CLASS - XII

TEST PAPER CBSE 2022-23 SUBJECT: APPLIED MATHEMATICS

Answer key

Question	1	2	3	4	5	6	7	8	9	10
Answer	\mathbf{c}	\mathbf{c}	\mathbf{d}	\mathbf{a}	\mathbf{b}	\mathbf{b}	\mathbf{b}	\mathbf{a}	\mathbf{d}	\mathbf{c}
Question	11	12	13	14	15	16	17	18	19	20
Answer	\mathbf{b}	\mathbf{b}	\mathbf{b}	\mathbf{c}	\mathbf{a}	\mathbf{c}	\mathbf{b}	\mathbf{a}	\mathbf{d}	\mathbf{d}

21. Let B be closed after n minutes. Then, pipe A runs for 18 minutes and B runs for n minutes to fill the tank.
$\therefore \frac{18}{24}+\frac{\mathrm{n}}{32}=1$
$\Rightarrow \frac{3}{4}+\frac{\mathrm{n}}{32}=1 \Rightarrow \mathrm{n}=8$.
Hence, pipe B must be closed after 8 min

OR

Suppose A takes ' t ' seconds to run 1 km race. Then, B takes $(\mathrm{t}+30)$ seconds and C takes $(t+30+15)$ seconds, i.e. $(t+45)$ seconds.
We find A beats C by $(30+15)$ seconds $=45$ seconds and it is given that A beats C by 180 metres.
\therefore C runs 180 min 45 seconds
\Rightarrow C runs $1000 \min \left(\frac{45}{180} \times 1000\right)$ seconds $=250$ seconds.

$$
\therefore \mathrm{t}+45=250 \Rightarrow \mathrm{t}=205
$$

Hence, A takes 205 seconds to run 1 km
22. $\frac{x+3}{x-2}-2 \leq 0 \Rightarrow \frac{-x+7}{x-2} \leq 0$ or $\frac{x-7}{x-2} \geq 0$

Thus, the solution set is $(-\infty, 2) \cup[7, \infty)$
23. Here, $\quad D=\left|\begin{array}{cc}2 & -1 \\ 3 & 5\end{array}\right|=13$

$$
D_{1}=\left|\begin{array}{cc}
17 & -1 \\
6 & 5
\end{array}\right|=91
$$

$$
D_{3}=\left|\begin{array}{cc}
2 & 17 \\
3 & 6
\end{array}\right|=-39
$$

Thus, $x=\frac{D_{1}}{D}=7 ; y=\frac{D_{2}}{D}=-3$

OR

A is singular gives

$$
\left|\begin{array}{ccc}
x+1 & -3 & 4 \\
-5 & x+2 & 2 \\
4 & 1 & x-6
\end{array}\right|=0
$$

i.e. $(x+1)[(x+2)(x-6)-2]+3[-5 x+30-8]+4[-5-4 x-8]=0$
i.e. $(x+1)\left(x^{2}-4 x-14\right)-15 x+66-52-16 x=0$
i.e. $x^{3}-3 x^{2}-49 x=0$
$x=0, \frac{3 \pm \sqrt{205}}{2}$
Hence, $x=0$ is the only integral value.
24. Here, $6 y=x^{3}+2$
$\Rightarrow 6 \frac{\mathrm{dy}}{\mathrm{dt}}=3 \mathrm{x}^{2} \frac{\mathrm{dx}}{\mathrm{dt}}$
As $\frac{d y}{d t}=8 \frac{d x}{d t}$, we have

$$
48 \frac{d x}{d t}=3 x^{2} \frac{d x}{d t} \Rightarrow x=4,-4
$$

$$
\text { when } \mathrm{x}=4, \mathrm{y}=11 \text {; when } \mathrm{x}=-4, \mathrm{y}=\frac{-31}{3} \text {. }
$$

\therefore Points on the curve are $(4,11),\left(-4, \frac{-31}{3}\right)$
25. Let p be the probability that an item is defective so, $\mathrm{p}=\frac{2}{100}=0.02$.

$$
\begin{aligned}
& \text { Here } \mathrm{n}=100 \therefore \mathrm{~m}=\mathrm{np}=2 \\
& \begin{aligned}
\mathrm{P}(\mathrm{X}=\mathrm{r})= & \frac{\mathrm{m}^{\mathrm{r}}}{\mathrm{r}!} \mathrm{e}^{-\mathrm{m}}=\frac{2^{r} \mathrm{e}^{-2}}{\mathrm{r}!} \\
& \Rightarrow \mathrm{P}(\mathrm{X}=3)=\frac{2^{3} \mathrm{e}^{-2}}{3!}=\frac{4}{3} \times 0.135=0.18
\end{aligned}
\end{aligned}
$$

