{1}{1-2 v^{2}} d v=\frac{1}{x} d x \tag{1}
\end{equation*}
$$

On integrating both sides

$$
\begin{aligned}
\int \frac{1}{1-2 \mathrm{v}^{2}} \mathrm{dv}=\int \frac{1}{\mathrm{x}} \mathrm{dx} & \Rightarrow \frac{1}{2} \int \frac{1}{\left(\frac{1}{\sqrt{2}}\right)^{2}-v^{2}} d v=\int \frac{1}{x} d x \\
\Rightarrow & \frac{1}{2 \sqrt{2}} \log \left|\frac{\frac{1}{\sqrt{2}}+v}{\frac{1}{\sqrt{2}}-v}\right|=\log |x|+C
\end{aligned} \quad \Rightarrow \frac{1}{2 \sqrt{2}} \log \left|\frac{x+\sqrt{2} y}{x-\sqrt{2} y}\right|-\log |x|=C\left[\because v=\frac{y}{x}\right] \quad .
$$

This is the required solution.
30. Maximize $Z=400 x+300 y$

Subject to constraints: $x \geq 20, y \geq 4 x, y \geq 80$ and $x+y \leq 200$.

Corner points	$Z=\mathbf{4 0 0} \mathbf{x}+\mathbf{3 0 0} \mathbf{y}$
A (20, 80)	32000
B $(40,160)$	64000
C $(20,180)$	62000

\therefore maximum value of Z is 64000 at $x=40$ and $y=160$

31. Let $I=\int \frac{x^{3}-1}{x^{3}+x} d x \Rightarrow I=\int\left(1-\frac{x+1}{x\left(x^{2}+1\right)}\right) d x$

Let $\frac{x+1}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1} \Rightarrow x+1=A\left(x^{2}+1\right)+(B x+C) \cdot x$
Put $\mathrm{x}=0 \Rightarrow \mathrm{~A}=1$
On comparing coefficient of x in (ii), we get $\mathrm{C}=1$
On comparing coefficient of x^{2} in (ii), we get $B=-1$
Thus, $\frac{x+1}{x\left(x^{2}+1\right)}=\frac{1}{x}+\frac{1-x}{x^{2}+1}$
$\therefore \quad \mathrm{I}=\int\left(1-\frac{1}{\mathrm{x}}-\frac{1-\mathrm{x}}{\mathrm{x}^{2}+1}\right) \mathrm{dx}$
$\Rightarrow \quad I=\int 1 . d x-\int \frac{1}{x} d x-\int \frac{1}{x^{2}+1} d x+\int \frac{x}{x^{2}+1} d x$

$$
\begin{equation*}
=\mathrm{x}-\log |\mathrm{x}|-\tan ^{-1} \mathrm{x}+\frac{1}{2} \log \left(\mathrm{x}^{2}+1\right)+\mathrm{C} \tag{1}
\end{equation*}
$$

SECTION - D

32. First we sketch the region whose area is to be found out, this region is the intersection of the regions $\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$ and $\{(x, y): x+y \geq 2\}$
The point of intersection of $x^{2}+y^{2}=4$ and $x+y=2$ are $A(2,0)$ and $B(0,2)$
Required region is the shaded region APBA

Required area
$=\int_{0}^{2}\left(y_{\text {circle }} d x\right)-\int_{0}^{2}\left(y_{\text {line }} d x\right)$
$=\int_{0}^{2} \sqrt{4-x^{2}} d x-\int_{0}^{2}(2-x) d x$
$=\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2}-\left[2 x-\frac{x^{2}}{2}\right]_{0}^{2}$
$=0+2 \frac{\pi}{2}-2=(\pi-2)$ sq. units

Correct fig.
[1]

33. Given, $\mathrm{A}=\{1,2,3,4,5,6,7\}$ and $\mathrm{R}=\{(\mathrm{a}, \mathrm{b})$: both a and b are either odd or even $\}$
(i) Reflexive : let $\mathrm{a} \in \mathrm{A}$

Then, it is clear that a and a are both odd or both even
$\therefore(\mathrm{a}, \mathrm{a}) \in \mathrm{R}, \forall \mathrm{a} \in \mathrm{A}$
$\therefore \mathrm{R}$ is reflexive
(ii) Symmetric : Let $\mathrm{a}, \mathrm{b} \in \mathrm{A}$

If $(a, b) \in R \Rightarrow a$ and b are both odd or both even
$\Rightarrow \mathrm{b}$ and a are also both odd or both even
$\Rightarrow(\mathrm{b}, \mathrm{a}) \in \mathrm{R}$,
$\therefore \mathrm{R}$ is symmetric
(iii) Transitive : Let $a, b, c \in A$

If $(a, b) \in R \Rightarrow a$ and b are both even or both odd
and $(\mathrm{b}, \mathrm{c}) \in \mathrm{R} \Rightarrow \mathrm{b}$ and c are both even or both odd
from (1) \& (2) a and c are both even or both odd
$\Rightarrow(\mathrm{a}, \mathrm{c}) \in \mathrm{R}$
$\therefore \mathrm{R}$ is transitive
Since R is reflexive, symmetric and transitive on A therefore R is an equivalence relation on A .

