

Series HMJ/1

SET-1

कोड नं. 55/1/1

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

	नोट		NOTE
(I)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं ।	(I)	Please check that this question paper contains 23 printed pages.
(II)	प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।	(II)	Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
(III)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में 37 प्रश्न हैं।	(III)	Please check that this question paper contains 37 questions.
(IV)	कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।	(IV)	Please write down the Serial Number of the question in the answer-book before attempting it.
(V)	इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्व में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।	(V)	15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

भौतिक विज्ञान (सैद्धान्तिक) PHYSICS (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :

- (i) यह प्रश्न-पत्र **चार** खण्डों में विभाजित किया गया है **क, ख, ग** और **घ**।
- (ii) इस प्रश्न-पत्र में **37** प्रश्न हैं । **सभी** प्रश्न अनिवार्य हैं ।
- (iii) **खण्ड क** प्रश्न संख्या 1 से 20 तक अति लघु-उत्तरीय प्रश्न हैं, प्रत्येक प्रश्न 1 अंक का है ।
- (iv) **खण्ड ख** प्रश्न संख्या 21 से 27 तक लघू-उत्तरीय प्रश्न हैं, प्रत्येक प्रश्न 2 अंकों का है ।
- (v) **खण्ड ग** प्रश्न संख्या **28** से **34** तक दीर्घ-उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न **3** अंकों का है।
- (vi) खण्ड घ प्रश्न संख्या 35 से 37 तक भी दीर्घ-उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न 5 अंकों का है।
- (vii) प्रश्न-पत्र में कोई समग्र विकल्प नहीं है। तथापि, एक-एक अंक के दो प्रश्नों में, दो-दो अंकों वाले दो प्रश्नों में, तीन-तीन अंकों वाले एक प्रश्न में तथा पाँच-पाँच अंकों वाले तीनों प्रश्नों में आंतरिक विकल्प दिया गया है। ऐसे प्रश्नों में केवल एक ही विकल्प का उत्तर दीजिए।
- (viii) इसके अतिरिक्त, आवश्यकतानुसार, प्रत्येक खण्ड और प्रश्न के साथ यथोचित निर्देश दिए गए हैं।
- (ix) केल्कुलेटरों अथवा लॉग टेबलों के प्रयोग की अनुमित **नहीं** है ।
- (x) जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$c = 3 \times 10^8 \text{ m/s}$$
 $h = 6.63 \times 10^{-34} \text{ Js}$
 $e = 1.6 \times 10^{-19} \text{ C}$
 $\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$
 $\epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
 $\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
इलेक्ट्रॉन का द्रव्यमान $(m_e) = 9.1 \times 10^{-31} \text{ kg}$
न्यूट्रॉन का द्रव्यमान $= 1.675 \times 10^{-27} \text{ kg}$
प्रोटॉन का द्रव्यमान $= 1.673 \times 10^{-27} \text{ kg}$
आवोगाद्रो संख्या $= 6.023 \times 10^{23} \text{ प्रति ग्राम मोल}$
बोल्ट्ज़मान नियतांक $= 1.38 \times 10^{-23} \text{ JK}^{-1}$

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper comprises four Sections A, B, C and D.
- (ii) There are **37** questions in the question paper. **All** questions are compulsory.
- (iii) **Section A** Questions no. **1** to **20** are very short answer type questions, carrying **one** mark each.
- (iv) **Section B** Questions no. **21** to **27** are short answer type questions, carrying **two** marks each.
- (v) **Section C** Questions no. **28** to **34** are long answer type questions, carrying **three** marks each.
- (vi) **Section D** Questions no. **35** to **37** are also long answer type questions, carrying **five** marks each.
- (vii) There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions of 1 mark, 2 questions of 2 marks, 1 question of three marks and all the 3 questions of five marks. You have to attempt only one of the choices in such questions.
- (viii) In addition to this, separate instructions are given with each section and question, wherever necessary.
- (ix) Use of calculators and log tables is **not** permitted.
- (x) You may use the following values of physical constants wherever necessary.

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \end{split}$$

Mass of electron (m_e) = 9.1×10^{-31} kg

Mass of neutron = 1.675×10^{-27} kg

Mass of proton = 1.673×10^{-27} kg

Avogadro's number = 6.023×10^{23} per gram mole

Boltzmann constant = $1.38 \times 10^{-23} \text{ JK}^{-1}$

खण्ड क

नोट: नीचे दिए गए प्रत्येक प्रश्न में सबसे अधिक उपयुक्त विकल्प चुनिए:

	11 1 19		
1.	_	केसी बन्द पृष्ठ से गुज़रने वाला नेट विद्युत् फ्लक्स शून्य है, तो इससे यह निष्कर्ष ता जा सकता है कि इस पृष्ठ से कोई नेट आवेश परिबद्ध नहीं है। इस पृष्ठ के भीतर एकसमान विद्युत्-क्षेत्र विद्यमान है। इस पृष्ठ के भीतर एक बिन्दु से दूसरे बिन्दु तक विद्युत् विभव विचरित करता है।	1
	(D)	पृष्ठ के भीतर आवेश उपस्थित है।	
2.	• (के पृथकन तथा $+ q$ और $- q$ आवेशों से बना कोई विद्युत् द्विध्रुव किसी एकसमान क्षेत्र \overrightarrow{E} में स्थायी साम्यावस्था में है । इस द्विध्रुव की स्थिर-वैद्युत स्थितिज ऊर्जा है qLE शून्य $- qLE$ $- 2 qLE$	1
3.	कोई प (A) (B) (C) (D)	गोटैन्शियोमीटर किसी सेल का वि.वा. बल (emf) माप सकता है क्योंकि पोटैन्शियोमीटर की सुग्राहिता अधिक होती है। संतुलन के समय सेल से कोई धारा नहीं ली जाती है। संतुलन के समय पोटैन्शियोमीटर तार से कोई धारा प्रवाहित नहीं होती है। सेल के आन्तरिक प्रतिरोध की उपेक्षा कर दी जाती है।	1
4.		बैटरी के सिरों से $4~\Omega$ और $6~\Omega$ के दो प्रतिरोधकों R_1 और R_2 को पार्श्व में संयोजित गया है । इन दोनों प्रतिरोधकों में शक्ति क्षय का अनुपात $P_1:P_2$ होगा $4:9$ $3:2$ $9:4$	1

(D) 2:3

SECTION A

Note: Select the most appropriate option from those given below each question:

1. If the net electric flux through a closed surface is zero, then we can infer

1

(A) no net charge is enclosed by the surface.

(B) uniform electric field exists within the surface.

- (C) electric potential varies from point to point inside the surface.
- (D) charge is present inside the surface.
- 2. An electric dipole consisting of charges + q and -q separated by a distance L is in stable equilibrium in a uniform electric field $\stackrel{\longrightarrow}{E}$. The electrostatic potential energy of the dipole is

(A) qLE

- (B) zero
- (C) -qLE
- (D) -2 qEL
- **3.** A potentiometer can measure emf of a cell because

1

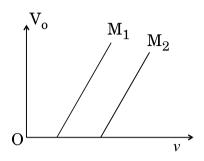
1

- (A) the sensitivity of potentiometer is large.
- (B) no current is drawn from the cell at balance.
- (C) no current flows in the wire of potentiometer at balance.
- (D) internal resistance of cell is neglected.
- 4. Two resistors R_1 and R_2 of 4 Ω and 6 Ω are connected in parallel across a battery. The ratio of power dissipated in them, $P_1:P_2$ will be

- (A) 4:9
- (B) 3:2
- (C) 9:4
- (D) 2:3

5.	किसी	धारावाही कुण्डली का चुम्बकीय द्विध्रुव आघूर्ण निम्नलिखित में से किस पर निर्भर <i>नहीं</i>	
	करता	है ?	1
	(A)	कुण्डली में फेरों की संख्या	
	(B)	कुण्डली की अनुप्रस्थ-काट का क्षेत्रफल	
	(C)	कुण्डली में प्रवाहित धारा	
	(D)	कुण्डली के फेरों का पदार्थ	
6.	किसी	खगोलीय दूरदर्शक के अभिदृश्यक लेंस का बड़ा द्वारक	1
	(A)	द्रदर्शक की विभेदन क्षमता में वृद्धि कर देता है।	
	(B)	प्रतिबिम्ब की चमक को कम कर देता है।	
	(C)	प्रतिबिम्ब के साइज़ में वृद्धि कर देता है।	
	(D)	द्रदर्शक की लम्बाई कम कर देता है।	
7.	अपव अदृश्य	र्तनांक 1·47 के काँच से बना कोई उभयोत्तल लेंस किसी द्रव में डूबा है। यह लेंस म हो जाता है और काँच की समतल पट्टिका की भाँति व्यवहार करता है। इस द्रव का र्तनांक है	1
	(A)	1.47	
	(B)	1.62	
	(C)	1.33	
	(D)	1.51	
8.		दिए गए किस वर्ण के प्रकाश के लिए किसी काँच के प्रिज़्म के अल्पतम विचलन कोण ान सबसे कम होगा ?	1
	(A)	लाल वर्ण	-
	(B)	नीला वर्ण	
	(C)	पीला वर्ण	
	(D)	हरा वर्ण	
9.	रदरफो	ार्ड मॉडल के अनुसार निम्नलिखित में से कौन-सा कथन सही <i>नहीं</i> है ?	1
	(A)	किसी परमाणु के भीतर उसका अधिकांश भाग खाली है।	_
	(B)	नाभिक के चारों ओर इलेक्ट्रॉन उन पर कार्यरत कूलॉमी बल के प्रभाव में परिक्रमा	
	(C)	करते हैं। परमाणु का अधिकांश द्रव्यमान तथा उसका कुल धनावेश उसके केन्द्र पर सांद्रित होता है।	
	(D)	इस मॉडल द्वारा परमाण के स्थायित्व को स्थापित किया गया ।	

5.	The upon	magnetic dipole moment of a current carrying coil does <i>not</i> depend	1
	(A)	number of turns of the coil.	1
	(A) (B)	cross-sectional area of the coil.	
	(C)	current flowing in the coil.	
	(D)	material of the turns of the coil.	
6.	Larg	er aperture of objective lens in an astronomical telescope	1
	(A)	increases the resolving power of telescope.	
	(B)	decreases the brightness of the image.	
	(C)	increases the size of the image.	
	(D)	decreases the length of the telescope.	
7.	liqui	convex lens of glass having refractive index 1.47 is immersed in a d. It becomes invisible and behaves as a plane glass plate. The active index of the liquid is	1
	(A)	1.47	
	(B)	1.62	
	(C)	1.33	
	(D)	1.51	
8.		a glass prism, the angle of minimum deviation will be smallest for ight of	1
	(A)	red colour.	
	(B)	blue colour.	
	(C)	yellow colour.	
	(D)	green colour.	
9.	Whice mode	ch of the following statements is not correct according to Rutherford el?	1
	(A)	Most of the space inside an atom is empty.	
	(B)	The electrons revolve around the nucleus under the influence of coulomb force acting on them.	
	(C)	Most part of the mass of the atom and its positive charge are concentrated at its centre.	
	(D)	The stability of atom was established by the model.	


P.T.O.

10.	0·5 eV कार्यफलन के किसी धात्विक पृष्ठ पर 1 eV और 2 eV ऊर्जाओं के फ़ोटॉन क्रमागत आपतन करते हैं। इन दोनों प्रकरणों में अधिकतम ऊर्जीय प्रकाशिक-इलेक्ट्रॉनों की गतिज ऊर्जाओं का अनुपात होगा	1
	(A) 1:2 (B) 1:1 (C) 1:3 (D) 1:4	
नोट :	उपयुक्त उत्तर से रिक्त स्थानों की पूर्ति कीजिए :	
11.	पृथ्वी पर किसी स्थान पर चुम्बकीय क्षेत्र और नित कोण क्रमशः 0·3 G और 30° हैं। इस स्थान पर पृथ्वी के चुम्बकीय क्षेत्र के ऊर्ध्वाधर घटक का मान होगा।	1
12.	किसी ट्रान्सफॉर्मर के क्रोड में धाराओं को निम्नतम करने के लिए पटलित लोहे की शीटों का उपयोग किया जाता है।	1
13.	किसी परिनालिका की लम्बाई और उसकी अनुप्रस्थ-काट के क्षेत्रफल में बिना कोई परिवर्तन किए उसमें फेरों की संख्या दुगुनी कर दी गई है। इस परिनालिका का स्व-प्रेरकत्व गुना हो जाएगा।	1
14.	बोर के परमाणु मॉडल के अनुसार इलेक्ट्रॉन की कक्षा की परिधि सदैव दे ब्रॉग्ली तरंगदैर्घ्य की गुणज होती है।	1
	अथवा	
	β-क्षय में जनक और संतति नाभिकों में की संख्या समान होती है।	1
15.	किसी काँच के समबाहु प्रिज़्म से गुज़रती हुई किसी प्रकाश किरण में उस प्रिज़्म के कोण के बराबर अल्पतम विचलन होता है। इस प्रिज़्म के पदार्थ के अपवर्तनांक का मान है।	1
नोट :	निम्नलिखित के उत्तर दीजिए :	
16.	ऐम्पियर-मैक्सवेल परिपथीय नियम के गणितीय रूप को लिखिए ।	1
17.	मादन सांद्रता में वृद्धि किस प्रकार किसी $p\text{-}n$ संधि डायोड के ह्रासी स्तर की चौड़ाई को प्रभावित करती है ?	1
18.	$^{27}_{13}\mathrm{Al}$ की नाभिकीय त्रिज्या 3.6 फर्मी है । $^{64}_{29}\mathrm{Cu}$ की नाभिकीय त्रिज्या ज्ञात कीजिए ।	1
	अथवा	
	किसी इलेक्ट्रॉन और किसी प्रोटॉन की चाल समान हैं। इनसे संबद्ध दे बॉग्ली तरंगदैर्घ्यों का अनुपात ज्ञात कीजिए।	1

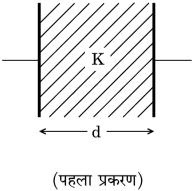
10.	surfa	cons of energies 1 eV and 2 eV are successively incident on a metallic ace of work function 0.5 eV. The ratio of kinetic energy of most getic photoelectrons in the two cases will be	1				
	(A)	1:2					
	(B)	1:1					
	(C)	1:3					
	(D)	1:4					
Note	: Fil	ll in the blanks with appropriate answer :					
11.	30°, 1	magnetic field and angle of dip at a place on the earth are $0.3~\mathrm{G}$ and respectively. The value of vertical component of the earth's magnetic at the place is	1				
12.	Laminated iron sheets are used to minimize currents in the core of a transformer.						
13.	The number of turns of a solenoid are doubled without changing its length and area of cross-section. The self-inductance of the solenoid will become times.						
14.		rding to Bohr's atomic model, the circumference of the electron orbit ways an multiple of de Broglie wavelength.	1				
		\mathbf{OR}					
	In β-	-decay, the parent and daughter nuclei have the same number of	1				
15.	minii	y of light on passing through an equilateral glass prism, suffers a mum deviation equal to the angle of the prism. The value of active index of the material of the prism is	1				
Note	: An	iswer the following :					
16.	Write	e the mathematical form of Ampere-Maxwell circuital law.	1				
17.		does an increase in doping concentration affect the width of etion layer of a p-n junction diode?	1				
18.	The r	nuclear radius of $^{27}_{13}$ Al is 3·6 fermi. Find the nuclear radius of $^{64}_{29}$ Cu.	1				
		OR					
	_	oton and an electron have equal speeds. Find the ratio of de Broglie elengths associated with them.	1				

19. दो विभिन्न प्रकाश-सुग्राही पृष्ठों M_1 और M_2 पर आपितत प्रकाश की आवृत्ति (ν) के साथ निरोधी विभव (V_0) का विचरण आरेख में दर्शाए अनुसार है । इनमें से अधिक कार्यफलन वाले पृष्ठ की पहचान कीजिए ।

1

20. दृश्य LED के विरचन में हम Si और Ge का उपयोग क्यों नहीं कर सकते हैं ?