26. Let the original quantity of dettol be x litres and the quantity of Dettol replaced by water bey litres.
So, $y=\frac{x}{3}$. After 3 operations the quantity of dettol left $=x\left(1-\frac{y}{x}\right)^{3}$.
After 3 operations the quantity of water in the bottle $=x-x\left(1-\frac{x}{3 x}\right)^{3}$
Hence, the required ratio is $x\left(1-\frac{x}{3 x}\right)^{3}:\left[x-x\left(1-\frac{x}{3 x}\right)^{3}\right]$

$$
\begin{aligned}
& =\left(1-\frac{1}{3}\right)^{3}:\left[1-\left(1-\frac{1}{3}\right)^{3}\right] \\
& =\frac{8}{27}: \frac{19}{27} \\
& =8: 19
\end{aligned}
$$

OR
Hence, $\mathrm{n}_{\mathrm{A}}=3, \mathrm{n}_{\mathrm{B}}=7$ and $\mathrm{nc}=10$.
$\frac{1}{\mathrm{n}}=\frac{1}{\mathrm{n}_{\mathrm{A}}}-\frac{1}{\mathrm{n}_{\mathrm{B}}}-\frac{1}{\mathrm{n}_{\mathrm{C}}}$
$\Rightarrow \quad \frac{1}{\mathrm{n}}=\frac{1}{3}-\frac{1}{7}-\frac{1}{10}$
$\Rightarrow \quad \frac{1}{\mathrm{n}}=\frac{19}{210} \Rightarrow \mathrm{n}=11 \frac{1}{19}$
Hence, the tank is filled in $11 \frac{1}{19}$ hours.
27. $y=x^{3}-6 x^{2}+9 x-8$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=3 x^{2}-12 x+9 \\
& \Rightarrow \frac{d y}{d x}=3(x-1)(x-3)
\end{aligned}
$$

Critical points are 1,3

Sign from left to right side on number line at $x=1$ is changing from \oplus ve to Θ ve point of therefore at $\mathrm{x}=1$ is point of local maxima.
Sign from left to right side on number line at $x=3$ is changing from $\Theta v e$ to $\oplus v e$ point of therefore at $\mathrm{x}=3$ is point of local minima.
28. Let A be the event of obtaining two sixes in the first five throws of a die. Let B be the event of obtaining a six in the sixth throw of a die.
Then required probability $=\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$
Here, $\mathrm{P}(\mathrm{B})=\frac{1}{6}$ and $\mathrm{P}(\mathrm{A})=5_{\mathrm{C}_{2}}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{3}=\frac{625}{3888}$
Thus, Required probability $=\frac{625}{3888} \times \frac{1}{6}=\frac{625}{23328}$
29. We are given

$$
\begin{aligned}
& \mu=50, \bar{x}=55, S D=10, n=20 \\
& H_{0}: \mu=50 \\
& H_{1}: \mu>50 \\
& \mathrm{t}=\frac{\overline{\mathrm{x}}-\mu}{\frac{\mathrm{SD}}{\sqrt{n}}}=\frac{55-50}{\frac{10}{\sqrt{20}}}=2.236 \\
& \quad \mathrm{t}_{\text {cal value }}>\mathrm{t}_{\text {tab value }}
\end{aligned}
$$

Hence H_{0} is rejected.
So, Advertising Campaign was successful.
30. Here $C=₹ 4,50,000$

S = ₹ $1,00,000$
and $\mathrm{n}=5$ years.
Annual depreciation $D=\frac{C-S}{n}=₹ 70,000$
Thus, yearly depreciation schedule is as follows:

Years	Book value at the beginning of the year (in ₹)	Depreciation (in ₹)	Book value at the end of the year (in ₹)
1	$4,50,000$	70,000	$3,80,000$
2	$3,80,000$	70,000	$3,10,000$
3	$3,10,000$	70,000	$2,40,000$
4	$2,40,000$	70,000	$1,70,000$
5	$1,70,000$	70,000	$1,00,000$

OR

Here $\mathrm{P}=₹ 9,50,000, \mathrm{i}=\frac{15}{1200}=0.0125$

$$
\mathrm{n}=48 \text { months }
$$

Using the reducing balancing method,

$$
\begin{aligned}
\mathrm{E} & =\frac{\mathrm{pi}}{1-(1+\mathrm{i})^{-\mathrm{n}}}=\frac{9,5,0000 \times 0.0125}{1-(1+0.0125)^{-48}} \\
& =\frac{11875}{1-(1.0125)^{-48}}=\frac{11875}{1-0.5508565} \\
& =₹ 26,439.21
\end{aligned}
$$

31.

