PRACTICE PAPER-1

CLASS - XII
 SUBJECT: MATHEMATICS

Time : 3 Hrs.

General Instructions :

1. This question paper contains FIVE SECTIONS - A, B, C, D and E. Each section is compulsory. However, there are internal choices in some question.
2. SECTION A has $\mathbf{1 8}$ MCQ's and $\mathbf{0 2}$ Assertion-Reason based questions of $\mathbf{1}$ mark each.
3. SECTION B has $\mathbf{5}$ Very Short Answer (VSA)-type questions of $\mathbf{2}$ marks each.
4. SECTION C has $\mathbf{6}$ Short Answer (SA)-type questions of $\mathbf{3}$ marks each.
5. SECTION D has 4 Long Answer (LA)-type questions of 5 marks each.
6. SECTION E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

SECTION - A

The following questions are multiple-choice questions with one correct answer. Each question carries 1 mark.

1. The number of matrices of order 3×3, whose entries are either 0 or 1 and the sum of all entries is a prime number, is
(a) 512
(b) 283
(c) 282
(d) 230
2. Let $A=\left[\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right]$, where x, y and z are real numbers such that $x+y+z>0$ and $x y z=2$. If $A^{2}=I_{3}$, then the value of $x^{3}+y^{3}+z^{3}$, is
(a) 5
(b) 6
(c) 7
(d) 8
3. If $|\vec{a}|=2,|\vec{b}|=3$ and $|2 \vec{a}-\vec{b}|=5$, then $|2 \vec{a}+\vec{b}|$ equals:
(a) 17
(b) 7
(c) 5
(d) 1
4. Let the function $f(x)=\left\{\begin{array}{cc}\frac{\log (1+5 x)-\log (1+\alpha x)}{x} & ; \text { if } x \neq 0 \\ 10 & ; \text { if } x=0\end{array}\right.$, is continuous at $x=0$, then the value of α, is
(a) 5
(b) -5
(c) 10
(d) -10
5. If $\int \frac{\cos x-\sin x}{\sqrt{8-\sin 2 x}} d x=\sin ^{-1}\left(\frac{\sin x+\cos x}{b}\right)+C$, where C is integration constant, then the value of a and b are respectively
(a) $a=1, b=3$
(b) $a=3, b=1$
(c) $a=2, b=2$
(d) $\mathrm{a}=\frac{1}{3}, \mathrm{~b}=3$
6. If m and n are order and degree respectively, of the differential equation $\left(1+3 \frac{d^{2} y}{d x^{2}}\right)^{5 / 2}=2 \frac{d^{3} y}{d x^{3}}$, then $\mathrm{m}-\mathrm{n}$ is equals
(a) 1
(b) 2
(c) 3
(d) -1
7. The solution set of the inequality $2 x-y \geq 1$, is
(a) an open half plane containing origin.
(b) an closed half plane not containing origin.
(c) an open half plane not containing the line $2 x-y=1$
(d) an open half plane containing the line $2 x-y=1$
8. The projection of the vector $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ on the vector $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$, is
(a) $\frac{2}{\sqrt{3}}$
(b) $\frac{3}{\sqrt{5}}$
(c) $\frac{4}{\sqrt{5}}$
(d) $\frac{5}{\sqrt{6}}$
9. The value of $\int_{0}^{1} \frac{d x}{\left(1+x+x^{2}\right)}$, is
(a) $\frac{\pi}{\sqrt{3}}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{3 \sqrt{3}}$
(d) $\frac{2 \pi}{3 \sqrt{3}}$
10. If A is an invertible matrix and $A^{-1}=\left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right]$, then $A=$?
(a) $\left[\begin{array}{cc}6 & -4 \\ -5 & 3\end{array}\right]$
(b) $\left[\begin{array}{ll}1 / 3 & 1 / 4 \\ 1 / 5 & 1 / 6\end{array}\right]$
(c) $\left[\begin{array}{cc}-3 & 2 \\ 5 / 2 & -3 / 2\end{array}\right]$
(d) $\left[\begin{array}{cc}3 / 2 & -5 / 2 \\ -2 & 3\end{array}\right]$
11. The corner points of the bounded feasible region of an LPP are $A(60,0), B(40,20), C(60,30)$ and $\mathrm{D}(120,0)$. The maximum value of objective function $\mathrm{Z}=5 \mathrm{x}+10 \mathrm{y}$ occurs at
(a) $(60,0)$ only
(b) $(40,20)$ only
(c) $(60,30)$ and $(120,0)$ only
(d) all points of line segment joining the points $(60,30)$ and $(120,0)$.
12. If A and B are two non-zero square matrices of same order such that $A B=O$, then
(a) $|\mathrm{A}|=0$ or $|\mathrm{B}|=0$
(b) $|\mathrm{A}|=0$ and $|\mathrm{B}|=0$
(c) $|\mathrm{A}| \neq 0$ and $|\mathrm{B}| \neq 0$
(d) None of these
13. If A and B are two square matrices such that $\mathrm{A}+\mathrm{B}=\left[\begin{array}{cc}4 & -3 \\ 1 & 6\end{array}\right]$ and $\mathrm{A}-\mathrm{B}=\left[\begin{array}{cc}-2 & -1 \\ 5 & 2\end{array}\right]$, then $|\mathrm{AB}|=$?
(a) 27
(b) 40
(c) -27
(d) -40
14. If A and B are two events such that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ and $\mathrm{P}\left(\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}\right)=\frac{1}{4}$ then events A and B are
(a) independent
(b) mutually exclusive
(c) not independent
(d) independent and mutually exclusive
15. The general solution of the differential equation $\frac{d y}{d x}=2^{x+y}$, is
(a) $2^{x}+2^{y}=C$
(b) $2^{x}+2^{-y}=C$
(c) $2^{x}-2^{-y}=C$
(d) $2^{-x}+2^{y}-C$
16. If $y=\cos ^{-1} x$, then $\frac{d^{2} y}{d x^{2}}$ in terms of y is
(a) coty $\operatorname{cosec}^{2} y$
(b) $-\cot ^{2} y \operatorname{cosec} y$
(c) $\cot ^{2} y \operatorname{cosec} y$
(d) - coty $\operatorname{cosec}^{2} y$
17. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular units vectors, then $|\vec{a}+\vec{b}+\vec{c}|=$?
(a) 1
(b) $\sqrt{2}$
(c) 3
(d) $\sqrt{3}$
18. Let P is any point on the line joining the points $A(3,-1,2)$ and $B(0,5,-2)$. If y-coordinate of P is 5 , then its z -coordinate is
(a) 0
(b) 5
(c) -2
(d) 2