1


खण्ड ख

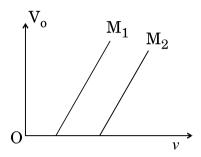
21. किसी मीटर सेतु की कार्यविधि के सिद्धान्त की व्याख्या कीजिए । इसके उपयोग द्वारा किसी अज्ञात प्रतिरोध के मान को निर्धारित करने के लिए परिपथ आरेख खींचिए ।

2

22. किसी समान्तर पट्टिका संधारित्र की पट्टिकाओं के बीच के रिक्त स्थान को दो ढंगों से पूर्णतः भरा गया है। पहले प्रकरण में, इसे परावैद्युतांक K के गुटके से भरा गया है। दूसरे प्रकरण में, इसे आरेख में दर्शाए अनुसार समान मोटाई के दो गुटकों, जिनके परावैद्युतांक क्रमशः K_1 और K_2 हैं, से भरा गया है। दोनों ही प्रकरणों में संधारित्र की धारिता समान है। K, K_1 और K_2 में संबंध प्राप्त कीजिए।

2

 $\begin{array}{c|c} & & & \\ \hline & K_1 \\ \hline & & \\ \hline \end{array}$


(दुसरा प्रकरण)

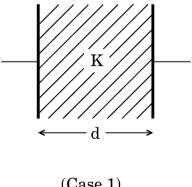
ला प्रकरण)

23. पद रेडियोऐक्टिव पदार्थ की 'अर्ध-आयु' की परिभाषा लिखिए । दो विभिन्न रेडियोऐक्टिव पदार्थों की अर्ध-आयु T_1 और T_2 तथा किसी क्षण पर उनमें शेष बचे हुए परमाणुओं की संख्या क्रमशः N_1 और N_2 है । उस क्षण इनकी सिक्रयताओं का अनुपात ज्ञात कीजिए ।

The variation of the stopping potential (V_0) with the frequency (v) of the 19. light incident on two different photosensitive surfaces M₁ and M₂ is shown in the figure. Identify the surface which has greater value of the work function.

1

20. Why cannot we use Si and Ge in fabrication of visible LEDs? 1


SECTION B

Explain the principle of working of a meter bridge. Draw the circuit 21. diagram for determination of an unknown resistance using it.

2

22. The space between the plates of a parallel plate capacitor is completely filled in two ways. In the first case, it is filled with a slab of dielectric constant K. In the second case, it is filled with two slabs of equal thickness and dielectric constants K₁ and K₂ respectively as shown in the figure. The capacitance of the capacitor is same in the two cases. Obtain the relationship between K, K_1 and K_2 .

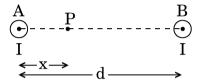
2

(Case 1)

 $\frac{\mathrm{d}}{2}$ (Case 2)

23. Define the term 'Half-life' of a radioactive substance. Two different radioactive substances have half-lives T₁ and T₂ and number of undecayed atoms at an instant, N₁ and N₂, respectively. Find the ratio of their activities at that instant.

24. गतिशील तरंग के तरंगाग्र की परिभाषा लिखिए । हाइगेन्स सिद्धान्त का उपयोग करके, उस स्थिति में जब प्रकाश किसी सघन माध्यम से विरल माध्यम में गमन करता है, किसी समतल अन्तरापृष्ठ पर अपवर्तन का नियम प्राप्त कीजिए ।


2

अथव

लेंस मेकर सूत्र का उपयोग करके किसी पतले उभयोत्तल लेंस के सूत्र $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ को व्युत्पन्न कीजिए।

2

25. आरेख में दर्शाए अनुसार दो लम्बे सीधे समान्तर तार A और B में, जो एक-दूसरे से d दूरी पर स्थित हैं, से समान दिशा में समान धारा I प्रवाहित हो रही है ।

- (a) इन तारों के बीच किसी एक तार से दूरी x पर स्थित किसी बिन्दु P पर चुम्बकीय क्षेत्र ज्ञात कीजिए।
- (b) दूरी x के साथ, 0 < x < d के लिए, चुम्बकीय क्षेत्र में विचरण को दर्शाने के लिए ग्राफ खींचिए।

2

26. बोर के परमाणु मॉडल का उपयोग करके, हाइड्रोजन परमाणु की nवीं कक्षा में परिक्रमा करते हुए इलेक्ट्रॉन की त्रिज्या के लिए व्यंजक व्युत्पन्न कीजिए ।

2

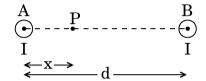
अथवा

- (a) प्रकाश-विद्युत् प्रभाव प्रयोग के उन दो मुख्य प्रेक्षणों को लिखिए जिनकी व्याख्या केवल आइंस्टाइन की प्रकाश-विद्युत् समीकरण द्वारा ही की जा सके।
- (b) किसी प्रकाश सेल के ऐनोड विभव के साथ प्रकाश विद्युत् धारा के विचरण को दर्शाने के लिए ग्राफ खींचिए।

2

- **27.** किसी p-n संधि डायोड के लिए पद 'हासी स्तर' और 'विभव प्राचीर' की व्याख्या कीजिए । जब किसी p-n संधि को अग्रदिशिक बायस करते हैं, तो
 - (a) हासी स्तर की चौड़ाई, तथा
 - (b) विभव प्राचीर का मान किस प्रकार प्रभावित होता है ?

24. Define wavefront of a travelling wave. Using Huygens principle, obtain the law of refraction at a plane interface when light passes from a denser to rarer medium.


2

OR

Using lens maker's formula, derive the thin lens formula $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ for a biconvex lens.

2

25. Two long straight parallel wires A and B separated by a distance d, carry equal current I flowing in same direction as shown in the figure.

(a) Find the magnetic field at a point P situated between them at a distance x from one wire.

2

(b) Show graphically the variation of the magnetic field with distance x for 0 < x < d.

26. Using Bohr's atomic model, derive the expression for the radius of nth orbit of the revolving electron in a hydrogen atom.

2

OR

(a) Write two main observations of photoelectric effect experiment which could only be explained by Einstein's photoelectric equation.

(b) Draw a graph showing variation of photocurrent with the anode potential of a photocell.

2

27. Explain the terms 'depletion layer' and 'potential barrier' in a p-n junction diode. How are the (a) width of depletion layer, and (b) value of potential barrier affected when the p-n junction is forward biased?

खण्ड ग

- **28.** (a) दो सेलों के वि.वा. बल (emf) E_1 और E_2 तथा इनके आन्तरिक प्रतिरोध क्रमशः r_1 और r_2 हैं । जब इनके पार्श्व संयोजन को किसी बाह्य प्रतिरोध R से संयोजित किया जाता है, इनके तुल्य वि.वा. बल (emf) तथा आंतरिक प्रतिरोध के लिए व्यंजक व्युत्पन्न कीजिए । यह मानिए कि दोनों सेल एक-दूसरे की सहायता कर रहे हैं ।
 - (b) उस प्रकरण में जब दोनों सेल सर्वसम हैं और प्रत्येक का वि.वा. बल (emf) E=5~V तथा आंतरिक प्रतिरोध $r=2~\Omega$ है, $R=10~\Omega$ के बाह्य प्रतिरोध के सिरों पर वोल्टता परिकलित कीजिए।

3

3

3

3

3

- 29. (a) किसी धारावाही वृत्ताकार कुण्डली, जिसकी त्रिज्या r तथा फेरों की संख्या N है, से धारा (I) प्रवाहित हो रही है। इस कुण्डली से संबद्ध चुम्बकीय क्षेत्र के लिए व्यंजक लिखिए।
 - (b) यह मानिए कि उपर्युक्त कुण्डली को YZ तल में इसके केन्द्र को मूल-बिन्दु पर रखते हुए स्थित किया गया है । बिन्दु (x, 0, 0) पर इस कुण्डली के कारण उत्पन्न चुम्बकीय क्षेत्र के मान के लिए व्यंजक व्यत्पन्न कीजिए ।

अथवा

- (a) किसी गैल्वेनोमीटर की धारा सुग्राहिता की परिभाषा दीजिए और इसके लिए व्यंजक लिखिए।
- (b) किसी गैल्वेनोमीटर का प्रतिरोध G और इसकी पूर्ण पैमाना विक्षेपण धारा I_g है ।
 - (i) इस गैल्वेनोमीटर को I_0 ($I_0 > I_g$) तक की धारा माप सकने वाले ऐमीटर में किस प्रकार परिवर्तित किया जा सकता है ?
 - (ii) इस ऐमीटर का प्रभावी प्रतिरोध क्या है ?
- 30. $V = V_0 \sin \omega t$ के किसी स्रोत से किसी प्रतिरोध R और संधारित्र C को श्रेणी में संयोजित किया गया है।
 - (a) (i) प्रतिरोध के सिरों और (ii) संधारित्र के सिरों पर शिखर वोल्टता का मान ज्ञात कीजिए।
 - (b) अनुप्रयुक्त वोल्टता और धारा के बीच कलान्तर ज्ञात कीजिए । इनमें से कौन अग्र है ?
- 31. निम्नलिखित प्रत्येक प्रचालन के कारण यंग के द्विझिरी प्रयोग में व्यतिकरण फ्रिन्जों पर क्या प्रभाव होगा ? अपने उत्तरों की पुष्टि कीजिए ।
 - (a) पर्दे को झिरियों के तल से दूर ले जाया गया है।
 - (b) झिरियों के बीच के पृथकन में वृद्धि कर दी गई है।
 - (c) स्रोत झिरी को द्वि-झिरी के तल के निकट लाया गया है।

SECTION C

- 28. (a) Two cells of emf E_1 and E_2 have their internal resistances r_1 and r_2 , respectively. Deduce an expression for the equivalent emf and internal resistance of their parallel combination when connected across an external resistance R. Assume that the two cells are supporting each other.
 - (b) In case the two cells are identical, each of emf E=5 V and internal resistance r=2 Ω , calculate the voltage across the external resistance R=10 Ω .
- **29.** (a) Write an expression of magnetic moment associated with a current (I) carrying circular coil of radius r having N turns.
 - (b) Consider the above mentioned coil placed in YZ plane with its centre at the origin. Derive expression for the value of magnetic field due to it at point (x, 0, 0).

OR

- (a) Define current sensitivity of a galvanometer. Write its expression.
- (b) A galvanometer has resistance G and shows full scale deflection for current I_g .
 - (i) How can it be converted into an ammeter to measure current up to $I_0 (I_0 > I_g)$?
 - (ii) What is the effective resistance of this ammeter?

30. A resistance R and a capacitor C are connected in series to a source $V = V_0 \sin \omega t$.

Find:

- (a) The peak value of the voltage across the (i) resistance and (ii) capacitor.
- (b) The phase difference between the applied voltage and current. Which of them is ahead?
- 31. What is the effect on the interference fringes in Young's double slit experiment due to each of the following operations? Justify your answers.
 - (a) The screen is moved away from the plane of the slits.
 - (b) The separation between slits is increased.
 - (c) The source slit is moved closer to the plane of double slit.

.55/1/1

3

3

3

3

- 32. (a) आपेक्षिक विद्युत्शीलता ϵ_{r} तथा आपेक्षिक चुम्बकशीलता μ_{r} के किसी द्रव्यात्मक माध्यम में प्रकाश की चाल के लिए व्यंजक लिखिए ।
 - (b) निम्नलिखित में उपयोग होने वाली विद्युत्-चुम्बकीय तरंगों के नाम और तरंगदैर्घ्य परिसर लिखिए :

3

3

- (i) रेडार प्रणालियों में विमान चालन (पथ-प्रदर्शन) में
- (ii) फ़सलों की वृद्धि के प्रेक्षण के लिए पृथ्वी के उपग्रहों में

33. नाभिक $^{235}_{92}{
m Y}$ जो आरम्भ में विराम में है, एक lpha-कण को उत्सर्जित करके $^{231}_{90}{
m X}$ में अपक्षयित हो जाता है।

$$^{235}_{92}Y \longrightarrow ^{231}_{90}X + ^{4}_{2}He + 35$$

जनक नाभिक, संतित नाभिक और α -कण की बंधन ऊर्जा प्रित न्यूक्लिऑन क्रमशः 7.8~MeV, 7.835~MeV और 7.07~MeV हैं । यह पूर्वधारणा रखते हुए कि बनने वाला संतित नाभिक उत्तेजित अवस्था में नहीं है तथा अभिक्रिया की ऊर्जा में उसकी भागीदारी की उपेक्षा करते हुए उत्सर्जित α -कण की चाल ज्ञात कीजिए।

 $(\alpha$ -कण का द्रव्यमान = $6.68 \times 10^{-27} \text{ kg})$

- **34.** (a) किसी ज़ेनर डायोड के I-V अभिलाक्षणिक की सहायता से, परिपथ आरेख खींचकर, इसकी dc वोल्टता नियंत्रक की भाँति कार्यविधि की व्याख्या कीजिए।
 - (b) किसी ज़ेनर डायोड के p- और n-फलकों का अत्यधिक मादन करने का क्या उद्देश्य है ?

खण्ड घ

- 35. (a) गाउस नियम का उपयोग करते हुए, R त्रिज्या के एकसमान आवेश वितरण σ के गोलीय खोल के कारण इसके केन्द्र से दूरी x के किसी बिन्दु पर विद्युत्-क्षेत्र के लिए व्यंजक व्युत्पन्न कीजिए, जबकि
 - (i) 0 < x < R, और
 - (ii) x > R.

- **32.** (a) Write the expression for the speed of light in a material medium of relative permittivity ε_r and relative magnetic permeability μ_r .
 - (b) Write the wavelength range and name of the electromagnetic waves which are used in (i) radar systems for aircraft navigation, and (ii) Earth satellites to observe the growth of the crops.
- 33. The nucleus $^{235}_{92}\mathrm{Y}$, initially at rest, decays into $^{231}_{90}\mathrm{X}$ by emitting an α -particle

$${}^{235}_{92}$$
Y \longrightarrow ${}^{231}_{90}$ X + ${}^{4}_{2}$ He + energy.

