ALLEN[®]

PRACTICE PAPER-1

CLASS – XII

SUBJECT: MATHEMATICS

Time : 3 Hrs.

Max. Marks: 80

General Instructions :

- 1. This question paper contains **FIVE SECTIONS A**, **B**, **C**, **D** and **E**. Each section is compulsory. However, there are internal choices in some question.
- 2. SECTION A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. SECTION B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. SECTION C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. SECTION D has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. SECTION E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

SECTION – A

The following questions are multiple-choice questions with one correct answer. Each question carries 1 mark.

- 1. The number of matrices of order 3×3 , whose entries are either 0 or 1 and the sum of all entries is a prime number, is
 - (a) 512 (b)283 (c) 282 (d) 230
- 2. Let $A = \begin{bmatrix} x & y & z \\ y & z & x \\ z & x & y \end{bmatrix}$, where x, y and z are real numbers such that x + y + z > 0 and xyz = 2. If

(d) 1

$A^{2} = I_{3}$, then the value of $x^{3} + y^{3} + z^{3}$, is (a) 5 (b) 6 (c) 7 (d) 8

3. If $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $|2\vec{a} - \vec{b}| = 5$, then $|2\vec{a} + \vec{b}|$ equals: (a) 17 (b) 7 (c) 5

4. Let the function
$$f(x) = \begin{cases} \frac{\log(1+5x) - \log(1+\alpha x)}{x} ; & \text{if } x \neq 0 \\ 10 & \text{; if } x = 0 \end{cases}$$
, is continuous at $x = 0$, then the value of α , is
(a) 5 (b) - 5 (c) 10 (d) - 10

5. If $\int \frac{\cos x - \sin x}{\sqrt{8 - \sin 2x}} dx = a \sin^{-1} \left(\frac{\sin x + \cos x}{b} \right) + C$, where C is integration constant, then the value of a and b are respectively

(a) a = 1, b = 3 (b) a = 3, b = 1 (c) a = 2, b = 2 (d) $a = \frac{1}{3}, b = 3$

6. If m and n are order and degree respectively, of the differential equation $\left(1+3\frac{d^2y}{dx^2}\right)^{5/2} = 2\frac{d^3y}{dx^3}$, then m – n is equals

(a) 1 (b)2 (c) 3 (d) -1

- 7. The solution set of the inequality $2x y \ge 1$, is (a) an open half plane containing origin.
 - (b) an closed half plane not containing origin.
 - (c) an open half plane not containing the line 2x y = 1
 - (d) an open half plane containing the line 2x y = 1
- 8. The projection of the vector $\vec{a} = 2\hat{i} \hat{j} + \hat{k}$ on the vector $\vec{b} = \hat{i} 2\hat{j} + \hat{k}$, is

(a)
$$\frac{2}{\sqrt{3}}$$
 (b) $\frac{3}{\sqrt{5}}$ (c) $\frac{4}{\sqrt{5}}$ (d) $\frac{5}{\sqrt{6}}$

9. The value of $\int_{0}^{1} \frac{dx}{(1+x+x^{2})}$, is (a) $\frac{\pi}{\sqrt{3}}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{3\sqrt{3}}$ (d) $\frac{2\pi}{3\sqrt{3}}$

10. If A is an invertible matrix and
$$A^{-1} = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$$
, then $A = ?$
(a) $\begin{bmatrix} 6 & -4 \\ -5 & 3 \end{bmatrix}$ (b) $\begin{bmatrix} 1/3 & 1/4 \\ 1/5 & 1/6 \end{bmatrix}$ (c) $\begin{bmatrix} -3 & 2 \\ 5/2 & -3/2 \end{bmatrix}$ (d) $\begin{bmatrix} 3/2 & -5/2 \\ -2 & 3 \end{bmatrix}$

ALLEN[®]

- 11. The corner points of the bounded feasible region of an LPP are A(60, 0), B(40, 20), C(60, 30) and D(120, 0). The maximum value of objective function Z = 5x + 10y occurs at
 - (a) (60, 0) only
 (b) (40, 20) only
 (c) (60, 30) and (120, 0) only
 (d) all points of line segment joining the points (60, 30) and (120, 0).

