PRACTICE PAPER-2 (SOLUTION)

CLASS – XII

SUBJECT : MATHEMATICS

SECTION – A

1. (d)

Given $A^2 = 3A$, $|A| \neq 0$, order of A is 3

:.
$$|A^{2}| = |3A|$$

 $|A|^{2} = 3^{3}|A|$ $(|A^{2}| = |A|^{2} \& |KA| = K^{n}|A|)$
 $|A| = 27$

2. (b)

As per question, direction cosines of the line :

$$\ell = \cos 45^\circ = \frac{1}{\sqrt{2}}, m = \cos 120^\circ = \frac{-1}{2}, n = \cos \theta$$

where θ is the angle, which line makes with positive z-axis. We know that, $\ell^2 + m^2 + n^2 = 1$

$$\Rightarrow \frac{1}{2} + \frac{1}{4} + \cos^2 \theta = 1$$
$$\cos^2 \theta = \frac{1}{4}$$
$$\Rightarrow \cos \theta = \frac{1}{2} = \cos \frac{\pi}{3}$$

(θ being acute)

 \Rightarrow

(b)

 $\vec{a} = \hat{i} + \alpha \hat{j} + 3\hat{k}$ $\vec{b} = 3\hat{i} - \alpha \hat{j} + \hat{k}$

 $\theta = \frac{\pi}{3}$

area of parallelogram = $|\vec{a} \times \vec{b}| = 8\sqrt{3}$.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & \alpha & 3 \\ 3 & -\alpha & 1 \end{vmatrix} = \hat{i}(4\alpha) - \hat{j}(-8) + \hat{k}(-4\alpha)$$
$$\therefore \quad |\vec{a} \times \vec{b}| = \sqrt{64 + 32\alpha^2} = 8\sqrt{3}$$
$$\Rightarrow 2 + \alpha^2 = 6 \Rightarrow \alpha^2 = 4$$
$$\therefore \quad \vec{a} \cdot \vec{b} = 3 - \alpha^2 + 3 = 2$$

4. (c) $\mathbf{M} = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -2 & 0 \end{bmatrix} \begin{vmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{vmatrix} = \begin{bmatrix} 1 & 2 \\ -2 & 2 \end{bmatrix}$ $|\mathbf{M}| = 6$, adj $\mathbf{M} = \begin{vmatrix} 2 & -2 \\ 2 & 1 \end{vmatrix}$ Now $M^{-1} = \frac{\operatorname{adj} M}{|M|}$ $\therefore M^{-1} = \frac{1}{6} \begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1/3 & -1/3 \\ 1/3 & 1/6 \end{bmatrix}$ 5. (**d**) Let $I = \int_{-\infty}^{\pi} \cos x e^{\sin x} dx \dots (i)$ $I = \int_{a}^{\pi} -\cos x \, e^{\sin x} dx \qquad \dots (ii) \quad (By \text{ property } \int_{a}^{a} f(x) dx = \int_{a}^{a} f(a-x) dx)$ Adding (i) and (ii) 2I = 0I = 0**(b)** 6. $v = sin (m sin^{-1}x)$ $\Rightarrow \frac{dy}{dx} = \cos(m \sin^{-1} x) \times \left(\frac{m}{\sqrt{1 - x^2}}\right)$ (Differentiating w.r.t. x) $\Rightarrow \sqrt{1-x^2} \frac{dy}{dx} = m \cos(m \sin^{-1} x)$ (Again differentiating w.r.t. x) $\sqrt{1-x^2} \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right) \cdot \frac{1}{2\sqrt{1-x^2}} \cdot (-2x) = -m^2 \sin(m \sin^{-1} x) \times \frac{1}{\sqrt{1-x^2}}$ $\Rightarrow (1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + m^2y = 0 \qquad (\text{from (i)})$ 7. (**d**) Given differential equation is $\left(\frac{d^2y}{dx^2}\right)^5 + 4\frac{\left(\frac{d^2y}{dx^2}\right)}{\left(\frac{d^3y}{dx^3}\right)} + \frac{d^3y}{dx^3} = x^2 - 1$ $\Rightarrow \left(\frac{d^2y}{dx^2}\right)^5 \left(\frac{d^3y}{dx^3}\right) + 4 \left(\frac{d^2y}{dx^2}\right)^5 + \left(\frac{d^3y}{dx^3}\right)^2 = (x^2 - 1) \left(\frac{d^3y}{dx^3}\right)$ The highest order derivative in the given equation is $\frac{d^3y}{dx^3}$ and its highest power is 2 Therefore

m = 3 and n = 2. m + n = 3 + 2 = 5

ALLEN[®]