The binding energies per nucleon of the parent nucleus, the daughter nucleus and α -particle are 7.8 MeV, 7.835 MeV and 7.07 MeV, respectively. Assuming the daughter nucleus to be formed in the unexcited state and neglecting its share in the energy of the reaction, find the speed of the emitted α -particle. (Mass of α -particle = 6.68×10^{-27} kg)

- **34.** (a) Draw circuit diagram and explain the working of a zener diode as a dc voltage regulator with the help of its I-V characteristic.
 - (b) What is the purpose of heavy doping of p- and n-sides of a zener diode?

SECTION D

17

- 35. (a) Using Gauss law, derive expression for electric field due to a spherical shell of uniform charge distribution σ and radius R at a point lying at a distance x from the centre of shell, such that
 - (i) 0 < x < R, and
 - (ii) x > R.

3

3

(b) कोई विद्युत्-क्षेत्र एकसमान है तथा धनात्मक x के क्षेत्र में यह + x दिशा के अनुदिश कार्यरत है । परन्तु इसके साथ-साथ ऋणात्मक x के क्षेत्र में - x दिशा के अनुदिश यह समान परिमाण के साथ कार्यरत है । इस क्षेत्र का मान E=200 N/C x>0 के लिए तथा E=-200 N/C x<0 के लिए है । लम्बाई 20 cm और त्रिज्या 5 cm का कोई लम्ब-वृत्तीय सिलिण्डर x-अक्ष के अनुदिश इस प्रकार स्थित है कि इसका केन्द्र मूल-बिन्दु पर तथा एक समतल फलक x=+10 cm और दूसरा फलक x=-10 cm पर है ।

ज्ञात कीजिए:

- (i) सिलिण्डर से होकर गुज़रने वाला नेट बहिर्मुखी फ्लक्स ।
- (ii) सिलिण्डर के भीतर उपस्थित कुल आवेश ।

अथवा

- (a) किसी बाह्य विद्युत्-क्षेत्र \overrightarrow{E} में $\overrightarrow{r_1}$ और $\overrightarrow{r_2}$ पर क्रमशः स्थित दो बिन्दु आवेशों q_1 और q_2 के निकाय की स्थितिज ऊर्जा के लिए व्यंजक प्राप्त कीजिए।
- (b) किसी वियुक्त बिन्दु आवेश (- q) के कारण समविभव पृष्ठ खींचिए तथा इसकी विद्युत्-क्षेत्र रेखाएँ चित्रित कीजिए।
- (c) $+1~\mu C$, $-1~\mu C$ और $+2~\mu C$ के तीन बिन्दु आवेश आरम्भ में एक-दूसरे से अनन्त दूरी पर हैं । इन सभी आवेशों को 10~cm भुजा के किसी समबाहु त्रिभुज के शीर्षों पर स्थापित करने में किया गया कुल कार्य परिकलित कीजिए ।
- **36.** (a) किसी गैल्वेनोमीटर की आयताकार धारावाही कुण्डली पर कार्यरत बल-आघूर्ण के लिए व्यंजक व्युत्पन्न कीजिए। चुम्बकीय क्षेत्र को अरीय क्यों बनाया जाता है ?
 - (b) किसी α -कण को $10~{\rm kV}$ के विभवान्तर तक त्वरित किया गया है तथा यह x-अक्ष के अनुदिश गितमान है । यह y-अक्ष के अनुदिश कार्यरत $B=2\times 10^{-3}~{\rm T}$ के एकसमान चुम्बकीय क्षेत्र में प्रवेश करता है । इसके पथ की त्रिज्या ज्ञात कीजिए । $(\alpha\text{-कण का } \text{द्रव्यमान} = 6.4\times 10^{-27}~{\rm kg} \text{ लीजिए})$

अथवा

- (a) नामांकित आरेख की सहायता से किसी उच्चायी ट्रान्सफॉर्मर की कार्यविधि की व्याख्या कीजिए। निम्नलिखित की व्याख्या के लिए कारण दीजिए:
 - (i) ट्रान्सफॉर्मर का क्रोड पटलित होता है।
 - (ii) लपेटों में ताँबे (कॉपर) के मोटे तार का उपयोग किया जाता है।

5

5

5

(b) An electric field is uniform and acts along +x direction in the region of positive x. It is also uniform with the same magnitude but acts in -x direction in the region of negative x. The value of the field is E = 200 N/C for x > 0 and E = -200 N/C for x < 0. A right circular cylinder of length 20 cm and radius 5 cm has its centre at the origin and its axis along the x-axis so that one flat face is at x = +10 cm and the other is at x = -10 cm.

Find:

- (i) The net outward flux through the cylinder.
- (ii) The net charge present inside the cylinder.

OR

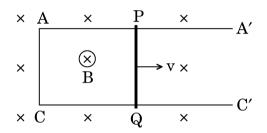
- (a) Find the expression for the potential energy of a system of two point charges q_1 and q_2 located at $\overrightarrow{r_1}$ and $\overrightarrow{r_2}$, respectively in an external electric field \overrightarrow{E} .
- (b) Draw equipotential surfaces due to an isolated point charge (- q) and depict the electric field lines.
- (c) Three point charges + 1 μ C, 1 μ C and + 2 μ C are initially infinite distance apart. Calculate the work done in assembling these charges at the vertices of an equilateral triangle of side 10 cm.
- **36.** (a) Derive the expression for the torque acting on the rectangular current carrying coil of a galvanometer. Why is the magnetic field made radial?
 - (b) An α -particle is accelerated through a potential difference of 10 kV and moves along x-axis. It enters in a region of uniform magnetic field B = 2×10^{-3} T acting along y-axis. Find the radius of its path. (Take mass of α -particle = 6.4×10^{-27} kg)

OR.

- (a) With the help of a labelled diagram, explain the working of a step-up transformer. Give reasons to explain the following:
 - (i) The core of the transformer is laminated.
 - (ii) Thick copper wire is used in windings.

.55/1/1

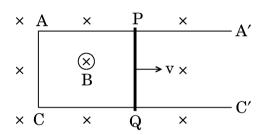
5


5

- (b) प्रतिरोध $0.1~\Omega$ की 20~cm लम्बी कोई चालक छड़ PQ उपेक्षणीय प्रतिरोध की दो चिकनी समान्तर पटिरयों AA' और CC' पर स्थित है । यह छड़ इन पटिरयों पर सरक सकती है तथा यह व्यवस्था एकसमान चुम्बकीय क्षेत्र B=0.4~T उत्पन्न करने वाले स्थायी चुम्बक के ध्रुवों के बीच रखी गई है । आरेख में दर्शाए अनुसार पटिरयाँ, छड़ तथा चुम्बकीय क्षेत्र तीन परस्पर लम्बवत् दिशाओं में हैं । यदि पटिरयों के सिरों A और C का लघुपथन कर दिया जाए, तो ज्ञात कीजिए
 - (i) इस छड़ को $v=10~{\rm cm/s}$ के एकसमान वेग से गति कराने के लिए आवश्यक बाह्य बल, और

5

(ii) ऐसा करने के लिए आवश्यक शक्ति ।



- 37. (a) उस स्थिति के लिए किसी खगोलीय दूरदर्शक का किरण आरेख खींचिए जिसमें अंतिम प्रतिबिम्ब अनन्त पर बनता है । इस दूरदर्शक की विभेदन क्षमता के लिए व्यंजक लिखिए ।
 - (b) किसी खगोलीय दूरदर्शक के अभिदृश्यक लेंस की फोकस दूरी $20~\mathrm{m}$ और इसकी नेत्रिका की फोकस दूरी $1~\mathrm{cm}$ है ।
 - (i) इस दूरदर्शक का कोणीय आवर्धन ज्ञात कीजिए ।
 - (ii) यदि इस दूरदर्शक का उपयोग चन्द्रमा को देखने में किया जाता है, तो अभिदृश्यक लेंस द्वारा बने प्रतिबिम्ब का व्यास ज्ञात कीजिए। दिया गया है कि चन्द्रमा का व्यास 3·5 × 10⁶ m तथा चन्द्रमा की कक्षा की त्रिज्या 3·8 × 10⁸ m है।

अथवा

- (b) A conducting rod PQ of length 20 cm and resistance $0.1~\Omega$ rests on two smooth parallel rails of negligible resistance AA' and CC'. It can slide on the rails and the arrangement is positioned between the poles of a permanent magnet producing uniform magnetic field B = 0.4~T. The rails, the rod and the magnetic field are in three mutually perpendicular directions as shown in the figure. If the ends A and C of the rails are short circuited, find the
 - (i) external force required to move the rod with uniform velocity v = 10 cm/s, and
 - (ii) power required to do so.

- **37.** (a) Draw the ray diagram of an astronomical telescope when the final image is formed at infinity. Write the expression for the resolving power of the telescope.
 - (b) An astronomical telescope has an objective lens of focal length 20 m and eyepiece of focal length 1 cm.
 - (i) Find the angular magnification of the telescope.
 - (ii) If this telescope is used to view the Moon, find the diameter of the image formed by the objective lens. Given the diameter of the Moon is 3.5×10^6 m and radius of lunar orbit is 3.8×10^8 m.

OR

5

- (a) कोई बिम्ब किसी अवतल दर्पण के सामने स्थित है । प्रेक्षण करने पर यह पाया जाता है कि बिम्ब का आभासी प्रतिबिम्ब बना है । प्रतिबिम्ब बनना दर्शाने के लिए किरण आरेख खींचिए तथा इससे दर्पण समीकरण, $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ व्युत्पन्न कीजिए ।
- (b) कोई बिम्ब किसी समतल-उत्तल लेंस के सामने, जिसके गोलीय पृष्ठ की वक्रता त्रिज्या $20~{\rm cm}$ है, के सामने $30~{\rm cm}$ दूरी पर स्थित है । यदि लेंस के पदार्थ का अपवर्तनांक 1.5 है, तो बने प्रतिबिम्ब की स्थिति और प्रकृति ज्ञात कीजिए ।

- (a) An object is placed in front of a concave mirror. It is observed that a virtual image is formed. Draw the ray diagram to show the image formation and hence derive the mirror equation $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$.
- (b) An object is placed 30 cm in front of a plano-convex lens with its spherical surface of radius of curvature 20 cm. If the refractive index of the material of the lens is 1.5, find the position and nature of the image formed.

Series HMJ/1

SET-2

कोड नं. 55/1/2

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

	नोट		NOTE
(I)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।	(I)	Please check that this question paper contains 23 printed pages.
(II)	प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।	(II)	Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
(III)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में 37 प्रश्न हैं।	(III)	Please check that this question paper contains 37 questions.
(IV)	कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।	(IV)	Please write down the Serial Number of the question in the answer-book before attempting it.
(V)	इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्व में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।	(V)	15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

भौतिक विज्ञान (सैद्धान्तिक) PHYSICS (Theory)

निर्धारित समय: 3 घण्टे

अधिकतम अंक : 70

Time allowed: 3 hours

Maximum Marks: 70

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :

- (i) यह प्रश्न-पत्र **चार** खण्डों में विभाजित किया गया है **क, ख, ग** और **घ**।
- (ii) इस प्रश्न-पत्र में **37** प्रश्न हैं । **सभी** प्रश्न अनिवार्य हैं ।
- (iii) **खण्ड क** प्रश्न संख्या 1 से 20 तक अति लघु-उत्तरीय प्रश्न हैं, प्रत्येक प्रश्न 1 अंक का है ।
- (iv) **खण्ड ख** प्रश्न संख्या 21 से 27 तक लघू-उत्तरीय प्रश्न हैं, प्रत्येक प्रश्न 2 अंकों का है ।
- (v) **खण्ड ग** प्रश्न संख्या **28** से **34** तक दीर्घ-उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न **3** अंकों का है।
- (vi) खण्ड घ प्रश्न संख्या 35 से 37 तक भी दीर्घ-उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न 5 अंकों का है।
- (vii) प्रश्न-पत्र में कोई समग्र विकल्प नहीं है। तथापि, एक-एक अंक के दो प्रश्नों में, दो-दो अंकों वाले दो प्रश्नों में, तीन-तीन अंकों वाले एक प्रश्न में तथा पाँच-पाँच अंकों वाले तीनों प्रश्नों में आंतरिक विकल्प दिया गया है। ऐसे प्रश्नों में केवल एक ही विकल्प का उत्तर दीजिए।
- (viii) इसके अतिरिक्त, आवश्यकतानुसार, प्रत्येक खण्ड और प्रश्न के साथ यथोचित निर्देश दिए गए हैं।
- (ix) केल्कुलेटरों अथवा लॉग टेबलों के प्रयोग की अनुमित **नहीं** है ।
- (x) जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$c=3\times10^8$$
 m/s $h=6.63\times10^{-34}$ Js $e=1.6\times10^{-19}$ C $\mu_0=4\pi\times10^{-7}$ T m A^{-1} $\epsilon_0=8.854\times10^{-12}$ C^2 N $^{-1}$ m $^{-2}$ $\frac{1}{4\pi\epsilon_0}=9\times10^9$ N m 2 C $^{-2}$ इलेक्ट्रॉन का द्रव्यमान (m_e) = 9.1×10^{-31} kg न्यूट्रॉन का द्रव्यमान = 1.675×10^{-27} kg प्रोटॉन का द्रव्यमान = 1.673×10^{-27} kg आवोगाद्रो संख्या = 6.023×10^{23} प्रति ग्राम मोल बोल्ट्ज़मान नियतांक = 1.38×10^{-23} JK $^{-1}$

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper comprises four Sections A, B, C and D.
- (ii) There are **37** questions in the question paper. **All** questions are compulsory.
- (iii) **Section A** Questions no. **1** to **20** are very short answer type questions, carrying **one** mark each.
- (iv) **Section B** Questions no. **21** to **27** are short answer type questions, carrying **two** marks each.
- (v) **Section C** Questions no. **28** to **34** are long answer type questions, carrying **three** marks each.
- (vi) **Section D** Questions no. **35** to **37** are also long answer type questions, carrying **five** marks each.
- (vii) There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions of 1 mark, 2 questions of 2 marks, 1 question of three marks and all the 3 questions of five marks. You have to attempt only one of the choices in such questions.
- (viii) In addition to this, separate instructions are given with each section and question, wherever necessary.
- (ix) Use of calculators and log tables is **not** permitted.
- (x) You may use the following values of physical constants wherever necessary.