OR

$\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R} ; \mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{\mathrm{x}^{2}+1}$
(1) For one-one function: we have $f\left(x_{1}\right)=f\left(x_{2}\right), \forall, x_{1}, x_{2} \in R$

$$
\begin{aligned}
& \frac{\mathrm{x}_{1}}{\mathrm{x}_{1}^{2}+1}=\frac{\mathrm{x}_{2}}{\mathrm{x}_{2}^{2}+1} \\
\Rightarrow \quad & \mathrm{x}_{1} \mathrm{x}_{2}^{2}+\mathrm{x}_{1}=\mathrm{x}_{2} \mathrm{x}_{1}^{2}+\mathrm{x}_{2} \quad \Rightarrow\left(\mathrm{x}_{1} \mathrm{x}_{2}^{2}-\mathrm{x}_{2} \mathrm{x}_{1}^{2}\right)+\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=0 \\
\Rightarrow \quad & \mathrm{x}_{1} \mathrm{x}_{2}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)+\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=0 \Rightarrow\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\left(-\mathrm{x}_{1} \mathrm{x}_{2}+1\right)=0 \\
\Rightarrow \quad & \mathrm{x}_{1}=\mathrm{x}_{2} \text { and } \mathrm{x}_{1} \mathrm{x}_{2}=1 \text { or } \mathrm{x}_{1}=\frac{1}{\mathrm{x}_{2}}
\end{aligned}
$$

Example : Let $\mathrm{x}_{1}=2 \in \mathrm{R}$; $\mathrm{x}_{2}=1 / 2 \in \mathrm{R}$
Then, $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}(2)=2 / 5$ and $\mathrm{f}\left(\mathrm{x}_{2}\right)=\mathrm{f}(1 / 2)=2 / 5$
$\Rightarrow \quad \mathrm{x}_{1} \neq \mathrm{x}_{2}$ but $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\therefore \quad \mathrm{f}$ is not one-one function
(2) For onto function: Let $y=f(x)$
$\Rightarrow \quad y=\frac{x}{x^{2}+1} \Rightarrow x^{2} y-x+y=0$
$\Rightarrow \quad \mathrm{x}=\frac{1 \pm \sqrt{1-4 \mathrm{y}^{2}}}{2 \mathrm{y}} \in \mathrm{R}$ if $1-4 \mathrm{y}^{2} \geq 0$ and $\mathrm{y} \neq 0$
$\Rightarrow \quad 4 \mathrm{y}^{2}-1 \leq 0$ or $(2 \mathrm{y}+1)(2 \mathrm{y}-1) \leq 0$

$\Rightarrow \quad \mathrm{x} \in\left[-\frac{1}{2}, 0\right) \cup\left(0, \frac{1}{2}\right]$
Thus, every element of Co-domain does not have its pre-images in domain.
Hence, $f: R \rightarrow R$ is not onto.
$\therefore \quad \mathrm{f}$ is neither one-one nor onto.
34. Given equation of line is $\frac{x-11}{10}=\frac{y+2}{-4}=\frac{z+8}{-11}=\lambda$ (say)

Let N be the foot of perpendicular from the point $\mathrm{P}(2,-1,5)$ to the line (1)
\therefore Coordinates of N are $(10 \lambda+11,-4 \lambda-2,-11 \lambda-8)$
Direction ratios of PN are :
$10 \lambda+11-2,-4 \lambda-2+1,-11 \lambda-8-5=10 \lambda+9,-4 \lambda-1,-11 \lambda-13$
and direction ratios of line (1) are $10,-4,-11$.
Since $\mathrm{PN} \perp$ to line (1)
$\Rightarrow \quad 10(10 \lambda+9)-4(-4 \lambda-1)-11(-11 \lambda-13)=0 \quad\left[\because a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\right]$
or $100 \lambda+90+16 \lambda+4+121 \lambda+143=0$
$\Rightarrow \quad 237 \lambda+237=0$
$\Rightarrow \lambda=-1$
Hence ; foot of perpendicular is $\mathrm{N}(1,2,3)$
and $\mathrm{PN}=\sqrt{(2-1)^{2}+(-1-2)^{2}+(5-3)^{2}}$

$$
=\sqrt{1+9+4}=\sqrt{14} \text { units }
$$

OR

The given lines are

$$
L_{1}: \overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}) ; \quad \mathrm{L}_{2}: \overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})+\mu(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})
$$