13. (c) \therefore B = A' \Rightarrow |B| = |A'| = |A| $\therefore |AB| = |A||B| = (-4)(-4) = 16$ 14. **(b)** Given, $|\vec{a}| = |\vec{b}|$, $|\vec{a} \times \vec{b}| = |\vec{a}|$ and $\vec{a} \perp \vec{b}$ Now, $|\vec{a} \times \vec{b}| = |\vec{a}| \implies |\vec{a}| |\vec{b}| \sin 90^\circ = |\vec{a}| \implies |\vec{b}| = 1 = |\vec{a}|$ \therefore \vec{a} and \vec{b} are mutually perpendicular unit vectors. Let θ be the angle between $(\vec{a} + \vec{b} + (\vec{a} \times \vec{b}))$ and \vec{a} Let $\vec{a} = \hat{i}$, $\vec{b} = \hat{j}$ $\therefore \vec{a} \times \vec{b} = \hat{k}$ $\cos \theta = \frac{\left(\hat{i} + \hat{j} + \hat{k}\right) \cdot \hat{i}}{\sqrt{2} \cdot \sqrt{1}} = \frac{1}{\sqrt{2}} \implies \theta = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ 15. **(b)** Given ; Z = px + qySince the minimum value of Z occurs at (3, 0) and (1, 1): 3p = p + q or $p = \frac{q}{2}$ \Rightarrow 16. (c) Given, $P = \begin{vmatrix} 2 & -1 \\ 5 & -3 \end{vmatrix}$ $KI - 8P = \begin{bmatrix} K & 0 \\ 0 & K \end{bmatrix} - \begin{bmatrix} 16 & -8 \\ 40 & -24 \end{bmatrix} = \begin{bmatrix} K - 16 & 8 \\ -40 & K + 24 \end{bmatrix} \qquad \dots (i) \qquad \left(\because I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$ $P^{2} = P \times P = \begin{bmatrix} 2 & -1 \\ 5 & -3 \end{bmatrix} \times \begin{bmatrix} 2 & -1 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -5 & 4 \end{bmatrix}$ $P^{3} = P^{2} \times P = \begin{bmatrix} -1 & 1 \\ -5 & 4 \end{bmatrix} \times \begin{bmatrix} 2 & -1 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 10 & -7 \end{bmatrix}$ $\mathbf{P}^{6} = \mathbf{P}^{3} \times \mathbf{P}^{3} = \begin{bmatrix} 3 & -2 \\ 10 & -7 \end{bmatrix} \times \begin{bmatrix} 3 & -2 \\ 10 & -7 \end{bmatrix} = \begin{bmatrix} -11 & 8 \\ -40 & 29 \end{bmatrix}$...(ii) from (i) & (ii) $\therefore P^6 = KI - 8P$ $\begin{bmatrix} -11 & 8\\ -40 & 29 \end{bmatrix} = \begin{bmatrix} K-16 & 8\\ -40 & K+24 \end{bmatrix} \Rightarrow -11 = K - 16 \Rightarrow K = 5$

ALLEN[®]

17. (a) Given, $\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\overrightarrow{OB} = -3\hat{i} - 2\hat{j} + \hat{k}$ Area of $\triangle OAB = \frac{1}{2} |\overrightarrow{OA} \times \overrightarrow{OB}|$ Now, $\overrightarrow{OA} \times \overrightarrow{OB} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -3 & -2 & 1 \end{vmatrix} = 8\hat{i} - 10\hat{j} + 4\hat{k}$ $\Rightarrow |\overrightarrow{OA} \times \overrightarrow{OB}| = \sqrt{64 + 100 + 16} = \sqrt{180}$ So area of $\triangle OAB = \frac{1}{2}\sqrt{180} = 3\sqrt{5}$ sq. units 18. (b) $\left[\frac{|x-1|}{2} + a \quad x > 1 \right]$

Given that
$$f(x) = \begin{cases} \frac{1}{1-x} + a, \ x > 1\\ a+b, \ x=1\\ \frac{|x-1|}{1-x} + b, \ x < 1 \end{cases}$$

: f(x) is continuous at x = 1; therefore, $\lim_{h \to 0} f(1+h) = \lim_{h \to 0} f(1-h) = f(1)$

$$\therefore$$
 f(1) = a + b (given)

RHL =
$$\lim_{h \to 0} f(1 + h) = \lim_{h \to 0} \frac{|1 + h - 1|}{1 - (1 + h)} + a = -1 + a$$

 $\Rightarrow a + b = -1 + a \Rightarrow b = -1$
LHL = $\lim_{h \to 0} f(1 - h) = \lim_{h \to 0} \frac{|1 - h - 1|}{1 - (1 - h)} + b = 1 + b$
 $\therefore a + b = 1 + b \Rightarrow a = 1$

19. (a)

Given equations
$$3\ell + m + 5n = 0$$
 ...(i)

$$6 mn - 2 n\ell + 5 \ell m = 0$$

m(6n + 5\ell) - 2n\ell = 0(ii)

From (i)
$$m = -3\ell - 5n$$
 ...(iii)

Putting in (ii)
$$\Rightarrow$$
 $-(6n + 5\ell) (3\ell + 5n) - 2n\ell = 0$
 \Rightarrow $30 n^2 + 45\ell n + 15\ell^2 = 0$
 \Rightarrow $2n^2 + 3n\ell + \ell^2 = 0$

...

either $\ell = -2n$ or

m = -2n from (iii)

 $\ell = -n$

or

Direction numbers of the two lines are

$$<-2n, n, n > and <-n, -2n, n >$$

m = n

i.e.,
$$<-2, 1, 1>$$
 and $<-1, -2, 1>$

 \Rightarrow

if θ is the acute angle between the lines, then

$$\cos\theta = \frac{|(-2) \times (-1) + 1 \times (-2) + 1 \times 1|}{\sqrt{4 + 1 + 1}\sqrt{1 + 4 + 1}} = \frac{1}{6} \implies \qquad \theta = \cos^{-1}\left(\frac{1}{6}\right)$$

Hence, Both A and R are true and R is the correct explanation of A

20. **(d)**

Assertion : Domain of sec⁻¹x is $(-\infty, -1] \cup [1, \infty)$

 \therefore sec⁻¹ (2x + 1) is meaningful, if

 $2x + 1 \ge 1$ or $2x + 1 \le -1$

- $x \ge 0$ or $x \le -1$
- $\therefore x \in (-\infty, -1] \cup [0, \infty)$
- So, Assertion is false

$$\sec^{-1}(-2) = \pi - \sec^{-1}(2) = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \in [0,\pi] - \left\{\frac{\pi}{2}\right\}$$

So, reason is true.