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \end{split}$$

Mass of electron (m_e) = 9.1×10^{-31} kg

Mass of neutron = 1.675×10^{-27} kg

Mass of proton = 1.673×10^{-27} kg

Avogadro's number = 6.023×10^{23} per gram mole

Boltzmann constant = $1.38 \times 10^{-23} \, \text{JK}^{-1}$

खण्ड क

नोट: नीचे दिए गए प्रत्येक प्रश्न में सबसे अधिक उपयुक्त विकल्प चुनिए:

·11C.	119 190	१ गर् अत्यम् अस्य म रायरा जायम् अयुक्त वियम् व युगर् .	
1.	आपतन	/ कार्यफलन के किसी धात्विक पृष्ठ पर 1 eV और 2 eV ऊर्जाओं के फ़ोटॉन क्रमागत करते हैं। इन दोनों प्रकरणों में अधिकतम ऊर्जीय प्रकाशिक-इलेक्ट्रॉनों की गतिज ों का अनुपात होगा	1
	(A)	1:2	
	(B)	1:1	
	(C)	1:3	
	(D)	1:4	
2.	रदरफ़ोड	र्ड मॉडल के अनुसार निम्नलिखित में से कौन-सा कथन सही <i>नहीं</i> है ?	1
	(A)	किसी परमाणु के भीतर उसका अधिकांश भाग खाली है।	
	(B)	नाभिक के चारों ओर इलेक्ट्रॉन उन पर कार्यरत कूलॉमी बल के प्रभाव में परिक्रमा करते हैं।	
	(C)	परमाणु का अधिकांश द्रव्यमान तथा उसका कुल धनावेश उसके केन्द्र पर सांद्रित होता है।	
	(D)	इस मॉडल द्वारा परमाणु के स्थायित्व को स्थापित किया गया ।	
3.	किसी सकती	दूरदर्शक की विभेदन क्षमता में वृद्धि निम्नलिखित में से किसकी वृद्धि करके की जा है ?	1
	(A)	प्रकाश का तरंगदैर्घ्य	
	(B)	अभिदृश्यक का व्यास	
	(C)	नलिका की लम्बाई	
	, ,	नेत्रिका की फोकस दूरी	
4.	किसी १ करता है	धारावाही कुण्डली का चुम्बकीय द्विध्रुव आघूर्ण निम्नलिखित में से किस पर निर्भर <i>नहीं</i> है ?	1
	(A)	कुण्डली में फेरों की संख्या	
	(B)	कुण्डली की अनुप्रस्थ-काट का क्षेत्रफल	
	(C)	कुण्डली में प्रवाहित धारा	
	(D)	कुण्डली के फेरों का पदार्थ	

SECTION A

Note: Select the most appropriate option from those given below each question:

	qu	vestion:	
1.	surfa	ons of energies 1 eV and 2 eV are successively incident on a metallic ace of work function 0.5 eV. The ratio of kinetic energy of most getic photoelectrons in the two cases will be	1
	(A)	1:2	
	(B)	1:1	
	(C)	1:3	
	(D)	1:4	
2.	Whice mode	ch of the following statements is not correct according to Rutherford el?	1
	(A)	Most of the space inside an atom is empty.	
	(B)	The electrons revolve around the nucleus under the influence of coulomb force acting on them.	
	(C)	Most part of the mass of the atom and its positive charge are concentrated at its centre.	
	(D)	The stability of atom was established by the model.	
3.	The	resolving power of a telescope can be increased by increasing	1
	(A)	wavelength of light.	
	(B)	diameter of objective.	
	(C)	length of the tube.	
	(D)	focal length of eyepiece.	
4.	The upon	magnetic dipole moment of a current carrying coil does <i>not</i> depend	1
	(A)	number of turns of the coil.	
	(B)	cross-sectional area of the coil.	
	(C)	current flowing in the coil.	

material of the turns of the coil.

(D)

		Elmo e	
5.		देए गए किस वर्ण के प्रकाश के लिए किसी काँच के प्रिज़्म के अल्पतम विचलन कोण न सबसे कम होगा ?	1
	(A)	लाल वर्ण	-
	(B)	नीला वर्ण	
	(C)	पीला वर्ण	
	(D)	हरा वर्ण	
6.	अदृश्य	निंक 1·47 के काँच से बना कोई उभयोत्तल लेंस किसी द्रव में डूबा है। यह लेंस हो जाता है और काँच की समतल पट्टिका की भाँति व्यवहार करता है। इस द्रव का निंक है	1
	(A)	1.47	
	(B)	1.62	
	(C)	1.33	
	(D)	1.51	
7.	किसी	धातु के तार के प्रतिरोध में ताप में वृद्धि होने पर वृद्धि होने का कारण है	1
	(A)	मुक्त इलेक्ट्रॉन घनत्व में कमी होना ।	
	(B)	विश्रान्ति काल में कमी होना ।	
	(C)	माध्य मुक्त पथ में वृद्धि होना ।	
	(D)	इलेक्ट्रॉन के द्रव्यमान में वृद्धि होना ।	
8.	असमा	न विद्युत्-क्षेत्र में स्थित कोई विद्युत् द्विध्रुव अनुभव कर सकता है	1
	(A)	कोई बल परन्तु बल-आघूर्ण नहीं ।	
	(B)	कोई बल-आघूर्ण परन्तु बल नहीं ।	
	(C)	सदैव ही कोई बल और बल-आघूर्ण।	
	(D)	न तो कोई बल और न ही कोई बल-आघूर्ण।	

5.	For a glass prism, the angle of minimum deviation will be smallest for the light of				
	(A)	red colour.			
	(B)	blue colour.			
	(C)	yellow colour.			
	(D)	green colour.			
6.	A biconvex lens of glass having refractive index 1·47 is immersed in a liquid. It becomes invisible and behaves as a plane glass plate. The refractive index of the liquid is				
	(A)	1.47			
	(B)	1.62			
	(C)	1.33			
	(D)	1.51			
7.	The resistance of a metal wire increases with increasing temperature on account of				
	(A)	decrease in free electron density.			
	(B)	decrease in relaxation time.			
	(C)	increase in mean free path.			
	(D)	increase in the mass of electron.			
8.	An electric dipole placed in a non-uniform electric field can experience				
	(A)	a force but not a torque.			
	(B)	a torque but not a force.			
	(C)	always a force and a torque.			
	(D)	neither a force nor a torque.			

9.	यदि किसी बन्द पृष्ठ से गुज़रने वाला नेट विद्युत् फ्लक्स शून्य है, तो इससे यह निष्कर्ष निकाला जा सकता है कि					
	(A) इस पृष्ठ से कोई नेट आवेश परिबद्ध नहीं है।					
	(B) इस पृष्ठ के भीतर एकसमान विद्युत्-क्षेत्र विद्यमान है।					
	(C) इस पृष्ठ के भीतर एक बिन्दु से दूसरे बिन्दु तक विद्युत् विभव विचरित करता है।					
	(D) पृष्ठ के भीतर आवेश उपस्थित है।					
10.	किसी वैद्युत नेटवर्क की किसी संधि पर किरखोफ का पहला नियम निम्नलिखित में से किसके संरक्षण से संबंधित है ?					
	(A) ऊर्जा					
	(B) आवेश					
	(C) संवेग					
	(D) ऊर्जा व आवेश दोनों					
नोट :	उपयुक्त उत्तर से रिक्त स्थानों की पूर्ति कीजिए :					
11.	किसी काँच के समबाहु प्रिज़्म से गुज़रती हुई किसी प्रकाश किरण में उस प्रिज़्म के कोण के बराबर अल्पतम विचलन होता है। इस प्रिज़्म के पदार्थ के अपवर्तनांक का मान है।					
12.	बोर के परमाणु मॉडल के अनुसार इलेक्ट्रॉन की कक्षा की परिधि सदैव दे ब्रॉग्ली तरंगदैर्घ्य की गुणज होती है।	1				
	अथवा					
	β-क्षय में जनक और संतति नाभिकों में की संख्या समान होती है।	1				
13.	किसी परिनालिका की लम्बाई और उसकी अनुप्रस्थ-काट के क्षेत्रफल में बिना कोई परिवर्तन किए उसमें फेरों की संख्या दुगुनी कर दी गई है। इस परिनालिका का स्व-प्रेरकत्व गुना हो जाएगा।					
14.	किसी ट्रान्सफॉर्मर के क्रोड में धाराओं को निम्नतम करने के लिए पटलित लोहे की शीटों का उपयोग किया जाता है।					
15.	किसी प्रतिचुम्बकीय पदार्थ द्वारा चुम्बकीय क्षेत्र रेखाएँ होती हैं ।	1				

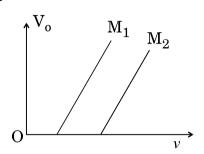
9.	If the net electric flux through a closed surface is zero, then we can infer					
	(A)	no net charge is enclosed by the surface.				
	(B)	uniform electric field exists within the surface.				
	(C)	electric potential varies from point to point inside the surface.				
	(D)	charge is present inside the surface.				
10.	Kirchhoff's first rule at a junction in an electrical network, deals with conservation of					
	(A)	energy				
	(B)	charge				
	(C)	momentum				
	(D)	both energy and charge				
<i>Note</i> 11. 12.	A ray	If in the blanks with appropriate answer: y of light on passing through an equilateral glass prism, suffers a mum deviation equal to the angle of the prism. The value of ctive index of the material of the prism is rding to Bohr's atomic model, the circumference of the electron orbit	f 1			
12.	is always an multiple of de Broglie wavelength.					
		OR				
	In β-	decay, the parent and daughter nuclei have the same number of	f 1			
13.	The number of turns of a solenoid are doubled without changing its length and area of cross-section. The self-inductance of the solenoid will become times.					
14.		inated iron sheets are used to minimize currents in the of a transformer.	e 1			
15.	The 1	magnetic field lines are by a diamagnetic substance.	1			
.55/1	1/2	9	P.T.O.			

1

1

1

1


1

2

नोट: निम्नलिखित के उत्तर दीजिए:

16. दृश्य LED के विरचन में हम Si और Ge का उपयोग क्यों नहीं कर सकते हैं ?

17. दो विभिन्न प्रकाश-सुग्राही पृष्ठों M_1 और M_2 पर आपितत प्रकाश की आवृत्ति (v) के साथ निरोधी विभव (V_0) का विचरण आरेख में दर्शाए अनुसार है । इनमें से अधिक कार्यफलन वाले पृष्ठ की पहचान कीजिए ।

- **18.** मादन सांद्रता में वृद्धि किस प्रकार किसी p-n संधि डायोड के हासी स्तर की चौड़ाई को प्रभावित करती है ?
- **19.** $\frac{27}{13} {
 m Al}$ की नाभिकीय त्रिज्या $3.6 \, {
 m wff}$ है । $\frac{64}{29} {
 m Cu}$ की नाभिकीय त्रिज्या ज्ञात कीजिए ।

अथवा

किसी इलेक्ट्रॉन और किसी प्रोटॉन की चाल समान हैं । इनसे संबद्ध दे बॉग्ली तरंगदैर्घ्यों का अनुपात ज्ञात कीजिए ।

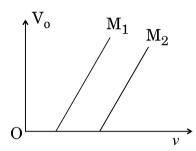
20. आवेशित होते समय किसी समान्तर पट्टिका संधारित्र की पट्टिकाओं के बीच विस्थापन धारा किस प्रकार उत्पन्न होती है ?

खण्ड ख

21. आरेख में दर्शाए अनुसार दो लम्बे सीधे समान्तर तार A और B में, जो एक-दूसरे से d दूरी पर स्थित हैं, से समान दिशा में समान धारा I प्रवाहित हो रही है।

$$\begin{array}{cccc}
A & P & B \\
\bullet & I & I \\
\bullet & X \longrightarrow & d \longrightarrow
\end{array}$$

- (a) इन तारों के बीच किसी एक तार से दूरी x पर स्थित किसी बिन्दु P पर चुम्बकीय क्षेत्र ज्ञात कीजिए ।
- (b) दूरी x के साथ, 0 < x < d के लिए, चुम्बकीय क्षेत्र में विचरण को दर्शाने के लिए ग्राफ खींचिए।


Note: Answer the following:

16. Why cannot we use Si and Ge in fabrication of visible LEDs?

1

17. The variation of the stopping potential (V_0) with the frequency (v) of the light incident on two different photosensitive surfaces M_1 and M_2 is shown in the figure. Identify the surface which has greater value of the work function.

1

18. How does an increase in doping concentration affect the width of depletion layer of a p-n junction diode?

1

1

19. The nuclear radius of $^{27}_{13}$ Al is 3·6 fermi. Find the nuclear radius of $^{64}_{29}$ Cu.

A proton and an electron have equal speeds. Find the ratio of de Broglie wavelengths associated with them.

OR

1

20. How is displacement current produced between the plates of a parallel plate capacitor during charging?

1

SECTION B

21. Two long straight parallel wires A and B separated by a distance d, carry equal current I flowing in same direction as shown in the figure.

 $\begin{array}{cccc}
A & P & B \\
\hline
I & I & I \\
\leftarrow X \longrightarrow & d \longrightarrow
\end{array}$

- (a) Find the magnetic field at a point P situated between them at a distance x from one wire.
- (b) Show graphically the variation of the magnetic field with distance x for 0 < x < d.

22.	बोर के परमाणु मॉडल का उपयोग करके, हाइड्रोजन परमाणु की nवीं कक्षा में परिक्रमा करते हुए इलेक्ट्रॉन की त्रिज्या के लिए व्यंजक व्युत्पन्न कीजिए।	2						
	अथवा							
	(a) प्रकाश-विद्युत् प्रभाव प्रयोग के उन दो मुख्य प्रेक्षणों को लिखिए जिनकी व्याख्या केवल आइंस्टाइन की प्रकाश-विद्युत् समीकरण द्वारा ही की जा सके।							
	(b) किसी प्रकाश सेल के ऐनोड विभव के साथ प्रकाश विद्युत् धारा के विचरण को दर्शाने के लिए ग्राफ खींचिए।	2						
23.	किसी प्रगामी तरंग के तरंगाग्र की परिभाषा दीजिए। हाइगेन्स सिद्धान्त का उपयोग करके, उस स्थिति के लिए जिसमें प्रकाश किसी विरल माध्यम से किसी सघन माध्यम में गमन करता है, समतल अन्तरा-पृष्ठ पर अपवर्तन का नियम प्राप्त कीजिए। अथवा	2						
	लेंस मेकर सूत्र का उपयोग करके किसी पतले उभयोत्तल लेंस के सूत्र $\dfrac{1}{f}=\dfrac{1}{v}-\dfrac{1}{u}$ को व्युत्पन्न कीजिए।							
24.	किसी मीटर सेतु की कार्यविधि के सिद्धान्त की व्याख्या कीजिए। इसके उपयोग द्वारा किसी अज्ञात प्रतिरोध के मान को निर्धारित करने के लिए परिपथ आरेख खींचिए।	2						
25.	किसी p - n संधि डायोड के लिए पद 'हासी स्तर' और 'विभव प्राचीर' की व्याख्या कीजिए । जब किसी p - n संधि को अग्रदिशिक बायस करते हैं, तो							
	(a) हासी स्तर की चौड़ाई, तथा							
	(b) विभव प्राचीर का मान किस प्रकार प्रभावित होता है ?	2						
26.	चालक द्रव की N नन्हीं बूँदों, जिनमें प्रत्येक की त्रिज्या r है, में से प्रत्येक बूँद को विभव V तक आवेशित किया गया है। ये नन्हीं बूँदें आवेश का क्षरण किए बिना संलयित होकर एकल बड़ी बूँद बनाती हैं। बड़ी बूँद का विभव ज्ञात कीजिए।	2						
27.	किसी रेडियोऐक्टिव पदार्थ के नमूने की सक्रियता की परिभाषा लिखिए। किसी रेडियोऐक्टिव पदार्थ के विघटन-स्थिरांक का मान $0.0693~\mathrm{h}^{-1}$ है। वह समय ज्ञात कीजिए जिसके पश्चात् इस पदार्थ के किसी नमुने की सक्रियता घटकर इसके वर्तमान मान की आधी रह जाएगी।	o						
	इस पदार्थ के किसा नमन का साक्रयता घटकर इसके वर्तमान मान का आधा रह जीएगा ।	2						

22.	Using Bohr's	atomic	model,	derive	the	expression	for	the	radius	of
	n th orbit of the revolving electron in a hydrogen atom.									