ASSERTION-REASON BASED QUESTIONS

In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.
(a) Both A and R are true and R is the correct explanation of A .
(b) Both A and R are true but R is not the correct explanation of A .
(c) A is true but R is false.
(d) A is false but R is true.
19. Assertion (A) : The domain of the function $\operatorname{cosec}^{-1} 2 \mathrm{x}$ is $\left(-\infty,-\frac{1}{2}\right] \cup\left[\frac{1}{2}, \infty\right)$

Reason (R): $\operatorname{cosec}^{-1}(-2)=-\frac{\pi}{6}$
20. Assertion (A) : If lines $\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angle then the value of p is $\frac{70}{11}$.

Reason (R): The lines $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$ are perpendicular, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$

SECTION - B

This section comprises of very short answer type-questions (VSA) of 2 marks each

21. Evaluate: $\sin \left[2 \cos ^{-1}\left(\frac{-3}{5}\right)\right]$

OR

Show that the function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(\mathrm{x})=3-4 \mathrm{x}$ is injective. Is the function bijective ? Justify your answer.
22. A man 160 cm tall, walks away from a source of light situated at the top of a pole 6 m high, at the rate of $1.1 \mathrm{~m} / \mathrm{s}$. How fast is the length of his shadow increasing when he is 1 m away from the pole ?
23. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$ and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, find the angle between \vec{a} and \vec{b}.

OR

Find the direction ratios of the line $6 x-2=3 y+1=2 z-2$ also find the carteisan equation of a line parallel to this line and passing through the point $(2,-1,-1)$
24. If $\tan ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=a$, then show that $\frac{d y}{d x}=\frac{x(1-\tan a)}{y(1+\tan a)}$
25. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ such that $(\vec{a}+\lambda b) \perp \vec{c}$, then find the value of λ.