SECTION – B

Let angle between $\vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ is α and given $|\vec{\mathbf{b}} \times \vec{\mathbf{c}}| = \sqrt{15}$ 21.

$$\Rightarrow |\vec{\mathbf{b}}| |\vec{\mathbf{c}}| \sin \alpha = \sqrt{15}$$

$$\sin \alpha = \frac{\sqrt{15}}{4} ; \therefore \cos \alpha = \frac{1}{4}$$

[1/2]

Now, $\vec{\mathbf{b}} - 2\vec{\mathbf{c}} = \lambda \vec{\mathbf{a}}$

- $\left[\because \vec{a}^2 = \left| \vec{a} \right|^2 \right]$ $\Rightarrow |\vec{\mathbf{b}} - 2\vec{\mathbf{c}}|^2 = \lambda^2 |\vec{\mathbf{a}}|^2$
- $|\vec{\mathbf{b}}|^2 + 4|\vec{\mathbf{c}}|^2 4(\vec{\mathbf{b}}\cdot\vec{\mathbf{c}}) = \lambda^2|\vec{\mathbf{a}}|^2$ [1]

$$16 + 4 - 4\{|\vec{\mathbf{b}}||\vec{\mathbf{c}}|\cos\alpha\} = \lambda^2$$

$$16 + 4 - 4 \times 4 \times 1 \times \frac{1}{4} = \lambda^2 \Longrightarrow \lambda^2 = 16 \Longrightarrow \lambda = \pm 4.$$
 [1/2]

22.

OR

Here,
$$\ell = \cos\theta$$
, $m = \cos\beta$, $n = \cos\theta$, $(\because \ell = n)$
Now, $\ell^2 + m^2 + n^2 = 1 \Rightarrow 2\cos^2\theta + \cos^2\beta = 1$ [4]
 $\Rightarrow 2\cos^2\theta = \sin^2\beta$ [Given, $\sin^2\beta = 3\sin^2\theta$]
 $\Rightarrow 2\cos^2\theta = 3\sin^2\theta$
 $\Rightarrow 2\cos^2\theta - 3(1 - \cos^2\theta) = 0$
 $\Rightarrow 5\cos^2\theta = 3$,
 $\therefore \cos^2\theta = \frac{3}{5}$ [142]
Given, $y = x \sin y$; differentiating both sides w.r.t. x.
 $\frac{dy}{dx} = x \cos y \frac{dy}{dx} + \sin y.1 \Rightarrow \frac{dy}{dx} - x \cos y \frac{dy}{dx} = \sin y$
 $\Rightarrow \frac{dy}{dx} = \frac{\sin y}{1 - x \cos y}$ [1]
or $x \frac{dy}{dx} = \frac{x \sin y}{1 - x \cos y}$, (multiplying both sides by x)
 $\Rightarrow x \frac{dy}{dx} = \frac{y}{1 - x \cos y}$ ($\because x \sin y = y$) [1]

23. Let V, S and r denote the volume, surface area and radius of the salt ball respectively at any instant t.

Then V =
$$\frac{4}{3}\pi r^3$$
 and S = $4\pi r^2$

It is given that the rate of decrease of the volume V is proportional to the surface area S.

i.e.
$$\frac{dV}{dt} \propto S$$
 or $\frac{dV}{dt} = -KS$, where $K > 0$ is the constant of proportionality.
 $\frac{dV}{dt} = -KS$

$$\Rightarrow \frac{d}{dt} \left(\frac{4}{3}\pi r^{3}\right) = -K(4\pi r^{2})$$

$$\Rightarrow 4\pi r^{2} \frac{dr}{dt} = -4\pi K r^{2}$$

$$\Rightarrow \frac{dr}{dt} = -K$$
[1]

So, r decrease with a constant rate

[1]

24. Let required vector
$$\vec{c} = \lambda(\vec{a} \times \vec{b})$$

$$\Rightarrow \quad \vec{c} = \lambda \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ 3 & -1 & 2 \end{vmatrix}$$
or
$$\vec{c} = \lambda(\hat{i} - 11\hat{j} - 7\hat{k}) \qquad \dots(i) \qquad [1]$$

$$\Rightarrow \quad |\vec{c}| = |\lambda| \sqrt{1 + 121 + 49}$$

$$\Rightarrow \quad \sqrt{171} = |\lambda| \sqrt{171} \qquad (given |\vec{c}| = \sqrt{171})$$

$$\Rightarrow \quad \lambda = \pm 1 \text{ put in equation (i), we have}$$

$$\vec{c} = \pm (\hat{i} - 11\hat{j} - 7\hat{k}) \qquad [1]$$
25.
$$\sin^{-1} \left[\cos \left\{ \sin^{-1} \left(-\frac{\sqrt{3}}{2} \right) \right\} \right]$$

$$= \sin^{-1} \left\{ \cos \left(-\frac{\pi}{3} \right) \right\} \qquad [\because \sin^{-1}(-x) = -\sin^{-1}x] \qquad [1/2]$$

$$= \sin^{-1} \left\{ \cos \left(\frac{\pi}{3} \right) \right\} \qquad [\because \cos(-\theta) = \cos \theta] \qquad [1/2]$$

OR

Given; $f : R \rightarrow \{x \in R : -1 < x < 1\}$ defined by $f(x) = \frac{x}{1+|x|}, x \in R$

$$\therefore f(x) = \begin{cases} \frac{x}{1+x} ; x \ge 0\\ \frac{x}{1-x} ; x < 0 \end{cases}$$

For one-one function: Let $f(x_1) = f(x_2)$

$$\Rightarrow \qquad \frac{\mathbf{x}_1}{\mathbf{1} + |\mathbf{x}_1|} = \frac{\mathbf{x}_2}{\mathbf{1} + |\mathbf{x}_2|}$$

Case I : When $x_1 \& x_2$ are positive:

$$\mathbf{f}(\mathbf{x}_1) = \mathbf{f}(\mathbf{x}_2)$$

$$\frac{\mathbf{x}_1}{1+\mathbf{x}_1} = \frac{\mathbf{x}_2}{1+\mathbf{x}_2} \implies \mathbf{x}_1 = \mathbf{x}_2$$
^[1/2]

Case II : When $x_1 \& x_2$ are negative:

$$\frac{\mathbf{x}_1}{\mathbf{I} - \mathbf{x}_1} = \frac{\mathbf{x}_2}{\mathbf{I} - \mathbf{x}_2} \Longrightarrow \mathbf{x}_1 = \mathbf{x}_2$$
[1/2]

Case III : When $x_1 > 0$ and $x_2 < 0$ We have $f(x_1) = f(x_2)$ $\Rightarrow \frac{x_1}{1+x_1} = \frac{x_2}{1-x_2}$ $\Rightarrow x_1 - x_1 x_2 = x_2 + x_1 x_2$ $\Rightarrow x_1 - x_2 = 2x_1 x_2$ This is not possible when $x_1 > 0$ and $x_2 < 0$ $\therefore x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$

: f is one-one

26.