12. If A and B are two non-zero square matrices of same order such that AB = O, then

(a) $ A = 0$ or $ B = 0$	(b) $ A = 0$ and $ B = 0$
(c) $ \mathbf{A} \neq 0$ and $ \mathbf{B} \neq 0$	(d) None of these

13. If A and B are two square matrices such that

A + B =
$$\begin{bmatrix} 4 & -3 \\ 1 & 6 \end{bmatrix}$$
 and A - B = $\begin{bmatrix} -2 & -1 \\ 5 & 2 \end{bmatrix}$, then |AB| = ?
(a) 27 (b) 40 (c) - 27 (d) - 40

14. If A and B are two events such that $P(A) = \frac{1}{2}$, $P(B) = \frac{7}{12}$ and $P(A' \cup B') = \frac{1}{4}$ then events A and B are

(a) independent(c) not independent

(b) mutually exclusive(d) independent and mutually exclusive

15. The general solution of the differential equation $\frac{dy}{dx} = 2^{x+y}$, is

(a) $2^{x} + 2^{y} = C$ (b) $2^{x} + 2^{-y} = C$ (c) $2^{x} - 2^{-y} = C$ (d) $2^{-x} + 2^{y} - C$

16. If
$$y = \cos^{-1}x$$
, then $\frac{d^2y}{dx^2}$ in terms of y is
(a) $\cot y \csc^2 y$ (b) $-\cot^2 y \csc y$ (c) $\cot^2 y \csc y$ (d) $-\cot y \csc^2 y$

17. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular units vectors, then $|\vec{a} + \vec{b} + \vec{c}| = ?$

(a) 1 (b) $\sqrt{2}$ (c) 3 (d) $\sqrt{3}$

- **18.** Let P is any point on the line joining the points A(3, -1, 2) and B(0, 5, -2). If y-coordinate of P is 5, then its z-coordinate is
 - (a) 0 (b) 5 (c) -2 (d) 2

ASSERTION-REASON BASED QUESTIONS

In the following questions, a statement of **Assertion** (**A**) is followed by a statement of **Reason** (**R**). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.

19. Assertion (A) : The domain of the function $\csc^{-1}2x$ is $\left(-\infty, -\frac{1}{2}\right] \cup \left[\frac{1}{2}, \infty\right)$

Reason (R) : $\csc^{-1}(-2) = -\frac{\pi}{6}$

20. Assertion (A): If lines $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$ and $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$ are at right angle then the

value of p is $\frac{70}{11}$.

Reason (R) : The lines $\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$ and $\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$ are perpendicular, if $a_1a_2 + b_1b_2 + c_1c_2 = 0$

SECTION – B

This section comprises of very short answer type-questions (VSA) of 2 marks each

21. Evaluate: $\sin \left| 2 \cos^{-1} \left(\frac{-3}{5} \right) \right|$

OR

Show that the function $f : R \to R$, f(x) = 3 - 4x is injective. Is the function bijective ? Justify your answer.

- **22.** A man 160 cm tall, walks away from a source of light situated at the top of a pole 6 m high, at the rate of 1.1 m/s. How fast is the length of his shadow increasing when he is 1m away from the pole ?
- 23. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$ and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, find the angle between \vec{a} and \vec{b} .

OR

Find the direction ratios of the line 6x - 2 = 3y + 1 = 2z - 2 also find the carteisan equation of a line parallel to this line and passing through the point (2, -1, -1)

- 24. If $\tan^{-1}\left(\frac{x^2 y^2}{x^2 + y^2}\right) = a$, then show that $\frac{dy}{dx} = \frac{x(1 \tan a)}{y(1 + \tan a)}$
- 25. If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ such that $(\vec{a} + \lambda\vec{b}) \perp \vec{c}$, then find the value of λ .

SECTION – C

This section comprises of short answer type questions (SA) of 3 marks each

26. Evaluate: $\int \frac{2^x}{\sqrt{1-4^x}} dx$

27. A and B appear for an interview for two posts. The probability of A's selection is $\frac{1}{2}$ and that of

B's selection is $\frac{2}{5}$. Find the probability that only one of them will be selected.