Corner Points	Value of Z
$\mathrm{O}(0,0)$	0
$\mathrm{~A}(16,0)$	4800
$\mathrm{~B}(8,16)$	$5440 \rightarrow$ Max Value
$\mathrm{C}(0,24)$	4560

So Z is maximum at $\mathrm{B}(8,16)$
Max Value of Z = 5440
32. Here, $|\mathrm{A}|=-(-4-3)-(12+1)+2(9-1)$

$$
=7-13+16=10 \neq 0
$$

$\Rightarrow \operatorname{adj}(\mathrm{A})=\left[\begin{array}{ccc}-7 & -13 & 8 \\ 2 & -2 & 2 \\ 3 & 7 & -2\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}-7 & 2 & 3 \\ -13 & -2 & 7 \\ 8 & 2 & -2\end{array}\right]$
Hence $A^{-1}=\frac{1}{10}\left[\begin{array}{ccc}-7 & 2 & 3 \\ -13 & -2 & 7 \\ 8 & 2 & -2\end{array}\right]$
$\mathrm{AA}^{-1}=\frac{1}{10}\left[\begin{array}{ccc}-1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4\end{array}\right]\left[\begin{array}{ccc}-7 & 2 & 3 \\ -13 & -2 & 7 \\ 8 & 2 & -2\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

The matrix equation $A X=B$ is

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 1 & -3 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
2
\end{array}\right]
$$

$|\mathrm{A}|=10$
$\operatorname{adj} A=\left[\begin{array}{ccc}4 & -5 & 1 \\ 2 & 0 & -2 \\ 2 & 5 & 3\end{array}\right]=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3\end{array}\right]$
Here $A^{-1}=\frac{1}{10}\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3\end{array}\right]$
So, $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{10}\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$
Thus, $\mathrm{x}=2, \mathrm{y}=-1, \mathrm{z}=1$
33. Let the two parts be x and $15-x$. Then, let $y=x^{2}(15-x)^{3}$
$\Rightarrow \frac{d y}{d x}=x(15-x)^{2}(-5 x+30)$
$\frac{d y}{d x}=0$ gives $x=0,15,6$
Rejecting $x=0,15$. Hence $x=6$
$\frac{d^{2} y}{d^{2}}=(15-x)^{2}(-5 x+30)-5 x(15-x)^{2}-2(15-x) \times x(-5 x+30)$
At $x=6$.
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=-2430<0$
Thus, y is maximum when $\mathrm{x}=6$ and $\mathrm{y}=9$.
So, the required two parts into which 15 should be divided are 6 and 9 .

OR

Let $P(x, y)$ be the required point which is nearest to $Q(1,4)$. Then distance $P Q$ should be minimum and hence $(P Q)^{2}$ should be minimum.
Now, $(P Q)^{2}=(x-1)^{2}+(y-4)^{2}=\left(\frac{y^{2}}{2}-1\right)^{2}+(y-4)^{2}$

$$
=\frac{y^{4}-32 y+68}{4}
$$

Let $\mathrm{D}=\frac{\mathrm{y}^{4}-32 \mathrm{y}+68}{4}$
$\frac{d D}{d y}=y^{3}-8$
$\frac{\mathrm{dD}}{\mathrm{dy}}=0 \Rightarrow \mathrm{y}=2$
Showing, $y=2$ is a point of minima
Thus, the point is $(2,2)$
34. Consider year 2014 as the year of origin. Calculation of trend values by method of least squares.

Year	Sales (in lakh ₹) \mathbf{y}	Deviations from $\mathbf{2 0 1 4}(\mathbf{x})$	Squares of Deviations $\left(\mathbf{x}^{\mathbf{2}}\right)$	Sales deviation $\mathbf{(x y)}$
2010	65	-4	16	-260
2012	68	-2	4	-136
2013	70	-1	1	-70
2014	72	0	0	0
2015	75	1	1	75
2016	67	2	4	134
2019	73	5	25	365
$\mathrm{n}=7$	$\sum \mathrm{y}=490$	$\sum \mathrm{x}=1$	$\sum \mathrm{x}^{2}=51$	$\sum \mathrm{xy}=108$

The equation of the straight-line trend is

$$
\mathrm{yc}=\mathrm{a}+\mathrm{bx}
$$

Two normal equations are

$$
\begin{aligned}
& \sum \mathrm{y}=\mathrm{na}+\mathrm{b} \sum \mathrm{x} \\
& \sum \mathrm{xy}=\mathrm{a} \sum \mathrm{x}+\mathrm{b} \sum \mathrm{x}^{2}
\end{aligned}
$$