- SECTION CLet $I = \int_{\pi/6}^{\pi/3} \frac{\sin x + \cos x}{\sqrt{\sin 2x}} dx$ Put $\sin x \cos x = t \Rightarrow (\cos x + \sin x) dx = dt$ [1/2]
 When $x = \frac{\pi}{6}, t = \frac{(1 \sqrt{3})}{2}$ & when $x = \frac{\pi}{3}, t = \frac{(\sqrt{3} 1)}{2}$ also, $\sin x \cos x = t \Rightarrow \sin^2 x + \cos^2 x 2\sin x \cos x = t^2$ $\Rightarrow \sin 2x = 1 t^2$ $\therefore I = \int_{\frac{(1 \sqrt{3})}{2}}^{\sqrt{5} 1/2} \frac{1}{\sqrt{1 t^2}} dt$ $= \left[\sin^{-1} t \int_{(-\sqrt{5})/2}^{\sqrt{5} 1/2} dt \right]$ $= \sin^{-1} \left(\frac{\sqrt{3} 1}{2}\right) \sin^{-1} \left(\frac{1 \sqrt{3}}{2}\right)$ [1]
- 27. Let E_1 and E_2 be the events of getting a total 10 by A and B respectively favorable outcomes of total 10 is {(6, 4),(5, 5),(4, 6)} Total outcomes = $6^2 = 36$

Now
$$P(E_1) = P(E_2) = \frac{3}{36} = \frac{1}{12}$$

 $P(\overline{E}_1) = P(\overline{E}_2) = \frac{11}{12}$
 $P(A \text{ wins}) = P(E_1) + P(\overline{E}_1)P(\overline{E}_2)P(E_1) + \dots$
[1]

28.

$$\begin{aligned} &= \frac{1}{12} + \frac{1}{12} \times \left(\frac{11}{12}\right)^2 + \frac{1}{12} \times \left(\frac{11}{12}\right)^4 + \dots \\ &= \frac{1}{12} \left[\frac{1 + \left(\frac{11}{12}\right)^2 + \left(\frac{11}{12}\right)^4 + \dots}{\text{Infinite G.P.}} \right] = \frac{1}{12} \left[\frac{1}{1 - \frac{11^2}{12^2}} \right] \qquad \left(\because S_\infty = \frac{a}{1 - r} \right) \end{aligned} \tag{1}$$

$$P(A \text{ wins}) = \frac{1}{12} \times \left[\frac{12^2}{144 - 121} \right] = \frac{12}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{11}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{12}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{12}{23}$$

$$P(B \text{ wins}) = 1 - P (\text{win } A) = 1 - \frac{12}{23} = \frac{12}{23}$$

$$P(B \text{ wins}) = 1 - \frac{12}{23} = \frac{12}{23}$$

$$P(B \text{ wins}) = 1 - \frac{12}{23} = \frac{12}{23}$$

$$P(B \text{ wins}) = 1 + \frac{12}{23} = \frac{12}{23}$$

$$P(B \text{ wins}) = 1 + \frac{12}{23} = \frac{12}{23}$$

$$P(B \text{ wins}) = 1 + \frac{12}{23} = \frac{12}{23}$$

$$P(B \text{ wins}) = 1 + \frac{12}{23} = \frac{12}{23}$$

$$P(B \text{ wins}) = 1 + \frac{12}{23} = \frac{12}{23}$$

$$P(B \text{ wins}) = 1 + \frac{12}{23} = \frac{12}{23}$$

$$P(B \text{ wins}) = 1 + \frac{12}{23} = \frac{12}{23}$$

$$P(B \text{ wins}) = 1 + \frac{12}{23} = \frac{12}{23}$$

$$P(B \text{ wins}) = 1 + \frac$$

Substituting the values of P and t in (iii), we get C = 1000. Therefore, equation (iii), gives

$$P = 1000 e^{\frac{t}{20}}$$

Let t years be the time required to double the principal. Then

$$2000 = 1000e^{\frac{t}{20}} \implies t = 20\log_{e} 2$$
 [1]

 \Rightarrow

 \Rightarrow

 \Rightarrow

.(ii)

OR

The given differential equation can be written as $\frac{dy}{dx} = \frac{y\cos\left(\frac{y}{x}\right) + x}{x\cos\left(\frac{y}{x}\right)}$ (i)

Let
$$F(x, y) = \frac{y\cos\left(\frac{y}{x}\right) + x}{x\cos\left(\frac{y}{x}\right)} = \frac{y}{x} + \sec\left(\frac{y}{x}\right) = f\left(\frac{y}{x}\right)$$
 [1]

Thus, F(x, y) is a homogeneous function of degree zero. Therefore, the given differential equation is a homogeneous differential equation. To solve it we make the substitution

Differentiating equation (ii) with respect to x, we get

$$\frac{dy}{dx} = v + x \frac{dv}{dx} \qquad \dots (iii)$$

Substituting the value of y and $\frac{dy}{dx}$ in equation (i), we get

$$v + x \frac{dv}{dx} = \frac{v \cos v + 1}{\cos v}$$
$$x \frac{dv}{dx} = \frac{v \cos v + 1}{\cos v} - v$$
$$x \frac{dv}{dx} = \frac{1}{\cos v}$$
$$\cos v \, dv = \frac{1}{x} dx \qquad (Separating v)$$

(Separating variables) [1]

Integrate both sides

$$\Rightarrow \int \cos v \, dv = \int \frac{1}{x} dx$$

$$\Rightarrow \quad \sin v = \log|x| + \log|C|$$

$$\Rightarrow \quad \sin v = \log|Cx|$$

Replacing v by $\frac{y}{x}$, we get $\sin\left(\frac{y}{x}\right) = \log|Cx|$ [1]
Which is the general solution of the differential equation (i)

Which is the general solution of the differential equation (i).