(a) Write two main observations of photoelectric effect experiment which could only be explained by Einstein's photoelectric equation.

OR.

- (b) Draw a graph showing variation of photocurrent with the anode potential of a photocell.
- **23.** Define wavefront of a travelling wave. Using Huygens principle, obtain the law of refraction at a plane interface when light passes from a rarer to a denser medium.

OR

Using lens maker's formula, derive the thin lens formula $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ for a biconvex lens.

- **24.** Explain the principle of working of a meter bridge. Draw the circuit diagram for determination of an unknown resistance using it.
- **25.** Explain the terms 'depletion layer' and 'potential barrier' in a p-n junction diode. How are the (a) width of depletion layer, and (b) value of potential barrier affected when the p-n junction is forward biased?
- **26.** N small conducting liquid droplets, each of radius r, are charged to a potential V each. These droplets coalesce to form a single large drop without any charge leakage. Find the potential of the large drop.
- 27. Define activity of a sample of a radioactive substance. The value of the disintegration constant of a radioactive substance is 0.0693 h⁻¹. Find the time after which the activity of a sample of this substance reduces to one-half that of its present value.

2

2

2

2

2

2

खण्ड ग

- **28.** किसी एकल झिरी विवर्तन प्रयोग में, तरंगदैर्घ्य λ का प्रकाश चौड़ाई 'a' की झिरी को प्रतिदीप्त करता है तथा पर्दे पर विवर्तन पैटर्न दिखाई देता है।
 - (a) कोणीय स्थिति θ के साथ इस पैटर्न का तीव्रता वितरण दर्शाइए ।
 - (b) केन्द्रीय उच्चिष्ठ की तीव्रता और कोणीय चौड़ाई पर क्या प्रभाव पड़ेगा जब
 - (i) झिरी की चौड़ाई में वृद्धि कर दी जाए, और
 - (ii) झिरी और पर्दे के बीच की दरी कम कर दी जाए ?

29. सरल आरेख की सहायता से किसी सिलिकॉन के सौर सेल की कार्यविधि की व्याख्या, इसमें निहित तीनों मूल प्रक्रियाओं का वर्णन करते हुए कीजिए। इसका I-V अभिलाक्षणिक खींचिए।

3

3

3

3

30. किसी स्रोत $V = V_0 \sin \omega t$ से कोई प्रतिरोधक R तथा कोई प्रेरक L श्रेणी में संयोजित हैं । ज्ञात कीजिए :

- (a) R और L के सिरों पर विभव-पातों के शिखर मान,
- (b) अनुप्रयुक्त वोल्टता और धारा के बीच कलान्तर । इनमें से कौन अग्र है ?

31. (a) आपेक्षिक विद्युत्शीलता $\epsilon_{
m r}$ तथा आपेक्षिक चुम्बकशीलता $\mu_{
m r}$ के किसी द्रव्यात्मक माध्यम में प्रकाश की चाल के लिए व्यंजक लिखिए।

- (b) निम्नलिखित में उपयोग होने वाली विद्युत्-चुम्बकीय तरंगों के नाम और तरंगदैर्घ्य परिसर लिखिए :
 - (i) रेडार प्रणालियों में विमान चालन (पथ-प्रदर्शन) में
 - (ii) फ़सलों की वृद्धि के प्रेक्षण के लिए पृथ्वी के उपग्रहों में

32. (a) दो सेलों के वि.वा. बल (emf) E_1 और E_2 तथा इनके आन्तरिक प्रतिरोध क्रमशः r_1 और r_2 हैं । जब इनके पार्श्व संयोजन को किसी बाह्य प्रतिरोध R से संयोजित किया जाता है, इनके तुल्य वि.वा. बल (emf) तथा आंतरिक प्रतिरोध के लिए व्यंजक व्युत्पन्न कीजिए । यह मानिए कि दोनों सेल एक-दूसरे की सहायता कर रहे हैं ।

SECTION C

- **28.** In a single slit diffraction experiment, light of wavelength λ illuminates the slit of width 'a' and the diffraction pattern is observed on a screen.
 - (a) Show the intensity distribution in the pattern with the angular position θ .
 - (b) How are the intensity and angular width of central maxima affected when

3

3

3

3

- (i) width of slit is increased, and
- (ii) separation between slit and screen is decreased?

29. With the help of a simple diagram, explain the working of a silicon solar cell, giving all three basic processes involved. Draw its I-V characteristic.

30. A resistor R and an inductor L are connected in series to a source $V = V_0 \sin \omega t.$

Find the

- (a) peak value of the voltage drops across R and across L,
- (b) phase difference between the applied voltage and current. Which of them is ahead?

31. (a) Write the expression for the speed of light in a material medium of relative permittivity ε_r and relative magnetic permeability μ_r .

- (b) Write the wavelength range and name of the electromagnetic waves which are used in (i) radar systems for aircraft navigation, and (ii) Earth satellites to observe the growth of the crops.
- 32. (a) Two cells of emf E_1 and E_2 have their internal resistances r_1 and r_2 , respectively. Deduce an expression for the equivalent emf and internal resistance of their parallel combination when connected across an external resistance R. Assume that the two cells are supporting each other.

.55/1/2 15 P.T.O.

(b) उस प्रकरण में जब दोनों सेल सर्वसम हैं और प्रत्येक का वि.वा. बल (emf) $E=5~V~\text{तथा आंतरिक प्रतिरोध } r=2~\Omega~\text{है},~R=10~\Omega~\text{के बाह्य प्रतिरोध के सिरों}$ पर वोल्टता परिकलित कीजिए।

3

3

- 33. (a) किसी धारावाही वृत्ताकार कुण्डली, जिसकी त्रिज्या r तथा फेरों की संख्या N है, से धारा (I) प्रवाहित हो रही है। इस कुण्डली से संबद्ध चुम्बकीय क्षेत्र के लिए व्यंजक लिखिए।
 - (b) यह मानिए कि उपर्युक्त कुण्डली को YZ तल में इसके केन्द्र को मूल-बिन्दु पर रखते हुए स्थित किया गया है। बिन्दु (x, 0, 0) पर इस कुण्डली के कारण उत्पन्न चुम्बकीय क्षेत्र के मान के लिए व्यंजक व्युत्पन्न कीजिए।

अथवा

- (a) किसी गैल्वेनोमीटर की धारा सुग्राहिता की परिभाषा दीजिए और इसके लिए व्यंजक लिखिए।
- (b) किसी गैल्वेनोमीटर का प्रतिरोध G और इसकी पूर्ण पैमाना विक्षेपण धारा $I_{\mathbf{g}}$ है ।
 - (i) इस गैल्वेनोमीटर को $I_0 \, (I_0 > I_g)$ तक की धारा माप सकने वाले ऐमीटर में किस प्रकार परिवर्तित किया जा सकता है ?
 - (ii) इस ऐमीटर का प्रभावी प्रतिरोध क्या है ?

3

34. नाभिक $^{235}_{92}\mathrm{Y}$ जो आरम्भ में विराम में है, एक lpha-कण को उत्सर्जित करके $^{231}_{90}\mathrm{X}$ में अपक्षयित हो जाता है।

$$^{235}_{92}$$
Y \longrightarrow $^{231}_{90}$ X + $^{4}_{2}$ He + ऊर्जा

जनक नाभिक, संतित नाभिक और α -कण की बंधन ऊर्जा प्रित न्यूक्लिऑन क्रमशः $7.8~{\rm MeV},~7.835~{\rm MeV}$ और $7.07~{\rm MeV}$ हैं । यह पूर्वधारणा रखते हुए कि बनने वाला संतित नाभिक उत्तेजित अवस्था में नहीं है तथा अभिक्रिया की ऊर्जा में उसकी भागीदारी की उपेक्षा करते हुए उत्सर्जित α -कण की चाल ज्ञात कीजिए।

 $(\alpha$ -कण का द्रव्यमान = $6.68 \times 10^{-27} \text{ kg})$

(b) In case the two cells are identical, each of emf E = 5 V and internal resistance $r=2~\Omega$, calculate the voltage across the external resistance $R=10~\Omega$.

3

- **33.** (a) Write an expression of magnetic moment associated with a current (I) carrying circular coil of radius r having N turns.
 - (b) Consider the above mentioned coil placed in YZ plane with its centre at the origin. Derive expression for the value of magnetic field due to it at point (x, 0, 0).

3

OR.

- (a) Define current sensitivity of a galvanometer. Write its expression.
- (b) A galvanometer has resistance G and shows full scale deflection for current I_g .
 - (i) How can it be converted into an ammeter to measure current up to $I_0\left(I_0>I_g\right)$?
 - (ii) What is the effective resistance of this ammeter?

3

34. The nucleus $^{235}_{92}\mathrm{Y}$, initially at rest, decays into $^{231}_{90}\mathrm{X}$ by emitting an α -particle

$${}^{235}_{92}Y \longrightarrow {}^{231}_{90}X + {}^{4}_{2}He + energy.$$

The binding energies per nucleon of the parent nucleus, the daughter nucleus and α -particle are 7.8 MeV, 7.835 MeV and 7.07 MeV, respectively. Assuming the daughter nucleus to be formed in the unexcited state and neglecting its share in the energy of the reaction, find the speed of the emitted α -particle. (Mass of α -particle = 6.68×10^{-27} kg)

खण्ड घ

- **35.** (a) किसी गैल्वेनोमीटर की आयताकार धारावाही कुण्डली पर कार्यरत बल-आघूर्ण के लिए व्यंजक व्युत्पन्न कीजिए । चुम्बकीय क्षेत्र को अरीय क्यों बनाया जाता है ?
 - (b) किसी α -कण को $10~{\rm kV}$ के विभवान्तर तक त्वरित किया गया है तथा यह x-अक्ष के अनुदिश गितमान है । यह y-अक्ष के अनुदिश कार्यरत $B=2\times 10^{-3}~{\rm T}$ के एकसमान चुम्बकीय क्षेत्र में प्रवेश करता है । इसके पथ की त्रिज्या ज्ञात कीजिए । $(\alpha$ -कण का द्रव्यमान = $6.4\times 10^{-27}~{\rm kg}$ लीजिए)

5

5

अथवा

- (a) नामांकित आरेख की सहायता से किसी उच्चायी ट्रान्सफॉर्मर की कार्यविधि की व्याख्या कीजिए। निम्नलिखित की व्याख्या के लिए कारण दीजिए:
 - (i) ट्रान्सफॉर्मर का क्रोड पटलित होता है।
 - (ii) लपेटों में ताँबे (काँपर) के मोटे तार का उपयोग किया जाता है।
- (b) प्रतिरोध $0.1~\Omega$ की 20~cm लम्बी कोई चालक छड़ PQ उपेक्षणीय प्रतिरोध की दो चिकनी समान्तर पटिरयों AA' और CC' पर स्थित है । यह छड़ इन पटिरयों पर सरक सकती है तथा यह व्यवस्था एकसमान चुम्बकीय क्षेत्र B=0.4~T उत्पन्न करने वाले स्थायी चुम्बक के ध्रुवों के बीच रखी गई है । आरेख में दर्शाए अनुसार पटिरयाँ, छड़ तथा चुम्बकीय क्षेत्र तीन परस्पर लम्बवत् दिशाओं में हैं । यदि पटिरयों के सिरों A और C का लघुपथन कर दिया जाए, तो ज्ञात कीजिए
 - (i) इस छड़ को v = 10 cm/s के एकसमान वेग से गित कराने के लिए आवश्यक बाह्य बल, और
 - (ii) ऐसा करने के लिए आवश्यक शक्ति ।

36. (a) उस स्थिति के लिए किसी खगोलीय दूरदर्शक का किरण आरेख खींचिए जिसमें अंतिम प्रतिबिम्ब अनन्त पर बनता है । इस दूरदर्शक की विभेदन क्षमता के लिए व्यंजक लिखिए ।

SECTION D

- **35.** (a) Derive the expression for the torque acting on the rectangular current carrying coil of a galvanometer. Why is the magnetic field made radial?
 - (b) An α -particle is accelerated through a potential difference of 10 kV and moves along x-axis. It enters in a region of uniform magnetic field B = 2×10^{-3} T acting along y-axis. Find the radius of its path. (Take mass of α -particle = 6.4×10^{-27} kg)

OR

- (a) With the help of a labelled diagram, explain the working of a step-up transformer. Give reasons to explain the following:
 - (i) The core of the transformer is laminated.
 - (ii) Thick copper wire is used in windings.
- (b) A conducting rod PQ of length 20 cm and resistance 0.1Ω rests on two smooth parallel rails of negligible resistance AA' and CC'. It can slide on the rails and the arrangement is positioned between the poles of a permanent magnet producing uniform magnetic field B = 0.4 T. The rails, the rod and the magnetic field are in three mutually perpendicular directions as shown in the figure. If the ends A and C of the rails are short circuited, find the
 - (i) external force required to move the rod with uniform velocity v = 10 cm/s, and
 - (ii) power required to do so.

36. (a) Draw the ray diagram of an astronomical telescope when the final image is formed at infinity. Write the expression for the resolving power of the telescope.