$\Rightarrow 490=7 a+b$ and $108=a+51 b$
$\Rightarrow a=69.9$ and $b=0.75$
$y_{c}=69.9+0.75 \mathrm{x}$
Thus, trend values are

$$
\begin{aligned}
& \mathrm{y} 2010=69.9+0.75(-4)=66.90 \\
& \mathrm{y} 2012=69.9+0.75(-2)=68.40 \\
& \mathrm{y} 2013=69.9+0.75(-1)=69.15 \\
& \mathrm{y} 2014=69.9+0.75(0)=69.90 \\
& \mathrm{y} 2015=69.9+0.75(1)=70.65 \\
& \mathrm{y} 2016=69.9+0.75(2)=71.40 \\
& \mathrm{y} 2019=69.9+0.75(5)=73.65
\end{aligned}
$$

35. CAGR is the mean annual growth rate of an investment over a specified period of time longer than one year.
CAGR $=\left[\left[\frac{\text { Ending investment amount }}{\text { Start amount }}\right]^{\frac{1}{\text { no. of years }}}-1\right.$
P.V. $=₹ 10,000$
F.V. $=₹ 14,000$
$\mathrm{n}=6$ years
So CAGR $=\left(\frac{14000}{10000}\right)^{\frac{1}{6}}-1=(1.4)^{\frac{1}{6}}-1$

$$
=1.058-1=0.058
$$

Hence, CAGR $=5.8 \%$
36. $\mathrm{n}=100 \mathrm{p}=\frac{6}{100}, \mathrm{~m}=\mathrm{np}$

Here $\mathrm{m}=100 \times \frac{6}{100}=6$.

$$
\mathrm{P}(\mathrm{r})=\mathrm{e}^{-\mathrm{m}} \frac{\mathrm{~m}^{\mathrm{r}}}{\mathrm{r}!}
$$

(i) $P(0)=e^{-\mathrm{m}} \frac{\mathrm{m}^{0}}{0!}=\mathrm{e}^{-6}=0.0024$
(ii) $\mathrm{P}(2)=\mathrm{e}^{-\mathrm{m}} \frac{\mathrm{m}^{2}}{2!}=\mathrm{e}^{-6} \times \frac{36}{2}=0.0432$
(iii)(a) $\mathrm{P}(0)+\mathrm{P}(1)=\mathrm{e}^{-6}+\mathrm{e}^{-6} \frac{\mathrm{~m}^{1}}{1!}=\mathrm{e}^{-6}+6 \mathrm{e}^{-6}=7 \mathrm{e}^{-6}=0.0168$

OR

(iii)(b) Mean $=$ Variance $=\mathrm{m}=\mathrm{np}=6$
37. (i) $Z=10 x+20 y$
(ii) $x+3 y \leq 24$
(iii) (a) other constraints are
$2 x+y \leq 28$
$x \geq 0$
$y \geq 0$

Corner Points	Value of Z
$O(0,0)$	0
A $(14,0)$	140
B $(12,4)$	$200 \rightarrow$ Max Value
$C(0,8)$	160

$\therefore \mathrm{P}$ is maximum at $\mathrm{B}(12,4)$; which is $₹ 200$

OR

(iii) (b)

12 bats and 4 rackets
38. Given $P=₹ 30,00,000, i=\frac{7.5}{1200}=0.00625$
and $\mathrm{n}=12 \times 20=240$ months
(i) $\mathrm{EMI}=\frac{\mathrm{pi}}{1-(1+\mathrm{i})^{-\mathrm{n}}}$

$$
=\frac{30,00,000 \times 0.00625}{1-(1.00625)^{-240}-1}
$$

$$
\begin{aligned}
& =\frac{30,00,000 \times 0.00625 \times 4.4608}{3.4608} \\
& =₹ 24167.82
\end{aligned}
$$

(ii) Interest paid on $150^{\text {th }}$ instalment

$$
\begin{aligned}
& =\frac{\mathrm{EMI} \times\left[(1+\mathrm{i})^{240-150+1}-1\right]}{(1+\mathrm{i})^{240-150+1}} \\
& =\frac{24167 \times[1.7629-1]}{1.7629} \\
& =₹ 10458.70
\end{aligned}
$$

$\Rightarrow \quad$ Principal paid in $150^{\text {th }}$ instalment $=$ EMI - interest

$$
\begin{aligned}
& =₹(24167.82-10458.70) \\
& =₹ 13709.12
\end{aligned}
$$

(iii) (a) Total Interest paid $=\mathrm{n} \times$ EMI $\times \mathrm{P}$

$$
\begin{aligned}
& =₹(240 \times 24167.82-30,00,000) \\
& =\text { ₹ } 28,00,276.80
\end{aligned}
$$

OR

(iii) (b) Total amount paid $=\mathrm{n} \times$ EMI

$$
\begin{aligned}
& =240 \times 2416.81 \\
& =₹ 5800276.8
\end{aligned}
$$