29. Minimize Z = 6x + 21ysubject to constraints $x + 2y \le 3, x + 4y \ge 4$ $3x + y \ge 3, x \ge 0, y \ge 0$

[11/2]

[1]

Since, feasible region is bounded, so

Minimum value of Z is 21.54 at point B
$$\left(\frac{8}{11}, \frac{9}{11}\right)$$
 [1/2]

$$30. \quad \int_{0}^{\pi/2} \frac{\cos x}{1 + \cos x + \sin x} dx = \int_{0}^{\pi/2} \frac{\cos^{2}(x/2) - \sin^{2}(x/2)}{2\cos^{2}(x/2) + 2\sin(x/2)\cos(x/2)} dx \qquad [1/2] = \frac{1}{2} \int_{0}^{\pi/2} \frac{1 - \tan^{2}(x/2)}{1 + \tan(x/2)} dx \qquad [Divide Nr & Dr by \cos^{2} \frac{x}{2}] = \frac{1}{2} \int_{0}^{\pi/2} \left[1 - \tan\left(\frac{x}{2}\right) \right] dx \qquad [1/2] = \frac{1}{2} \left[x + 2\log\cos\frac{x}{2} \right]_{0}^{\pi/2} \qquad [1/2]$$

 $=\frac{\pi}{4} + \log \frac{1}{\sqrt{2}}$ [1/2]

Let
$$I = \int_0^{\pi/2} \left| \sin\left(x - \frac{\pi}{4}\right) \right| dx$$

$$x - \frac{\pi}{4}$$
 is $-ve$ when $x \le \frac{\pi}{4}$ and $+ve$ when $x > \frac{\pi}{4}$ [1/2]

$$\therefore I = -\int_0^{\pi/4} \sin\left(x - \frac{\pi}{4}\right) dx + \int_{\pi/4}^{\pi/2} \sin\left(x - \frac{\pi}{4}\right) dx \qquad [1/2]$$

$$= \left[\cos\left(x - \frac{\pi}{4}\right) \right]_{0}^{\pi/4} - \left[\cos\left(x - \frac{\pi}{4}\right) \right]_{\pi/4}^{\pi/2} = \left(1 - \frac{1}{\sqrt{2}}\right) - \left(\frac{1}{\sqrt{2}} - 1\right)$$

$$= 2 - \sqrt{2} .$$
[1/2]

31. Let I =
$$\int \frac{3x+5}{(x^3-x^2-x+1)} dx$$

Let
$$\frac{3x+5}{(x^3-x^2-x+1)} = \frac{3x+5}{(x-1)^2(x+1)} = \frac{A}{(x-1)} + \frac{B}{(x-1)^2} + \frac{C}{(x+1)}$$
 [1]

$$\Rightarrow (3x+5) = A(x-1)(x+1) + B(x+1) + C(x-1)^{2} \qquad \dots (1)$$

Put x = 1 in equation (1) we get B = 4

Put x =
$$-1$$
 in equation (1) we get C = $\frac{1}{2}$

Comparing the coefficient of ' x^{2} ' on both sides of (1); we get:

$$A + C = 0 \Longrightarrow A = -C = -\frac{1}{2}$$
^[1]

$$\Rightarrow \frac{(3x+5)}{(x^3-x^2-x+1)} = \frac{-1}{2(x-1)} + \frac{4}{(x-1)^2} + \frac{1}{2(x+1)}$$

$$\therefore I = \int \frac{(3x+5)}{(x^3-x^2-x+1)} dx$$

$$= \frac{-1}{2} \int \frac{dx}{x-1} + 4 \int \frac{dx}{(x-1)^2} + \frac{1}{2} \int \frac{dx}{(x+1)}$$

$$= \frac{-1}{2} \log|x-1| - \frac{4}{(x-1)} + \frac{1}{2} \log|x+1| + C$$
[1]

SECTION – D			
	$\begin{bmatrix} 3 & 4 & 2 \end{bmatrix}$		
32.	Given $A = \begin{bmatrix} 0 & 2 & -3 \end{bmatrix}$		
	1 - 2 - 6		
	$ = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} $		
	$\Rightarrow A = 5(12-6) - 4(0+3) + 2(0-2)$ - 18 12 4-2 \ = 0	[1]	
	$-10 - 12 - 4 - 2 \neq 0$ Hence Δ^{-1} exists	[1]	
	Now co-factor are given as:		
	$C_{11} = 6, C_{12} = -3, C_{13} = -2.$		
	$C_{21} = -28, C_{22} = 16, C_{23} = 10,$		
	$C_{31} = -16, C_{32} = 9, C_{33} = 6$	[1]	
	$\begin{bmatrix} 6 & -3 & -2 \end{bmatrix}^{\mathrm{T}}$		
	So adi $A = \begin{vmatrix} -28 & 16 & 10 \end{vmatrix}$		
	$-16 \ 9 \ 6$		
	6 -28 -16		
	$= \begin{vmatrix} -3 & 16 & 9 \end{vmatrix}$	[1]	
	$\begin{bmatrix} -2 & 10 & 6 \end{bmatrix}$		
	$\begin{bmatrix} 6 & -28 & -16 \end{bmatrix}$		
	$\therefore A^{-1} = \frac{1}{1-1} \operatorname{adj} A \implies A^{-1} = \frac{1}{-1} \begin{vmatrix} -3 & 16 & 9 \end{vmatrix} \qquad \dots \dots (i)$		
	A = 2 A -2 A -2		
	The given system of linear equation are :		
	3x + 4y + 2z = 8		
	2y - 3z = 3		
	x - 2y + 6z = -2		
	It can be represented as :		
	$\begin{bmatrix} 3 & 4 & 2 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 8 \end{bmatrix}$		
	$\Rightarrow \begin{vmatrix} 0 & 2 & -3 \end{vmatrix} y = 3$		
	1 -2 6 z -2		
	$\rightarrow \Delta X - B$		
	$\Rightarrow X = A^{-1} B$	[1]	
	$\begin{bmatrix} 6 & -28 & -16 \end{bmatrix} \begin{bmatrix} 8 & 1 \end{bmatrix}$	[*]	
	$X = \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix} \begin{bmatrix} 0 \\ 20 \end{bmatrix} \begin{bmatrix} 10 \\ 3 \\ 3 \end{bmatrix}$ (From equation (i))		
	$A = \frac{1}{2} \begin{bmatrix} -3 & 10 & 3 \\ 2 & 2 \end{bmatrix}$ (Promequation (i))		
	1 48 - 84 + 32		
	$=\frac{1}{2} -24 + 48 - 18$		
	$\begin{bmatrix} -16+30-12 \end{bmatrix}$		
	$\begin{bmatrix} x \end{bmatrix} \begin{bmatrix} -4 \end{bmatrix}$		
	$\Rightarrow \mathbf{y} = \frac{1}{2} 6 \Rightarrow \mathbf{x} = -2, \mathbf{y} = 3, \mathbf{z} = 1$	[1]	
		[+]	
•			