On comparing $L_{1} \& L_{2}$ with standard equation

$$
\begin{align*}
& \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}_{1}+\lambda \overrightarrow{\mathrm{b}_{1}} \& \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}_{2}+\mu \overrightarrow{\mathrm{b}}_{2} \\
& \overrightarrow{\mathrm{a}}_{1}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{~b}}_{1}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{a}}_{2}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}, \overrightarrow{\mathrm{~b}}_{2}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}} \tag{1}
\end{align*}
$$

Now, $\overrightarrow{\mathrm{a}}_{2}-\overrightarrow{\mathrm{a}}_{1}=\hat{\mathrm{i}}-3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$
Clearly $\overrightarrow{\mathrm{b}}_{1}=\overrightarrow{\mathrm{b}}_{2}=\overrightarrow{\mathrm{b}}$ (let)
$\therefore \quad \mathrm{L}_{1} \& \mathrm{~L}_{2}$ are parallel.
Now, $\overrightarrow{\mathrm{b}} \times\left(\overrightarrow{\mathrm{a}}_{2}-\overrightarrow{\mathrm{a}}_{1}\right)=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & -1 & 1 \\ 1 & -3 & -4\end{array}\right|=7 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
Also, $|\overrightarrow{\mathrm{b}}|=\sqrt{1^{2}+(-1)^{2}+1^{2}}=\sqrt{3}$
Shortest distances between 2 parallel lines

$$
\begin{equation*}
=\frac{\left|\overrightarrow{\mathrm{b}} \times\left(\overrightarrow{\mathrm{a}}_{2}-\overrightarrow{\mathrm{a}}_{1}\right)\right|}{|\overrightarrow{\mathrm{b}}|}=\frac{|(7 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})|}{\sqrt{3}}=\frac{\sqrt{49+25+4}}{\sqrt{3}}=\sqrt{26} \text { units } \tag{1}
\end{equation*}
$$

35. The given equation are $x-y+2 z=1 ; 2 y-3 z=1 ; 3 x-2 y+4 z=2$

Let $\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right], \mathrm{X}=\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right], \mathrm{B}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$
Then, the given system in matrix form is $\mathrm{AX}=\mathrm{B}$.
Now, $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow A \cdot\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]=\mathrm{I}$
$\Rightarrow \quad \mathrm{A}^{-1}=\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$
Now, $A X=B \Rightarrow X=A^{-1} B$

$$
\left[\begin{array}{l}
\mathrm{x} \tag{2}\\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 0 & 1 \\
9 & 2 & -3 \\
6 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
-2+0+2 \\
9+2-6 \\
6+1-4
\end{array}\right]=\left[\begin{array}{l}
0 \\
5 \\
3
\end{array}\right] \Rightarrow x=0, y=5, \mathrm{z}=3
$$

SECTION - E

36. Clearly, G be the centroid of $\triangle \mathrm{BCD}$, therefore coordinates of G are

$$
\left(\frac{3+4+2}{3}, \frac{0+3+3}{3}, \frac{1+6+2}{3}\right)=(3,2,3)
$$

(i) Since, $\mathrm{A} \equiv(0,1,2)$ and $\mathrm{G}=(3,2,3)$

$$
\begin{array}{ll}
\therefore & \overrightarrow{\mathrm{AG}}=(3-0) \hat{\mathrm{i}}+(2-1) \hat{\mathrm{j}}+(3-2) \hat{\mathrm{k}}=3 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}} \\
\Rightarrow & |\overrightarrow{\mathrm{AG}}|^{2}=3^{2}+1^{2}+1^{2}=9+1+1=11 \Rightarrow|\overrightarrow{\mathrm{AG}}|=\sqrt{11} \tag{1}
\end{array}
$$

(ii) Here, $\overrightarrow{\mathrm{AB}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}, \overrightarrow{\mathrm{AC}}=4 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$

$$
\begin{aligned}
\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}} & =\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
3 & -1 & -1 \\
4 & 2 & 4
\end{array}\right|=-2 \hat{\mathrm{i}}-16 \hat{\mathrm{j}}+10 \hat{\mathrm{k}} \\
& =|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\sqrt{(-2)^{2}+(-16)^{2}+10^{2}}=\sqrt{4+256+100}=\sqrt{360}=6 \sqrt{10}
\end{aligned}
$$

$\because \quad$ Area of $\triangle \mathrm{ABC}=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|$
Hence, area of $\triangle \mathrm{ABC}=\frac{1}{2} \times 6 \sqrt{10}=3 \sqrt{10}$ sq. units
(iii) Here, $\overrightarrow{A B}=3 \hat{i}-\hat{j}-\hat{k}$

$$
\Rightarrow|\overrightarrow{\mathrm{AB}}|=\sqrt{9+1+1}=\sqrt{11}
$$

Also, $\overrightarrow{\mathrm{AC}}=4 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$
$\Rightarrow|\overrightarrow{\mathrm{AC}}|=\sqrt{16+4+16}=\sqrt{36}=6$

$$
\text { Now, } \begin{aligned}
|\overrightarrow{\mathrm{AB}}|+|\overrightarrow{\mathrm{AC}}| & =\sqrt{11}+6 \\
& =3.32+6=9.32 \text { units }
\end{aligned}
$$