5

.55/1/2

- (b) किसी खगोलीय दूरदर्शक के अभिदृश्यक लेंस की फोकस दूरी $20~\mathrm{m}$ और इसकी नेत्रिका की फोकस दूरी $1~\mathrm{cm}$ है ।
 - (i) इस द्रदर्शक का कोणीय आवर्धन ज्ञात कीजिए।
 - (ii) यदि इस दूरदर्शक का उपयोग चन्द्रमा को देखने में किया जाता है, तो अभिदृश्यक लेंस द्वारा बने प्रतिबिम्ब का व्यास ज्ञात कीजिए। दिया गया है कि चन्द्रमा का व्यास $3.5 \times 10^6 \ \mathrm{m}$ तथा चन्द्रमा की कक्षा की त्रिज्या $3.8 \times 10^8 \ \mathrm{m}$ है।

5

5

अथवा

- (a) कोई बिम्ब किसी अवतल दर्पण के सामने स्थित है । प्रेक्षण करने पर यह पाया जाता है कि बिम्ब का आभासी प्रतिबिम्ब बना है । प्रतिबिम्ब बनना दर्शाने के लिए किरण आरेख खींचिए तथा इससे दर्पण समीकरण, $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ व्युत्पन्न कीजिए ।
- (b) कोई बिम्ब किसी समतल-उत्तल लेंस के सामने, जिसके गोलीय पृष्ठ की वक्रता त्रिज्या 20 cm है, के सामने 30 cm दूरी पर स्थित है। यदि लेंस के पदार्थ का अपवर्तनांक 1.5 है, तो बने प्रतिबिम्ब की स्थिति और प्रकृति ज्ञात कीजिए।
- 37. (a) गाउस नियम का उपयोग करते हुए, R त्रिज्या के एकसमान आवेश वितरण ठ के गोलीय खोल के कारण इसके केन्द्र से दूरी x के किसी बिन्दु पर विद्युत्-क्षेत्र के लिए व्यंजक व्युत्पन्न कीजिए, जबकि
 - (i) 0 < x < R, और
 - (ii) x > R.
 - (b) कोई विद्युत्-क्षेत्र एकसमान है तथा धनात्मक x के क्षेत्र में यह + x दिशा के अनुदिश कार्यरत है । परन्तु इसके साथ-साथ ऋणात्मक x के क्षेत्र में x दिशा के अनुदिश यह समान परिमाण के साथ कार्यरत है । इस क्षेत्र का मान E=200 N/C x>0 के लिए तथा E=-200 N/C x<0 के लिए है । लम्बाई 20 cm और त्रिज्या 5 cm का कोई लम्ब-वृत्तीय सिलिण्डर x-अक्ष के अनुदिश इस प्रकार स्थित है कि इसका केन्द्र मूल-बिन्दु पर तथा एक समतल फलक x=+10 cm और दूसरा फलक x=-10 cm पर है ।

ज्ञात कीजिए:

- (i) सिलिण्डर से होकर गुज़रने वाला नेट बहिर्मुखी फ्लक्स ।
- (ii) सिलिण्डर के भीतर उपस्थित कुल आवेश ।

अथवा

- (b) An astronomical telescope has an objective lens of focal length 20 m and eyepiece of focal length 1 cm.
 - (i) Find the angular magnification of the telescope.
 - (ii) If this telescope is used to view the Moon, find the diameter of the image formed by the objective lens. Given the diameter of the Moon is 3.5×10^6 m and radius of lunar orbit is 3.8×10^8 m.

 \mathbf{OR}

- (a) An object is placed in front of a concave mirror. It is observed that a virtual image is formed. Draw the ray diagram to show the image formation and hence derive the mirror equation $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$.
- (b) An object is placed 30 cm in front of a plano-convex lens with its spherical surface of radius of curvature 20 cm. If the refractive index of the material of the lens is 1.5, find the position and nature of the image formed.
- 37. (a) Using Gauss law, derive expression for electric field due to a spherical shell of uniform charge distribution σ and radius R at a point lying at a distance x from the centre of shell, such that
 - (i) 0 < x < R, and
 - (ii) x > R.
 - (b) An electric field is uniform and acts along +x direction in the region of positive x. It is also uniform with the same magnitude but acts in -x direction in the region of negative x. The value of the field is E = 200 N/C for x > 0 and E = -200 N/C for x < 0. A right circular cylinder of length 20 cm and radius 5 cm has its centre at the origin and its axis along the x-axis so that one flat face is at x = +10 cm and the other is at x = -10 cm.

Find:

- (i) The net outward flux through the cylinder.
- (ii) The net charge present inside the cylinder.

5

5

5

OR

- (a) किसी बाह्य विद्युत्-क्षेत्र \overrightarrow{E} में $\overrightarrow{r_1}$ और $\overrightarrow{r_2}$ पर क्रमशः स्थित दो बिन्दु आवेशों q_1 और q_2 के निकाय की स्थितिज ऊर्जा के लिए व्यंजक प्राप्त कीजिए ।
- (b) किसी वियुक्त बिन्दु आवेश (- q) के कारण समविभव पृष्ठ खींचिए तथा इसकी विद्युत्-क्षेत्र रेखाएँ चित्रित कीजिए।
- (c) $+1~\mu C$, $-1~\mu C$ और $+2~\mu C$ के तीन बिन्दु आवेश आरम्भ में एक-दूसरे से अनन्त दूरी पर हैं । इन सभी आवेशों को 10~cm भुजा के किसी समबाहु त्रिभुज के शीर्षों पर स्थापित करने में किया गया कुल कार्य परिकलित कीजिए ।

- (a) Find the expression for the potential energy of a system of two point charges q_1 and q_2 located at $\overrightarrow{r_1}$ and $\overrightarrow{r_2}$, respectively in an external electric field \overrightarrow{E} .
- (b) Draw equipotential surfaces due to an isolated point charge (- q) and depict the electric field lines.
- (c) Three point charges + 1 μ C, 1 μ C and + 2 μ C are initially infinite distance apart. Calculate the work done in assembling these charges at the vertices of an equilateral triangle of side 10 cm.

Series HMJ/1

SET-3

कोड नं. 55/1/3

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

	नोट		NOTE
(I)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं ।	(I)	Please check that this question paper contains 23 printed pages.
(II)	प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।	(II)	Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
(III)	कृपया जाँच कर लें कि इस प्रश्न-पत्र में 37 प्रश्न हैं।	(III)	Please check that this question paper contains 37 questions.
(IV)	कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।	(IV)	Please write down the Serial Number of the question in the answer-book before attempting it.
(V)	इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।	(V)	15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

भौतिक विज्ञान (सैद्धान्तिक) PHYSICS (Theory)

निर्धारित समय: 3 घण्टे

अधिकतम अंक : 70

Time allowed: 3 hours

Maximum Marks: 70

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :

- (i) यह प्रश्न-पत्र **चार** खण्डों में विभाजित किया गया है **क, ख, ग** और **घ**।
- (ii) इस प्रश्न-पत्र में **37** प्रश्न हैं । **सभी** प्रश्न अनिवार्य हैं ।
- (iii) **खण्ड क** प्रश्न संख्या 1 से 20 तक अति लघु-उत्तरीय प्रश्न हैं, प्रत्येक प्रश्न 1 अंक का है ।
- (iv) **खण्ड ख** प्रश्न संख्या 21 से 27 तक लघू-उत्तरीय प्रश्न हैं, प्रत्येक प्रश्न 2 अंकों का है ।
- (v) **खण्ड ग** प्रश्न संख्या **28** से **34** तक दीर्घ-उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न **3** अंकों का है।
- (vi) खण्ड घ प्रश्न संख्या 35 से 37 तक भी दीर्घ-उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न 5 अंकों का है।
- (vii) प्रश्न-पत्र में कोई समग्र विकल्प नहीं है। तथापि, एक-एक अंक के दो प्रश्नों में, दो-दो अंकों वाले दो प्रश्नों में, तीन-तीन अंकों वाले एक प्रश्न में तथा पाँच-पाँच अंकों वाले तीनों प्रश्नों में आंतरिक विकल्प दिया गया है। ऐसे प्रश्नों में केवल एक ही विकल्प का उत्तर दीजिए।
- (viii) इसके अतिरिक्त, आवश्यकतानुसार, प्रत्येक खण्ड और प्रश्न के साथ यथोचित निर्देश दिए गए हैं।
- (ix) केल्कुलेटरों अथवा लॉग टेबलों के प्रयोग की अनुमित **नहीं** है।
- (x) जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$c=3\times 10^8 \text{ m/s}$$
 $h=6.63\times 10^{-34} \text{ Js}$
 $e=1.6\times 10^{-19} \text{ C}$
 $\mu_0=4\pi\times 10^{-7} \text{ T m A}^{-1}$
 $\epsilon_0=8.854\times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
 $\frac{1}{4\pi\epsilon_0}=9\times 10^9 \text{ N m}^2 \text{ C}^{-2}$
इलेक्ट्रॉन का द्रव्यमान $(m_e)=9.1\times 10^{-31} \text{ kg}$
न्यूट्रॉन का द्रव्यमान $=1.675\times 10^{-27} \text{ kg}$
प्रोटॉन का द्रव्यमान $=1.673\times 10^{-27} \text{ kg}$
आवोगाद्रो संख्या $=6.023\times 10^{23} \text{ प्रति ग्राम मोल}$
बोल्ट्ज़मान नियतांक $=1.38\times 10^{-23} \text{ JK}^{-1}$

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper comprises four Sections A, B, C and D.
- (ii) There are **37** questions in the question paper. **All** questions are compulsory.
- (iii) **Section A** Questions no. **1** to **20** are very short answer type questions, carrying **one** mark each.
- (iv) **Section B** Questions no. **21** to **27** are short answer type questions, carrying **two** marks each.
- (v) **Section C** Questions no. **28** to **34** are long answer type questions, carrying **three** marks each.
- (vi) **Section D** Questions no. **35** to **37** are also long answer type questions, carrying **five** marks each.
- (vii) There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions of 1 mark, 2 questions of 2 marks, 1 question of three marks and all the 3 questions of five marks. You have to attempt only one of the choices in such questions.
- (viii) In addition to this, separate instructions are given with each section and question, wherever necessary.
- (ix) Use of calculators and log tables is **not** permitted.
- (x) You may use the following values of physical constants wherever necessary.

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \end{split}$$

Mass of electron (m_e) = 9.1×10^{-31} kg

Mass of neutron = 1.675×10^{-27} kg

Mass of proton = 1.673×10^{-27} kg

Avogadro's number = 6.023×10^{23} per gram mole

Boltzmann constant = $1.38 \times 10^{-23} \, \text{JK}^{-1}$

खण्ड क

नोट: नीचे दिए गए प्रत्येक प्रश्न में सबसे अधिक उपयुक्त विकल्प चुनिए:

	11 1 19	The state of the s	
1.	अदृश्य	निांक 1·47 के काँच से बना कोई उभयोत्तल लेंस किसी द्रव में डूबा है। यह लेंस हो जाता है और काँच की समतल पट्टिका की भाँति व्यवहार करता है। इस द्रव का निांक है	1
	(A)	1.47	
	(B)	1.62	
	(C)	1.33	
	(D)	1.51	
2.		देए गए किस वर्ण के प्रकाश के लिए किसी काँच के प्रिज़्म के अल्पतम विचलन कोण न सबसे कम होगा ?	1
	(A)	लाल वर्ण	
	(B)	नीला वर्ण	
	(C)	पीला वर्ण	
	(D)	हरा वर्ण	
3.	रदरफ़ो	र्ड मॉडल के अनुसार निम्नलिखित में से कौन-सा कथन सही <i>नहीं</i> है ?	1
	(A)	किसी परमाणु के भीतर उसका अधिकांश भाग खाली है।	
	(B)	नाभिक के चारों ओर इलेक्ट्रॉन उन पर कार्यरत कूलॉमी बल के प्रभाव में परिक्रमा करते हैं।	
	(C)	परमाणु का अधिकांश द्रव्यमान तथा उसका कुल धनावेश उसके केन्द्र पर सांद्रित होता है।	
	(D)	इस मॉडल द्वारा परमाणु के स्थायित्व को स्थापित किया गया।	
4.	आपत	V कार्यफलन के किसी धात्विक पृष्ठ पर 1 eV और 2 eV ऊर्जाओं के फ़ोटॉन क्रमागत न करते हैं । इन दोनों प्रकरणों में अधिकतम ऊर्जीय प्रकाशिक-इलेक्ट्रॉनों की गतिज गों का अनुपात होगा	1
	(A)	1:2	
	(B)	1:1	
	(C)	1:3	
	(D)	1:4	

SECTION A

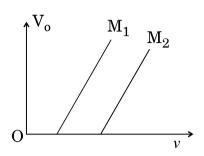
Note: Select the most appropriate option from those given below each question:

	qu	vestion:	
1.	liqui	convex lens of glass having refractive index 1.47 is immersed in a d. It becomes invisible and behaves as a plane glass plate. The active index of the liquid is	1
	(A)	1.47	
	(B)	1.62	
	(C)	1.33	
	(D)	1.51	
2.		a glass prism, the angle of minimum deviation will be smallest for ight of	1
	(A)	red colour.	
	(B)	blue colour.	
	(C)	yellow colour.	
	(D)	green colour.	
3.	Whice mode	ch of the following statements is not correct according to Rutherford el?	1
	(A)	Most of the space inside an atom is empty.	
	(B)	The electrons revolve around the nucleus under the influence of coulomb force acting on them.	
	(C)	Most part of the mass of the atom and its positive charge are concentrated at its centre.	
	(D)	The stability of atom was established by the model.	
4.	surfa	ons of energies 1 eV and 2 eV are successively incident on a metallic ace of work function 0.5 eV. The ratio of kinetic energy of most getic photoelectrons in the two cases will be	1
	(A)	1:2	
	(B)	1:1	
	(C)	1:3	
	(-)		

(D) 1:4

5.	किसी धारावाही कुण्डली का चुम्बकीय द्विध्रुव आघूर्ण निम्नलिखित में से किस पर निर्भर <i>नहीं</i>					
	करता		1			
	(A)	कुण्डली में फेरों की संख्या				
	(B)	कुण्डली की अनुप्रस्थ-काट का क्षेत्रफल				
	(C)	कुण्डली में प्रवाहित धारा				
	(D)	कुण्डली के फेरों का पदार्थ				
6.	ताप मे	ं वृद्धि होने पर किसी धातु की चालकता में कमी होने का कारण है	1			
	(A)	इलेक्ट्रॉनों के संख्या घनत्व में कमी होना ।				
	(B)	प्रतिरोधकता में कमी होना ।				
	(C)	विश्रान्ति काल में कमी होना ।				
	(D)	माध्य मुक्त पथ में वृद्धि होना ।				
7.	दो अ	प्रमान प्रतिरोधक किसी बैटरी से श्रेणी में संयोजित हैं। तब	1			
	(A)	प्रत्येक प्रतिरोधक के सिरों पर समान विभवान्तर होगा ।				
	(B)	छोटे प्रतिरोधक से अधिक धारा प्रवाहित होगी ।				
	(C)	बड़े प्रतिरोधक के सिरों पर विभवान्तर अधिक होगा।				
	(D)	दोनों प्रतिरोधकों में समान शक्ति क्षय होगा ।				
8.	कोई 1	बिन्दु आवेश किसी छोटे विद्युत् द्विध्रुव के अक्षीय बिन्दु पर उससे काफी दूरी पर स्थित				
	_	ाह बिन्दु आवेश F बल का अनुभव करता है। यदि आवेश की दूरी दुगुनी कर दी जाए,				
	_	विश पर कार्यरत बल होगा	1			
	(A)	$2\mathrm{F}$				
	(B)	F/2				
	(C)	F/4				
	(D)	F/8				
9.	यदि र्	केसी बन्द पृष्ठ से गुज़रने वाला नेट विद्युत् फ्लक्स शून्य है, तो इससे यह निष्कर्ष				
	निकात	ता जा सकता है कि	1			
	(A)	इस पृष्ठ से कोई नेट आवेश परिबद्ध नहीं है।				
	(B)	इस पृष्ठ के भीतर एकसमान विद्युत्-क्षेत्र विद्यमान है।				
	(C)	इस पृष्ठ के भीतर एक बिन्दु से दूसरे बिन्दु तक विद्युत् विभव विचरित करता है ।				
	(D)	पृष्ठ के भीतर आवेश उपस्थित है ।				

5.		The magnetic dipole moment of a current carrying coil does <i>not</i> depend upon				
	(A)	number of turns of the coil.				
	(B)	cross-sectional area of the coil.				
	(C)	current flowing in the coil.				
	(D)	material of the turns of the coil.				
6.		conductivity of a metal decreases with the increase in temperature	1			
	(A)	decrease in number density of electrons.				
	(B)	decrease in resistivity.				
	(C)	decrease in relaxation time.				
	(D)	increase in mean free path.				
7.	Two	unequal resistors are connected in series across a battery. Then the	1			
	(A)	potential difference across each resistor is the same.				
	(B)	current in the smaller resistor is larger.				
	(C)	potential difference across the bigger resistor is greater.				
	(D)	power dissipated in both resistors is the same.				
8.	large	int charge is situated at an axial point of a small electric dipole at a edistance from it. The charge experiences a force F. If the distance of charge is doubled, the force acting on the charge will become	1			
	(A)	$2\mathrm{F}$				
	(B)	F/2				
	(C)	F/4				
	(D)	F/8				
9.	If the	e net electric flux through a closed surface is zero, then we can infer	1			
	(A)	no net charge is enclosed by the surface.				
	(B)	uniform electric field exists within the surface.				
	(C)	electric potential varies from point to point inside the surface.				
	(D)	charge is present inside the surface.				