33.

ALLEN[®]

34. Given lines are

1

$$\vec{t} = 3\hat{i} + 8\hat{j} + 3\hat{k} + \lambda(3\hat{i} - \hat{j} + \hat{k})$$
(i)

and
$$\vec{r} = -3\hat{i} - 7\hat{j} + 6\hat{k} + \mu(-3\hat{i} + 2\hat{j} + 4\hat{k})$$
(ii)

Equation of lines (i) and (ii) respectively in cartesian form are

Let AB:
$$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1} = \lambda$$
(iii)

and CD:
$$\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4} = \mu$$
(iv) [1]

	\therefore Also let L & M be end points of line of shortest distance on AB & CD	
	$\therefore \text{ Co-ordinates of L is } (3\lambda + 3, -\lambda + 8, \lambda + 3) \qquad \qquad L \xrightarrow{\qquad } B$	[1]
	and $M(-3\mu - 3, 2\mu - 7, 4\mu + 6)$	
	Direction ratio of LM are	
	$3\lambda + 3\mu + 6, -\lambda - 2\mu + 15, \lambda - 4\mu - 3$	[1]
Since	$LM \perp AB$ C M D	
	$\therefore 3(3\lambda + 3\mu + 6) - 1 (-\lambda - 2\mu + 15) + 1(\lambda - 4\mu - 3) = 0$	
	$\Rightarrow 11\lambda + 7\mu = 0 \qquad \dots (v)$	
	Also LM \perp CD	
	$\therefore -3(3\lambda + 3\mu + 6) + 2(-\lambda - 2\mu + 15) + 4(\lambda - 4\mu - 3) = 0$	
	$\Rightarrow -7\lambda - 29\mu = 0 \qquad \dots (vi)$	
	Solving (v) and (vi) we get	
	$\lambda = 0$ and $\mu = 0$	547
	\therefore L(3, 8, 3) and M(-3, -7, 6)	[1]
	Hence shortest distance LM = $\sqrt{(3+3)^2 + (8+7)^2 + (3-6)^2} = \sqrt{36+225+9}$	
	$= 3\sqrt{30}$ units	[1/2]
	Vector equation of LM is	
	$\vec{r} = 3\hat{i} + 8\hat{j} + 3\hat{k} + t(6\hat{i} + 15\hat{j} - 3\hat{k})$	[1/2]
	OR	
	At t = 6	
	Position of first insect is at A(6 + 6, 8 - 6, 3 + 6) \Rightarrow A(12, 2, 9)	[1/2]
	Position of 2^{nd} insect at B(1 + 6, 2 + 6, 2(6)) \Rightarrow B(7, 8, 12)	[1/2]
	\therefore Distance between insects after 6 min. = $\sqrt{(12-7)^2 + (2-8)^2 + (9-12)^2}$	
	$=\sqrt{25+36+9} = \sqrt{70}$ inches	[1/2]
	For the closest distance between two insects	[, -]
	Given equation of lines are $\ell_1 : x = 6 + t$, $y = 8 - t$, $z = 3 + t$	
	(1, 2) = (
	$\Rightarrow \vec{r} = (6i+8j+3k) + t(i-j+k) \qquad \dots (i)$	[1/2]
	and $\ell_2 : x = 1 + t, y = 2 + t, z = 2t$	
	$\Rightarrow \qquad \vec{r} = (\hat{i} + \hat{j}) + t(\hat{i} + \hat{j} + 2\hat{k})$	[1⁄2]
	On Comparing it with $\vec{r} = \vec{a} + \lambda \vec{b}$	
	$\vec{a}_1 = 6\hat{i} + 8\hat{j} + 3\hat{k}, \ \vec{b}_1 = \hat{i} - \hat{j} + \hat{k}$	
	$\vec{a} = \hat{i} + \hat{i}$ $\vec{b} = \hat{i} + \hat{i} + 2\hat{k}$	
	$a_2 = 1 + j$, $b_2 = 1 + j + 2K$	

[11/2]

Now
$$\vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 1 & 1 & 2 \end{vmatrix} = -3\hat{i} - \hat{j} + 2\hat{k}$$
 [1/2]

$$\vec{a}_2 - \vec{a}_1 = -5\hat{i} - 7\hat{j} - 3\hat{k}$$
 [1/2]