SECTION - C

This section comprises of short answer type questions (SA) of 3 marks each
26. Evaluate: $\int \frac{2^{x}}{\sqrt{1-4^{x}}} d x$
27. A and B appear for an interview for two posts. The probability of A's selection is $\frac{1}{3}$ and that of B's selection is $\frac{2}{5}$. Find the probability that only one of them will be selected.

OR

Three defective bulbs are mixed with 7 good ones. Let X denotes the number of defective bulbs when 3 bulbs are drawn at random. Find the mean of X.
28. Evaluate: $\int_{0}^{1} \frac{\log (1+x)}{\left(1+x^{2}\right)} d x$

OR

Evaluate: $\int_{-\pi / 4}^{\pi / 4}|\sin x| d x$
29. Solve the differential equation: $\left(x+2 y^{3}\right) \frac{d y}{d x}=y$

OR
Solve the differential equation: $\left(x \sqrt{x^{2}+y^{2}}-y^{2}\right) d x+x y d y=0$
30. Solve the following linear programming problem graphically:

Maximize $Z=400 x+300 y$
Subject to $x+y \leq 200, x \geq 20, y \geq 4 x, y \geq 80$
31. Evaluate: $\int \frac{x^{2}+1}{(x+1)^{2}} d x$

SECTION - D

This section comprises of long answer-type questions (LA) of 5 marks each
32. Find the area of the region bounded by the curve $y^{2}=2 y-x$ and the y-axis.
33. Show that the relation R defined on the set $A=\{1,2,3,4,5,6\}$, given by $R=\{(a, b):|a-b|$ is even $\}$ is an equivalence relation. Also find the set of all elements related to 2 .

OR

Let R be a relation on the set of natural numbers N defined by $R=\{(x, y): x \in N, 2 x+y=20\}$. Find the domain and range of the relation R. also verify whether R is reflexive, symmetric and transitive.
34. Find the length and the equation of the line of shortest distance between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$.

OR

Find the image of the point $(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$.
35. If $\mathrm{A}=\left[\begin{array}{ccc}3 & 4 & 2 \\ 0 & 2 & -3 \\ 1 & -2 & 6\end{array}\right]$, find A^{-1} and hence solve the following system of linear equation:
$3 x+4 y+2 z=8,2 y-3 z=3, x-2 y+6 z=-2$.

SECTION-E

(This section comprises of 3 case-study/passage-based questions of 4 marks each with two sub-parts. First two case study questions have three sub-parts (i), (ii), (iii) of marks 1, 1, 2 respectively. The third case study question has two sub-parts of 2 marks each.)
36. A company wants to form a poster for advertisement Purpose. The top and bottom margins of poster should be 12 cm and the side margins should be 8 cm . Also, The area for printing the advertisement should be $1064 \mathrm{~cm}^{2}$.

Based on the above information, answer the following question:
(i) If w cm be the width and h cm be the height of poster, then the area of poster, expressed in terms of w and h.
(ii) Find the area of the poster in terms of h.
(iii) Find the values of h and w , so that area of the poster is minimum.

OR

(iii) Find the minimum area of the poster.
37. The sum of the length of hypotenuse and a side of a right-angle triangle ABC such that $\mathrm{AC}+\mathrm{BC}=10$

Based on the above information answer the following questions:
(i) Find the length of base BC in terms of x .
(ii) If S be the area of the triangle, then find the critical point of S .
(iii) Find the maximum area of the triangle ABC

OR

(iii) Find the length of hypotenuse, when area of triangle is maximum.
38. An electronic assembly consists of two sub-systems say A and B as shown below.

From, previous testing procedures, the following probabilities are assumed to be know $\mathrm{P}(\mathrm{A}$ fails $)=0.2, \mathrm{P}(\mathrm{B}$ fails alone $)=0.15, \mathrm{P}(\mathrm{A}$ and B fail $)=0.15$.

On the basis of above information answer the following questions:
(i) Find the probability that B fails, also find the probabilities that, A fail alone.
(ii) Find the probability that whole system fails, also find the probability that B fails while given that A fails.