10.	किसी संयुक्त सूक्ष्मदर्शी के अभिदृश्यक की फोकस दूरी होती है	1
	(A) नेत्रिका की फोकस दूरी से अधिक ।	
	(B) नेत्रिका की फोकस दूरी से कम ।	
	(C) नेत्रिका की फोकस दूरी के समान।	
	(D) सूक्ष्मदर्शी की नलिका की लम्बाई के समान।	
नोट :	उपयुक्त उत्तर से रिक्त स्थानों की पूर्ति कीजिए :	
11.	किसी परिनालिका की लम्बाई और उसकी अनुप्रस्थ-काट के क्षेत्रफल में बिना कोई परिवर्तन किए उसमें फेरों की संख्या दुगुनी कर दी गई है। इस परिनालिका का स्व-प्रेरकत्व	
	गुना हो जाएगा।	1
12.	बोर के परमाणु मॉडल के अनुसार इलेक्ट्रॉन की कक्षा की परिधि सदैव दे ब्रॉग्ली तरंगदैर्घ्य की	
	गुणज होती है ।	1
	अथवा	
	β-क्षय में जनक और संतित नाभिकों में की संख्या समान होती है।	1
13.	किसी काँच के समबाहु प्रिज़्म से गुज़रती हुई किसी प्रकाश किरण में उस प्रिज़्म के कोण के बराबर अल्पतम विचलन होता है। इस प्रिज़्म के पदार्थ के अपवर्तनांक का मान	
	है।	1
14.	किसी अनुचुम्बकीय पदार्थ के द्वारा चुम्बकीय क्षेत्र रेखाएँ होती हैं।	1
15.	किसी ट्रान्सफॉर्मर के क्रोड में धाराओं को निम्नतम करने के लिए पटलित लोहे की शीटों का उपयोग किया जाता है।	1
नोट :	निम्नलिखित के उत्तर दीजिए :	
16.	$^{27}_{13}\mathrm{Al}$ की नाभिकीय त्रिज्या $3\cdot6$ फर्मी है । $^{64}_{29}\mathrm{Cu}$ की नाभिकीय त्रिज्या ज्ञात कीजिए ।	1
	अथवा	
	किसी इलेक्ट्रॉन और किसी प्रोटॉन की चाल समान हैं । इनसे संबद्ध दे बॉग्ली तरंगदैर्घ्यों का	
	अनुपात ज्ञात कीजिए ।	1

 (A) greater than the focal length of (B) lesser than the focal length of (C) equal to the focal length of eye (D) equal to the length of its tube 	eyepiece.	
(C) equal to the focal length of eye	• •	
	niece	
(D) equal to the length of its tube	spiece.	
$oldsymbol{Note:} Fill \ in \ the \ blanks \ with \ appropriate$	e answer :	
	d are doubled without changing its ne self-inductance of the solenoid will	1
12. According to Bohr's atomic model, to is always an multiple of	he circumference of the electron orbit de Broglie wavelength.	1
O	OR .	
In β-decay, the parent and daught	er nuclei have the same number of	1
	an equilateral glass prism, suffers a angle of the prism. The value of e prism is	1
minimum deviation equal to the	angle of the prism. The value of e prism is	
minimum deviation equal to the refractive index of the material of th 14. The magnetic field lines are	angle of the prism. The value of e prism is	1
minimum deviation equal to the refractive index of the material of th 14. The magnetic field lines are 15. Laminated iron sheets are used to r	angle of the prism. The value of e prism is by a paramagnetic substance.	1
minimum deviation equal to the refractive index of the material of th 14. The magnetic field lines are 15. Laminated iron sheets are used to r core of a transformer. Note: Answer the following:	angle of the prism. The value of e prism is by a paramagnetic substance.	1
minimum deviation equal to the refractive index of the material of the serious of the material of the serious index of the material of the serious are 15. Laminated iron sheets are used to recore of a transformer. Note: Answer the following: 16. The nuclear radius of ²⁷ / ₁₃ Al is 3.6 feature.	angle of the prism. The value of the prism is by a paramagnetic substance. minimize currents in the	1 1

दो विभिन्न प्रकाश-सुग्राही पृष्ठों M_1 और M_2 पर आपितत प्रकाश की आवृत्ति (ν) के साथ **17.** निरोधी विभव (V_0) का विचरण आरेख में दर्शाए अनुसार है । इनमें से अधिक कार्यफलन वाले पृष्ठ की पहचान कीजिए।

1

दृश्य LED के विरचन में हम Si और Ge का उपयोग क्यों नहीं कर सकते हैं ? 18.

1

चालन धारा और विस्थापन धारा के बीच विभेदन कीजिए। 19.

1

मादन सांद्रता में वृद्धि किस प्रकार किसी p-n संधि डायोड के हासी स्तर की चौड़ाई को 20. प्रभावित करती है ?

1

खण्ड ख

किसी p-n संधि डायोड के लिए पद 'हासी स्तर' और 'विभव प्राचीर' की व्याख्या कीजिए। 21. जब किसी p-n संधि को अग्रदिशिक बायस करते हैं, तो

- विभव प्राचीर का मान किस प्रकार प्रभावित होता है ? (b)

हासी स्तर की चौडाई, तथा

2

बोर के परमाणु मॉडल का उपयोग करके हाइड्रोजन परमाणु की nवीं कक्षा में परिक्रमा करते **22.** हए इलेक्ट्रॉन के वेग के लिए व्यंजक व्यत्पन्न कीजिए।

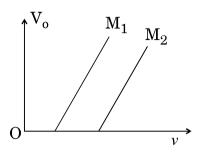
2

अथवा

व्याख्या कीजिए कि β-कणों के उत्सर्जन की प्रक्रिया से प्रकाशिक-इलेक्ट्रॉनों के उत्सर्जन की प्रक्रिया किस प्रकार भिन्न होती है।

2

(a)


17. The variation of the stopping potential (V_0) with the frequency (v) of the light incident on two different photosensitive surfaces M_1 and M_2 is shown in the figure. Identify the surface which has greater value of the work function.

1

1

1

1

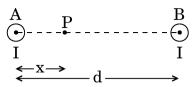
- **18.** Why cannot we use Si and Ge in fabrication of visible LEDs?
- **19.** Differentiate between conduction current and displacement current.
- **20.** How does an increase in doping concentration affect the width of depletion layer of a p-n junction diode?

SECTION B

21. Explain the terms 'depletion layer' and 'potential barrier' in a p-n junction diode. How are the (a) width of depletion layer, and (b) value of potential barrier affected when the p-n junction is forward biased?

2

22. Using Bohr's atomic model, derive the expression for the velocity of electron revolving in the nth orbit of hydrogen atom.


2

OR

Explain, how the process of emission of photoelectrons is different from the process of emission of β -particles.

23. आरेख में दर्शाए अनुसार दो लम्बे सीधे समान्तर तार A और B में, जो एक-दूसरे से d दूरी पर स्थित हैं, से समान दिशा में समान धारा I प्रवाहित हो रही है।

- (a) इन तारों के बीच किसी एक तार से दूरी x पर स्थित किसी बिन्दु P पर चुम्बकीय क्षेत्र ज्ञात कीजिए ।
- (b) दूरी x के साथ, 0 < x < d के लिए, चुम्बकीय क्षेत्र में विचरण को दर्शाने के लिए ग्राफ खींचिए।

2

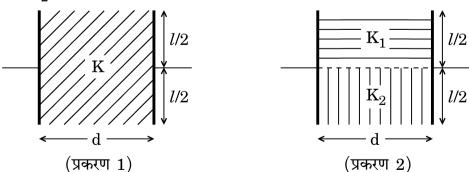
2

2

2

2

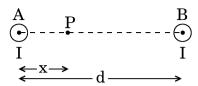
2


24. गतिशील तरंग के तरंगाग्र की परिभाषा लिखिए । हाइगेन्स सिद्धान्त का उपयोग करके, उस स्थिति में जब प्रकाश किसी सघन माध्यम से विरल माध्यम में गमन करता है, किसी समतल अन्तरापृष्ठ पर अपवर्तन का नियम प्राप्त कीजिए ।

अथवा

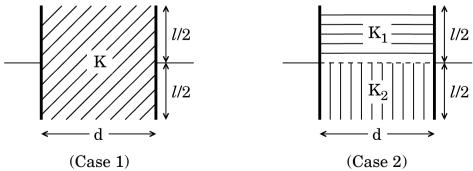
लेंस मेकर सूत्र का उपयोग करके किसी पतले उभयोत्तल लेंस के सूत्र $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ को व्युत्पन्न कीजिए।

25. पद रेडियोऐक्टिव पदार्थ की 'अर्ध-आयु' की परिभाषा लिखिए । दो विभिन्न रेडियोऐक्टिव पदार्थों की अर्ध-आयु T_1 और T_2 तथा किसी क्षण पर उनमें शेष बचे हुए परमाणुओं की संख्या क्रमशः N_1 और N_2 है । उस क्षण इनकी सिक्रयताओं का अनुपात ज्ञात कीजिए ।


26. किसी समान्तर पट्टिका संधारित्र की दो पट्टिकाओं के बीच के रिक्त स्थान को दो प्रकार से पूर्णतः भरा गया है। पहले प्रकरण में रिक्त स्थान को परावैद्युतांक K के किसी गुटके से भरा गया है। दूसरे प्रकरण में इसे समान विमाओं, परन्तु परावैद्युतांक K_1 और K_2 के दो गुटकों से आरेख में दर्शाए अनुसार भरा गया है। दोनों प्रकरणों में संधारित्र की धारिता समान है। K, K_1 और K_2 में संबंध प्राप्त कीजिए।

27. किसी मीटर सेतु की कार्यविधि के सिद्धान्त की व्याख्या कीजिए । इसके उपयोग द्वारा किसी अज्ञात प्रतिरोध के मान को निर्धारित करने के लिए परिपथ आरेख खींचिए ।

23. Two long straight parallel wires A and B separated by a distance d, carry equal current I flowing in same direction as shown in the figure.



- (a) Find the magnetic field at a point P situated between them at a distance x from one wire.
- (b) Show graphically the variation of the magnetic field with distance x for 0 < x < d.
- **24.** Define wavefront of a travelling wave. Using Huygens principle, obtain the law of refraction at a plane interface when light passes from a denser to rarer medium.

OR

Using lens maker's formula, derive the thin lens formula $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ for a biconvex lens.

- **25.** Define the term 'Half-life' of a radioactive substance. Two different radioactive substances have half-lives T_1 and T_2 and number of undecayed atoms at an instant N_1 and N_2 , respectively. Find the ratio of their activities at that instant.
- 26. The space between the plates of a parallel plate capacitor is completely filled in two ways. In the first case, it is filled with a slab of dielectric constant K. In the second case, it is filled with two slabs of equal dimensions but dielectric constants K_1 and K_2 , respectively as shown in the figure. The capacitance of the capacitor is same in the two cases. Obtain the relationship between K, K_1 and K_2 .

27. Explain the principle of working of a meter bridge. Draw the circuit diagram for determination of an unknown resistance using it.

2

2

2

2

खण्ड ग

28.	(a)	आपेक्षिक	विद्युत्शीलता	$\epsilon_{ m r}$ तथा	आपेक्षिक	चुम्बकशीलता	$\mu_{\mathbf{r}}$ के	किसी	द्रव्यात्मक
		माध्यम में	प्रकाश की चा	ल के लि	ए व्यंजक ि	लेखिए ।			

- (b) निम्नलिखित में उपयोग होने वाली विद्युत्-चुम्बकीय तरंगों के नाम और तरंगदैर्घ्य परिसर लिखिए:
 - (i) रेडार प्रणालियों में विमान चालन (पथ-प्रदर्शन) में
 - (ii) फ़सलों की वृद्धि के प्रेक्षण के लिए पृथ्वी के उपग्रहों में

29. निम्नलिखित प्रत्येक के लिए कारण दीजिए :

- (a) यंग के द्विझिरी प्रयोग में पर्दे के कुछ बिन्दुओं पर प्रकाश की तीव्रता शून्य होती है।
- (b) किसी पोलेरॉइड द्वारा पारगमित प्रकाश की तीव्रता उस पर आपतित अध्रुवित प्रकाश की तीव्रता से कम होती है।
- (c) एकल झिरी विवर्तन प्रयोग में, जब श्वेत प्रकाश स्रोत का उपयोग किया जाता है, तो पर्दे पर केन्द्रीय श्वेत उच्चिष्ठ के चारों ओर कुछ रंगीन फ्रिंजें दिखाई देती हैं।
- 30. दो p-n संधि डायोडों का उपयोग करके किसी पूर्ण तरंग दिष्टकारी का परिपथ आरेख खींचिए । इसकी कार्यविधि की व्याख्या कीजिए तथा निवेशी और निर्गत वोल्टता के विचरणों को दर्शाइए ।
- 31. (a) दो सेलों के वि.वा. बल (emf) E_1 और E_2 तथा इनके आन्तरिक प्रतिरोध क्रमशः r_1 और r_2 हैं । जब इनके पार्श्व संयोजन को किसी बाह्य प्रतिरोध R से संयोजित किया जाता है, इनके तुल्य वि.वा. बल (emf) तथा आंतरिक प्रतिरोध के लिए व्यंजक व्युत्पन्न कीजिए । यह मानिए कि दोनों सेल एक-दूसरे की सहायता कर रहे हैं ।
 - (b) उस प्रकरण में जब दोनों सेल सर्वसम हैं और प्रत्येक का वि.वा. बल (emf) $E=5~V~\text{तथा आंतरिक प्रतिरोध } \mathbf{r}=2~\Omega~\textbf{है},~R=10~\Omega~\textbf{के बाह्य प्रतिरोध के सिरों}$ पर वोल्टता परिकलित कीजिए।

3

3

3

SECTION C

- 28. (a) Write the expression for the speed of light in a material medium of relative permittivity ε_r and relative magnetic permeability μ_r .
 - (b) Write the wavelength range and name of the electromagnetic waves which are used in (i) radar systems for aircraft navigation, and (ii) Earth satellites to observe the growth of the crops.