Shortest distance =
$$\left| \frac{(\vec{a}_2 - \vec{a}_1).(\vec{b}_1 \times \vec{b}_2)}{\left| \vec{b}_1 \times \vec{b}_2 \right|} \right| = \left| \frac{(-5\hat{i} - 7\hat{j} - 3\hat{k}).(-3\hat{i} - \hat{j} + 2\hat{k})}{\left| -3\hat{i} - \hat{j} + 2\hat{k} \right|} \right|$$
 [1]

$$= \left| \frac{15+7-6}{\sqrt{9+1+4}} \right| = \frac{16}{\sqrt{14}} = \frac{8}{7}\sqrt{14} \text{ inches}$$
 [1/2]

35. Reflexive :

Let (a, b) be an arbitrary element of $N \times N$, $\forall a, b \in N$. Then

- $\Rightarrow \qquad (a, b) R (a, b)$
- \Rightarrow ab(b + a) = ba(a + b) [by commutativity of addition and multiplication on N]

$$\Rightarrow L.H.S. = R.H.S.$$

Thus, (a, b) R (a, b) for all (a, b) $\in N \times N$. So R is reflexive on $N \times N$. [1]

Symmetric :

Let $(a, b), (c, d) \in N \times N$ be such that (a, b) R (c, d). Then,

$$\Rightarrow$$
 ad(b + c) = bc(a + d)

$$\Rightarrow \qquad cb(d+a) = da(c+b)$$

$$\Rightarrow \quad (c, d) R (a, b)$$

Thus, (a, b) R (c, d) \Rightarrow (c, d) R (a, b) for all (a, b), (c, d) \in N × N

So, R is symmetric on $N \times N$.

Transitive :

Let $(a, b), (c, d), (e, f) \in N \times N$ such that (a, b) R (c, d) and (c, d) R (e, f). Then,

(a, b) R (c, d)
$$\Rightarrow$$
 ad(b + c) = bc(a + d) $\Rightarrow \frac{b+c}{bc} = \frac{a+d}{ad} \Rightarrow \frac{1}{c} + \frac{1}{b} = \frac{1}{d} + \frac{1}{a}$...(i)

and, (c, d) R (e, f)
$$\Rightarrow$$
 cf(d + e) = de(c + f) $\Rightarrow \frac{d + e}{de} = \frac{c + f}{cf} \Rightarrow \frac{1}{e} + \frac{1}{d} = \frac{1}{f} + \frac{1}{c}$...(ii)

Adding (i) and (ii), we get

$$\left(\frac{1}{c} + \frac{1}{b}\right) + \left(\frac{1}{e} + \frac{1}{d}\right) = \left(\frac{1}{d} + \frac{1}{a}\right) + \left(\frac{1}{f} + \frac{1}{c}\right)$$

$$\Rightarrow \quad \frac{1}{b} + \frac{1}{e} = \frac{1}{a} + \frac{1}{f} \Rightarrow \frac{b+e}{be} = \frac{a+f}{af}$$

$$\Rightarrow \quad af(b+e) = be(a+f) \Rightarrow (a, b) R(e, f)$$
So, R is transitive on N × N.
$$[2]$$

Hence; R being reflexive, symmetric and transitive; is an equivalence relation on $N \times N$. [1/2]

ОП

	OR	
Give	en, $A = \{x \in Z : 0 \le x \le 12\}$ and $R = \{(a, b) : a, b \in A, a - b \text{ is divisible by } 4\}$	
(i)	For Reflexive relation :	
	Let $a \in A$	
	Now, $ a - a = 0$, which is divisible by 4	
	So, $(a, a) \in R \ \forall \ a \in A$	
	Hence, R is reflexive.	[1]
(ii)	For Symmetric relation:	
	Let $a, b \in A$ such that $(a, b) \in R$	
	i.e. $ \mathbf{a} - \mathbf{b} $ is divisible by 4.	
	\Rightarrow $ -(b-a) = b-a $ is also divisible by 4.	
	So, $(b, a) \in \mathbb{R}$.	
	Hence, R is symmetric.	[1]
(iii)	For Transitive relation:	
	Let a, b, $c \in A$ such that (a, b) and (b, c) $\in R$	
	i.e. $ \mathbf{a} - \mathbf{b} \& \mathbf{b} - \mathbf{c} $ is divisible by 4.	
	Let $ \mathbf{a} - \mathbf{b} = 4\mathbf{k}_1$	
	& $ b-c = 4k_2$	
	$\Rightarrow (a-b) = \pm 4k_1 \qquad \dots $	
	& $(b-c) = \pm 4k_2$ (ii)	
	Adding equations (i) & (ii);	
	$\Rightarrow (a-b) + (b-c) = \pm 4k_1 \pm 4k_2 = \pm 4(k_1 + k_2)$	
	\Rightarrow a - c is divisible by 4.	
	$\Rightarrow a-c \text{ is divisible by 4.}$	
	So, $(a, c) \in \mathbb{R}$	
	Hence, R is transitive.	[2]
	R is an equivalence relation.	
	Further, let $(x, 1) \in \mathbb{R} \forall x \in \mathbb{A}$	
	\Rightarrow x - 1 is divisible by 4	
	$\Rightarrow \qquad \mathbf{x} - 1 = 0, 4, 8$	
	\Rightarrow x = 1, 5, 9	
	$\therefore \text{Equivalence class of } 1 = [1] = \{1, 5, 9\}$	[1/2]
	[:: The set of all elements related to 1 represents its equivalence class]	
	Now, we will find equivalence class of 2 i.e. [2]	
	Let $(x, 2) \in \mathbb{R} \ \forall \ x \in \mathbb{A}$	
	\Rightarrow $ \mathbf{x}-2 =0, 4, 8$	
	\Rightarrow x = 2, 6, 10	
	Equivalence class of $[2] = \{2, 6, 10\}$.	[1/2]