OR

(iii) The length of the perpendicular from the vertex D on the opposite face

$$
\begin{aligned}
& =\mid \text { Projection of } \overrightarrow{\mathrm{AD}} \text { on } \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}} \mid \\
& =\left|\frac{(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}) \cdot(-2 \hat{\mathrm{i}}-16 \hat{\mathrm{j}}+10 \hat{\mathrm{k}})}{\sqrt{(-2)^{2}+(-16)^{2}+10^{2}}}\right| \\
& =\left|\frac{-4-32}{\sqrt{360}}\right|=\frac{36}{6 \sqrt{10}}=\frac{6}{\sqrt{10}} \text { units }
\end{aligned}
$$

37. (i) Since ' x ' be the charge per bike per day and n be the number of bike rented per day

Revenue $R(x)=n \times x$
$R(x)=(2000-10 x) x \Rightarrow R(x)=2000 x-10 x^{2}$
(ii) Since $x=260>200$

Hence, no bike will be rented ($n=0$)

$$
\begin{equation*}
\therefore \quad \mathrm{R}(\mathrm{x})=0 \tag{1}
\end{equation*}
$$

(iii) We have, $R(x)=2000 x-10 x^{2}$
$R^{\prime}(x)=2000-20 x$ and $R^{\prime \prime}(x)=-20$
for $\mathrm{R}(\mathrm{x})$ to be the maximum $\mathrm{R}^{\prime}(\mathrm{x})=0$ and $\mathrm{R}^{\prime \prime}(\mathrm{x})<0$
$\Rightarrow \quad 2000-20 \mathrm{x}=0 \Rightarrow \mathrm{x}=100$
Thus, $R(x)$ is maximum at $x=100$

OR

(iii) We have, $R(x)=2000 x-10 x^{2}$
$R^{\prime}(x)=2000-20 x$ and $R^{\prime \prime}(x)=-20$
for $\mathrm{R}(\mathrm{x})$ to be maximum $\mathrm{R}^{\prime}(\mathrm{x})=0$ and $\mathrm{R}^{\prime \prime}(\mathrm{x})<0$
$\Rightarrow \quad 2000-20 \mathrm{x}=0 \Rightarrow \mathrm{x}=100$
$\therefore \quad \mathrm{R}(\mathrm{x})$ is maximum at $\mathrm{x}=100$
$\therefore \quad$ Maximum revenue $=\mathrm{R}(100)=2000(100)-10(100)^{2}=$ Rs. $1,00,000$
38. (i) Let E_{1} be the event that it rain on chosen day
E_{2} be the event that it does not rain on chosen day and A be the event that the weatherman predict rain.
Then we have $P\left(E_{1}\right)=\frac{6}{366}, P\left(E_{2}\right)=\frac{360}{366}$
$\mathrm{P}\left(\mathrm{A} / \mathrm{E}_{1}\right)=\frac{80}{100}, \mathrm{P}\left(\mathrm{A} / \mathrm{E}_{2}\right)=\frac{20}{100}$
$\therefore \quad$ Probability that it will not rain on the chosen day, if weatherman predict rain for that

$$
\begin{align*}
\text { day } & =P\left(E_{2} / A\right) \\
& =\frac{P\left(E_{2}\right) \cdot P\left(A / E_{2}\right)}{P\left(E_{1}\right) \cdot P\left(A / E_{1}\right)+P\left(E_{2}\right) \cdot P\left(A / E_{2}\right)} \\
& =\frac{\frac{360}{366} \times \frac{20}{100}}{\frac{6}{366} \times \frac{80}{100}+\frac{360}{366} \times \frac{20}{100}}=\frac{15}{16} \tag{2}
\end{align*}
$$

(ii) Let E_{1} be the event that it rain on chosen day

$$
E_{2} \text { be the event that it does not rain on chosen day }
$$

and A be the event that the weatherman predict rain.
Then we have

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{6}{365}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{359}{365} \\
& \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)=\frac{80}{100}, \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)=\frac{20}{100}
\end{aligned}
$$

$\therefore \quad$ Probability that it will rain on the chosen day, if weatherman predict rain for that day $=P\left(E_{1} / A\right)$

$$
\begin{aligned}
& =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)} \\
& =\frac{\frac{6}{365} \times \frac{80}{100}}{\frac{6}{365} \times \frac{80}{100}+\frac{359}{365} \times \frac{20}{100}}=\frac{24}{383}
\end{aligned}
$$