29. Give reasons for each of the following:

- (a) The intensity of light at some points on the screen in Young's double slit experiment is zero.
- (b) The intensity of light transmitted by a polaroid is less than the intensity of the unpolarised light incident on it.
- (c) In the single slit diffraction experiment, some coloured fringes around the central white maximum are observed on the screen when one uses a source of white light.
- **30.** Draw the circuit diagram of a full wave rectifier using two p-n junction diodes. Explain its working and show input and output voltage variations.
- 31. (a) Two cells of emf E_1 and E_2 have their internal resistances r_1 and r_2 , respectively. Deduce an expression for the equivalent emf and internal resistance of their parallel combination when connected across an external resistance R. Assume that the two cells are supporting each other.
 - (b) In case the two cells are identical, each of emf E = 5 V and internal resistance $r = 2 \Omega$, calculate the voltage across the external resistance $R = 10 \Omega$.

3

3

3

- **32.** $V = V_0 \sin \omega t$ के किसी प्रत्यावर्ती धारा (ac) स्नोत से श्रेणी में कोई प्रतिरोध R तथा संधारित्र C संयोजित हैं।
 - (a) परिपथ में तात्क्षणिक धारा (I) के लिए व्यंजक प्राप्त कीजिए।
 - (b) ωt के फलन के रूप में V और I के विचरणों को ग्राफ द्वारा दर्शाइए I

3

- 33. (a) किसी धारावाही वृत्ताकार कुण्डली, जिसकी त्रिज्या r तथा फेरों की संख्या N है, से धारा (I) प्रवाहित हो रही है। इस कुण्डली से संबद्ध चुम्बकीय क्षेत्र के लिए व्यंजक लिखिए।
 - (b) यह मानिए कि उपर्युक्त कुण्डली को YZ तल में इसके केन्द्र को मूल-बिन्दु पर रखते हुए स्थित किया गया है । बिन्दु (x, 0, 0) पर इस कुण्डली के कारण उत्पन्न चुम्बकीय क्षेत्र के मान के लिए व्यंजक व्युत्पन्न कीजिए ।

अथवा

- (a) किसी गैल्वेनोमीटर की धारा सुग्राहिता की परिभाषा दीजिए और इसके लिए व्यंजक लिखिए।
- (b) किसी गैल्वेनोमीटर का प्रतिरोध G और इसकी पूर्ण पैमाना विक्षेपण धारा $I_{\mathbf{g}}$ है ।
 - (i) इस गैल्वेनोमीटर को $I_0 (I_0 > I_g)$ तक की धारा माप सकने वाले ऐमीटर में किस प्रकार परिवर्तित किया जा सकता है ?
 - (ii) इस ऐमीटर का प्रभावी प्रतिरोध क्या है ?

3

34. नाभिक $^{235}_{92}{
m Y}$ जो आरम्भ में विराम में है, एक lpha-कण को उत्सर्जित करके $^{231}_{90}{
m X}$ में अपक्षयित हो जाता है।

$$^{235}_{92}$$
Y \longrightarrow $^{231}_{90}$ X + $^{4}_{2}$ He + জর্জা

जनक नाभिक, संतित नाभिक और α -कण की बंधन ऊर्जा प्रित न्यूक्लिऑन क्रमशः 7.8~MeV, 7.835~MeV और 7.07~MeV हैं । यह पूर्वधारणा रखते हुए कि बनने वाला संतित नाभिक उत्तेजित अवस्था में नहीं है तथा अभिक्रिया की ऊर्जा में उसकी भागीदारी की उपेक्षा करते हुए उत्सर्जित α -कण की चाल ज्ञात कीजिए।

(α -कण का द्रव्यमान = $6.68 \times 10^{-27} \text{ kg}$)

- **32.** A resistance R and a capacitor C are connected in series to an ac source $V = V_0 \sin \omega t$.
 - (a) Obtain the expression for the instantaneous current (I) in the circuit.
 - (b) Show graphically variations of V and I as a function of ωt .

3

- **33.** (a) Write an expression of magnetic moment associated with a current (I) carrying circular coil of radius r having N turns.
 - (b) Consider the above mentioned coil placed in YZ plane with its centre at the origin. Derive expression for the value of magnetic field due to it at point (x, 0, 0).

OR

- (a) Define current sensitivity of a galvanometer. Write its expression.
- (b) A galvanometer has resistance G and shows full scale deflection for current I_g .
 - (i) How can it be converted into an ammeter to measure current up to $I_0 \left(I_0 > I_g \right)$?
 - (ii) What is the effective resistance of this ammeter?

3

34. The nucleus $^{235}_{92}\mathrm{Y}$, initially at rest, decays into $^{231}_{90}\mathrm{X}$ by emitting an α -particle

$${}^{235}_{92}$$
Y \longrightarrow ${}^{231}_{90}$ X + ${}^{4}_{2}$ He + energy.

The binding energies per nucleon of the parent nucleus, the daughter nucleus and α -particle are 7.8 MeV, 7.835 MeV and 7.07 MeV, respectively. Assuming the daughter nucleus to be formed in the unexcited state and neglecting its share in the energy of the reaction, find the speed of the emitted α -particle. (Mass of α -particle = 6.68×10^{-27} kg)

खण्ड घ

- 35. (a) उस स्थिति के लिए किसी खगोलीय दूरदर्शक का किरण आरेख खींचिए जिसमें अंतिम प्रतिबिम्ब अनन्त पर बनता है । इस दूरदर्शक की विभेदन क्षमता के लिए व्यंजक लिखिए ।
 - (b) किसी खगोलीय दूरदर्शक के अभिदृश्यक लेंस की फोकस दूरी $20~\mathrm{m}$ और इसकी नेत्रिका की फोकस दूरी $1~\mathrm{cm}$ है ।
 - (i) इस दूरदर्शक का कोणीय आवर्धन ज्ञात कीजिए।
 - (ii) यदि इस दूरदर्शक का उपयोग चन्द्रमा को देखने में किया जाता है, तो अभिदृश्यक लेंस द्वारा बने प्रतिबिम्ब का व्यास ज्ञात कीजिए । दिया गया है कि चन्द्रमा का व्यास 3·5 × 10⁶ m तथा चन्द्रमा की कक्षा की त्रिज्या 3·8 × 10⁸ m है ।

5

5

अथवा

- (a) कोई बिम्ब किसी अवतल दर्पण के सामने स्थित है । प्रेक्षण करने पर यह पाया जाता है कि बिम्ब का आभासी प्रतिबिम्ब बना है । प्रतिबिम्ब बनना दर्शाने के लिए किरण आरेख खींचिए तथा इससे दर्पण समीकरण, $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ व्युत्पन्न कीजिए ।
- (b) कोई बिम्ब किसी समतल-उत्तल लेंस के सामने, जिसके गोलीय पृष्ठ की वक्रता त्रिज्या 20 cm है, के सामने 30 cm दूरी पर स्थित है। यदि लेंस के पदार्थ का अपवर्तनांक 1.5 है, तो बने प्रतिबिम्ब की स्थिति और प्रकृति ज्ञात कीजिए।
- 36. (a) गाउस नियम का उपयोग करते हुए, R त्रिज्या के एकसमान आवेश वितरण σ के गोलीय खोल के कारण इसके केन्द्र से दूरी x के किसी बिन्दु पर विद्युत्-क्षेत्र के लिए व्यंजक व्युत्पन्न कीजिए, जबकि
 - (i) 0 < x < R, और
 - (ii) x > R.

SECTION D

- **35.** (a) Draw the ray diagram of an astronomical telescope when the final image is formed at infinity. Write the expression for the resolving power of the telescope.
 - (b) An astronomical telescope has an objective lens of focal length 20 m and eyepiece of focal length 1 cm.
 - (i) Find the angular magnification of the telescope.
 - (ii) If this telescope is used to view the Moon, find the diameter of the image formed by the objective lens. Given the diameter of the Moon is 3.5×10^6 m and radius of lunar orbit is 3.8×10^8 m.

OR.

- (a) An object is placed in front of a concave mirror. It is observed that a virtual image is formed. Draw the ray diagram to show the image formation and hence derive the mirror equation $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$.
- (b) An object is placed 30 cm in front of a plano-convex lens with its spherical surface of radius of curvature 20 cm. If the refractive index of the material of the lens is 1.5, find the position and nature of the image formed.

36. (a) Using Gauss law, derive expression for electric field due to a spherical shell of uniform charge distribution σ and radius R at a point lying at a distance x from the centre of shell, such that

- (i) 0 < x < R, and
- (ii) x > R.

.55/1/3

5

(b) कोई विद्युत्-क्षेत्र एकसमान है तथा धनात्मक x के क्षेत्र में यह + x दिशा के अनुदिश कार्यरत है । परन्तु इसके साथ-साथ ऋणात्मक x के क्षेत्र में - x दिशा के अनुदिश यह समान परिमाण के साथ कार्यरत है । इस क्षेत्र का मान E=200 N/C x>0 के लिए तथा E=-200 N/C x<0 के लिए है । लम्बाई 20 cm और त्रिज्या 5 cm का कोई लम्ब-वृत्तीय सिलिण्डर x-अक्ष के अनुदिश इस प्रकार स्थित है कि इसका केन्द्र मूल-बिन्दु पर तथा एक समतल फलक x=+10 cm और दूसरा फलक x=-10 cm पर है ।

ज्ञात कीजिए:

- (i) सिलिण्डर से होकर गुज़रने वाला नेट बहिर्मुखी फ्लक्स ।
- (ii) सिलिण्डर के भीतर उपस्थित कुल आवेश ।

अथवा

- (a) किसी बाह्य विद्युत्-क्षेत्र \overrightarrow{E} में $\overrightarrow{r_1}$ और $\overrightarrow{r_2}$ पर क्रमशः स्थित दो बिन्दु आवेशों q_1 और q_2 के निकाय की स्थितिज ऊर्जा के लिए व्यंजक प्राप्त कीजिए।
- (b) किसी वियुक्त बिन्दु आवेश (- q) के कारण समविभव पृष्ठ खींचिए तथा इसकी विद्युत्-क्षेत्र रेखाएँ चित्रित कीजिए।
- (c) $+1~\mu C$, $-1~\mu C$ और $+2~\mu C$ के तीन बिन्दु आवेश आरम्भ में एक-दूसरे से अनन्त दूरी पर हैं । इन सभी आवेशों को 10~cm भुजा के किसी समबाहु त्रिभुज के शीर्षों पर स्थापित करने में किया गया कुल कार्य परिकलित कीजिए ।
- 37. (a) किसी गैल्वेनोमीटर की आयताकार धारावाही कुण्डली पर कार्यरत बल-आघूर्ण के लिए व्यंजक व्युत्पन्न कीजिए। चुम्बकीय क्षेत्र को अरीय क्यों बनाया जाता है ?
 - (b) किसी α -कण को $10~{\rm kV}$ के विभवान्तर तक त्वरित किया गया है तथा यह x-अक्ष के अनुदिश गितमान है । यह y-अक्ष के अनुदिश कार्यरत $B=2\times 10^{-3}~{\rm T}$ के एकसमान चुम्बकीय क्षेत्र में प्रवेश करता है । इसके पथ की त्रिज्या ज्ञात कीजिए । $(\alpha\text{-कण का } \text{द्रव्यमान} = 6.4\times 10^{-27}~{\rm kg} \text{ लीजिए})$

अथवा

- (a) नामांकित आरेख की सहायता से किसी उच्चायी ट्रान्सफॉर्मर की कार्यविधि की व्याख्या कीजिए। निम्नलिखित की व्याख्या के लिए कारण दीजिए:
 - (i) ट्रान्सफॉर्मर का क्रोड पटलित होता है।
 - (ii) लपेटों में ताँबे (कॉपर) के मोटे तार का उपयोग किया जाता है।

5

5

5

(b) An electric field is uniform and acts along +x direction in the region of positive x. It is also uniform with the same magnitude but acts in -x direction in the region of negative x. The value of the field is E = 200 N/C for x > 0 and E = -200 N/C for x < 0. A right circular cylinder of length 20 cm and radius 5 cm has its centre at the origin and its axis along the x-axis so that one flat face is at x = +10 cm and the other is at x = -10 cm.

Find:

- (i) The net outward flux through the cylinder.
- (ii) The net charge present inside the cylinder.

OR

- (a) Find the expression for the potential energy of a system of two point charges q_1 and q_2 located at $\overrightarrow{r_1}$ and $\overrightarrow{r_2}$, respectively in an external electric field \overrightarrow{E} .
- (b) Draw equipotential surfaces due to an isolated point charge (- q) and depict the electric field lines.
- (c) Three point charges + 1 μ C, 1 μ C and + 2 μ C are initially infinite distance apart. Calculate the work done in assembling these charges at the vertices of an equilateral triangle of side 10 cm.

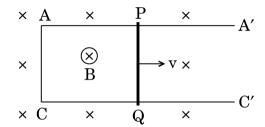
37. (a) Derive the expression for the torque acting on the rectangular current carrying coil of a galvanometer. Why is the magnetic field made radial?

(b) An α -particle is accelerated through a potential difference of 10 kV and moves along x-axis. It enters in a region of uniform magnetic field $B=2\times 10^{-3}$ T acting along y-axis. Find the radius of its path. (Take mass of α -particle = $6\cdot 4\times 10^{-27}$ kg)

OR

- (a) With the help of a labelled diagram, explain the working of a step-up transformer. Give reasons to explain the following:
 - (i) The core of the transformer is laminated.
 - (ii) Thick copper wire is used in windings.

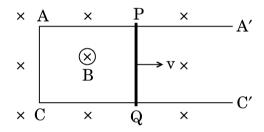
5


5

5

- (b) प्रतिरोध $0.1~\Omega$ की 20~cm लम्बी कोई चालक छड़ PQ उपेक्षणीय प्रतिरोध की दो चिकनी समान्तर पटिरयों AA' और CC' पर स्थित है । यह छड़ इन पटिरयों पर सरक सकती है तथा यह व्यवस्था एकसमान चुम्बकीय क्षेत्र B=0.4~T उत्पन्न करने वाले स्थायी चुम्बक के ध्रुवों के बीच रखी गई है । आरेख में दर्शाए अनुसार पटिरयाँ, छड़ तथा चुम्बकीय क्षेत्र तीन परस्पर लम्बवत् दिशाओं में हैं । यदि पटिरयों के सिरों A और C का लघुपथन कर दिया जाए, तो ज्ञात कीजिए
 - (i) इस छड़ को v = 10 cm/s के एकसमान वेग से गित कराने के लिए आवश्यक बाह्य बल, और

(ii) ऐसा करने के लिए आवश्यक शक्ति ।



22

- (b) A conducting rod PQ of length 20 cm and resistance $0.1~\Omega$ rests on two smooth parallel rails of negligible resistance AA' and CC'. It can slide on the rails and the arrangement is positioned between the poles of a permanent magnet producing uniform magnetic field B = 0.4~T. The rails, the rod and the magnetic field are in three mutually perpendicular directions as shown in the figure. If the ends A and C of the rails are short circuited, find the
 - (i) external force required to move the rod with uniform velocity v = 10 cm/s, and

(ii) power required to do so.