SECTION – E Given volume of cylinder V = $\frac{539}{2}$ cubic units 36. (i) $\therefore V = \pi r^2 h = \frac{539}{2}$ $h = \frac{539}{2\pi r^2}$ Total surface area of the tank $S = 2\pi rh + 2\pi r^2$ $S = 2\pi r \left(\frac{539}{2\pi r^2}\right) + 2\pi r^2 = \frac{539}{r} + 2\pi r^2$ square units [1] (ii) $\therefore S = \frac{539}{r} + 2\pi r^2$ $\frac{\mathrm{dS}}{\mathrm{dr}} = -\frac{539}{\mathrm{r}^2} + 4\pi\mathrm{r}$(i) $=-\frac{539}{r^2}+\frac{4\times 22r}{7}$ $=11\left(\frac{-343+8r^3}{7r^2}\right)$ For critical points $\frac{dS}{dr} = 11 \left(\frac{-343 + 8R^3}{7r^2} \right) = 0$ $8r^3 = 343$ $r^3 = \frac{343}{8}$ $r = \frac{7}{2}$ unit [1] By first derivative test (iii) When $r < \frac{7}{2}$; $\frac{dS}{dr} < 0$ $r = \frac{7}{2}$ When $r > \frac{7}{2}$; $\frac{dS}{dr} > 0$ $\therefore \frac{dS}{dr}$ changes its sign from negative to positive at neighborhood of $r = \frac{7}{2}$ So, $r = \frac{7}{2}$ is point of minima [1] \therefore Surface area is minimum at $r = \frac{7}{2}$ and corresponding height h = $\frac{539}{2\pi r^2} = \frac{539 \times 7 \times 2 \times 2}{2 \times 22 \times 7 \times 7} = 7$ unit [1]

[1]

[1]

OR

(iii) Again differentiate equation (i) w.r.t. 'r' $\frac{\mathrm{d}^2\mathrm{S}}{\mathrm{d}\mathrm{r}^2} = \frac{2\times539}{\mathrm{r}^3} + 4\pi$ $\left.\frac{\mathrm{d}^2 \mathrm{S}}{\mathrm{d} \mathrm{r}^2}\right|_{\mathrm{r}=\frac{7}{2}} > 0$ [1] So, S is minimum at $r = \frac{7}{2}$ h = $\frac{539}{2\pi r^2} = \frac{539 \times 7 \times 2 \times 2}{2 \times 22 \times 7 \times 7} = 7$ unit [1] Since the perimeter of the floor = 200 m37. (i) i.e. $2 \times \pi \left(\frac{y}{2}\right) + 2x = 200$ $\Rightarrow \pi y + 2x = 200$...(i) [1] \therefore A = x × y (ii) \Rightarrow A = x $\left(\frac{200-2x}{\pi}\right)$ [using (i)] \Rightarrow A = $\frac{2}{\pi}(100x - x^2)$ [1] $\therefore \qquad A = \frac{2}{\pi} (100x - x^2)$ (iii) $\Rightarrow \frac{dA}{dx} = \frac{2}{\pi}(100 - 2x)$ $\Rightarrow \frac{d^2A}{dx^2} = \frac{2}{\pi} \times (-2) = -\frac{4}{\pi}$ For maximum value of A $\frac{dA}{dx} = 0$ $\Rightarrow \frac{2}{\pi} \times (100 - 2x) = 0$ \Rightarrow x = 50 Now, at x = 50, $\frac{d^2 A}{dx^2} = \frac{-4}{\pi} < 0$ i.e., A is maximum at x = 50So, Maximum value of A = $\frac{2}{\pi} \left[100 \times 50 - (50)^2 \right]$ $=\frac{2}{\pi}[5000-2500]=\frac{2}{\pi}\times 2500$ $=\frac{5000}{\pi}\mathrm{m}^2$

[2]

OR

(iii) Let B is the area of whole floor including the semi-circular ends, Then

$$B = 2 \times \frac{1}{2} \pi \left(\frac{y}{2}\right)^2 + xy$$

$$B = \frac{\pi}{4} y^2 + xy$$

$$B = \frac{\pi}{4} \left(\frac{200 - 2x}{\pi}\right)^2 + x \left(\frac{200 - 2x}{\pi}\right) \qquad \text{[using (i)]} \qquad \text{[1]}$$

$$\Rightarrow \quad B = \frac{1}{4\pi} (200 - 2x)^2 + \frac{x}{\pi} (200 - 2x)$$

$$\Rightarrow \quad B = \frac{(200 - 2x)}{\pi} \left[\frac{200 - 2x}{4} + x\right]$$

$$\Rightarrow \quad B = \frac{(200 - 2x)}{\pi} \frac{(200 + 2x)}{4} = \frac{40000 - 4x^2}{4\pi} \qquad \dots \text{(ii)}$$

$$\Rightarrow \quad \frac{dB}{dx} = \frac{1}{4\pi} (-8x) \text{ and } \frac{d^2B}{dx^2} = -\frac{8}{4\pi}$$
For maximum value of B

$$\frac{dB}{dx} = 0 \Rightarrow \frac{1}{4\pi} (-8x) = 0 \Rightarrow x = 0$$
at $x = 0$, $\frac{d^2B}{dx^2} = -\frac{8}{4\pi} < 0$
i.e., B is maximum at $x = 0$
So, maximum value of $B = \frac{40000 - x^2}{4\pi} = \frac{40000}{4\pi} = \frac{10000}{\pi} m^2$ [From equation (ii)][1]

- **38.** Let X be the random variable which represents number of tails. Here X can be 0, 1 or 2
 - (i) **Probability distribution is**

Х	0	1	2
P(X)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

(ii)	$S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$	
	Let E : at least 2 heads	
	$E = \{HHH, HHT, HTH, THH\}$	[1/2]
	and F : at most 2 head	
	$F = \{HHT, HTH, HTT, THH, THT, TTH, TTT\}$	
	$\therefore E \cap F = \{HHT, HTH, THH\}$	[1/2]
	Clearly P(E \cap F) = $\frac{3}{8}$ and P(F) = $\frac{7}{8}$	
	$P(E/F) = \frac{P(E \cap F)}{P(F)} = \frac{3/8}{7/8} = \frac{3}{7}$	[1]