OR

Three defective bulbs are mixed with 7 good ones. Let X denotes the number of defective bulbs when 3 bulbs are drawn at random. Find the mean of X.

28. Evaluate:
$$\int_{0}^{1} \frac{\log(1+x)}{(1+x^2)} dx$$

OR

Evaluate: $\int_{-\pi/4}^{\pi/4} |\sin x| dx$

ALLE

29. Solve the differential equation: $(x + 2y^3)\frac{dy}{dx} = y$

OR

Solve the differential equation: $(x\sqrt{x^2 + y^2} - y^2)dx + xydy = 0$

30. Solve the following linear programming problem graphically: Maximize Z = 400x + 300y

Subject to $x + y \le 200$, $x \ge 20$, $y \ge 4x$, $y \ge 80$

31. Evaluate: $\int \frac{x^2 + 1}{(x+1)^2} dx$

SECTION – D

This section comprises of long answer-type questions (LA) of 5 marks each

- **32.** Find the area of the region bounded by the curve $y^2 = 2y x$ and the y-axis.
- **33.** Show that the relation R defined on the set A = $\{1, 2, 3, 4, 5, 6\}$, given by R = $\{(a, b): |a b| \text{ is even}\}$ is an equivalence relation. Also find the set of all elements related to 2.

OR

Let R be a relation on the set of natural numbers N defined by $R = \{(x, y) : x \in N, 2x + y = 20\}$. Find the domain and range of the relation R. also verify whether R is reflexive, symmetric and transitive.

34. Find the length and the equation of the line of shortest distance between the lines

$$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$$
 and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$.

OR

Find the image of the point (1, 6, 3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$.

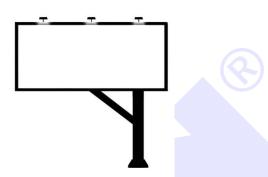
35. If $A = \begin{bmatrix} 3 & 4 & 2 \\ 0 & 2 & -3 \\ 1 & -2 & 6 \end{bmatrix}$, find A^{-1} and hence solve the following system of linear equation:

3x + 4y + 2z = 8, 2y - 3z = 3, x - 2y + 6z = -2.

SECTION – E

(This section comprises of 3 case-study/passage-based questions of 4 marks each with two sub-parts. First two case study questions have three sub-parts (i), (ii), (iii) of marks 1, 1, 2 respectively. The third case study question has two sub-parts of 2 marks each.)

36. A company wants to form a poster for advertisement Purpose. The top and bottom margins of poster should be 12 cm and the side margins should be 8 cm. Also, The area for printing the advertisement should be 1064 cm^2 .

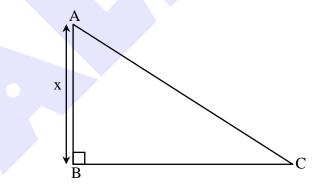


Based on the above information, answer the following question:

- (i) If w cm be the width and h cm be the height of poster, then the area of poster, expressed in terms of w and h.
- (ii) Find the area of the poster in terms of h.
- (iii) Find the values of h and w, so that area of the poster is minimum.

OR

- (iii) Find the minimum area of the poster.
- 37. The sum of the length of hypotenuse and a side of a right-angle triangle ABC such that AC + BC = 10



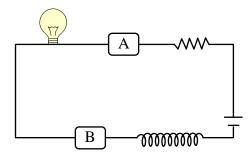
Based on the above information answer the following questions:

- (i) Find the length of base BC in terms of x.
- (ii) If S be the area of the triangle, then find the critical point of S.
- (iii) Find the maximum area of the triangle ABC

OR

(iii) Find the length of hypotenuse, when area of triangle is maximum.

38. An electronic assembly consists of two sub-systems say A and B as shown below.



From, previous testing procedures, the following probabilities are assumed to be know

P(A fails) = 0.2, P(B fails alone) = 0.15, P(A and B fail) = 0.15.

On the basis of above information answer the following questions:

- (i) Find the probability that B fails, also find the probabilities that, A fail alone.
- (ii) Find the probability that whole system fails, also find the probability that B fails while given that A fails.