PRACTICE PAPER-1 (SOLUTION)

CLASS - XII

SUBJECT : MATHEMATICS

SECTION - A

1. (c)

Let $\mathrm{A}=\left[\begin{array}{lll}\mathrm{a}_{11} & \mathrm{a}_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ \mathrm{a}_{31} & \mathrm{a}_{32} & \mathrm{a}_{33}\end{array}\right] ; \mathrm{a}_{\mathrm{ij}} \in\{0,1\}$
Here $\quad \sum \mathrm{a}_{\mathrm{ij}}=2,3,5,7$
Hence, total matrices $={ }^{9} \mathrm{C}_{2}+{ }^{9} \mathrm{C}_{3}+{ }^{9} \mathrm{C}_{5}+{ }^{9} \mathrm{C}_{7}=282$
2. (c)
$\because \quad A=\left[\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right]$
$\therefore \quad|\mathrm{A}|=\mathrm{x}\left(\mathrm{yz}-\mathrm{x}^{2}\right)-\mathrm{y}\left(\mathrm{y}^{2}-\mathrm{zx}\right)+\mathrm{z}\left(\mathrm{xy}-\mathrm{z}^{2}\right)$
$\Rightarrow \quad|A|=3 x y z-x^{3}-y^{3}-z^{3}$
given $A^{2}=I_{3}$
$\Rightarrow \quad\left|A^{2}\right|=1 \Rightarrow|A|^{2}=1$
$\Rightarrow \quad\left(3 x y z-x^{3}-y^{3}-z^{3}\right)^{2}=1$
$\Rightarrow \quad \mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}=1 \quad[\because \mathrm{x}+\mathrm{y}+\mathrm{z}>0]$
$\Rightarrow \quad \mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=1+3 \mathrm{xyz}$
$\Rightarrow \quad x^{3}+y^{3}+z^{3}=1+3 \times 2=7 \quad[\because x y z=2]$
3. (c)

Given $|\vec{a}|=2,|\vec{b}|=3$
and $|2 \vec{a}-\vec{b}|=5 \Rightarrow|2 \vec{a}-\vec{b}|^{2}=25$
$\Rightarrow \quad(2 \vec{a}-\vec{b}) \cdot(2 \vec{a}-\vec{b})=25$
$\Rightarrow \quad 4|\vec{a}|^{2}+|\vec{b}|^{2}-4 \vec{a} \cdot \vec{b}=25$
$\because|\vec{a}|^{2}=\vec{a} \cdot \vec{a}$
$\Rightarrow \quad 4(2)^{2}+(3)^{2}-4 \vec{a} \cdot \vec{b}=25$
$(\because|\vec{a}|=2,|\vec{b}|=3)$
$\Rightarrow \quad \vec{a} \cdot \vec{b}=0$
$\therefore \quad|2 \vec{a}+\vec{b}|^{2}=4|\vec{a}|^{2}+|\vec{b}|^{2}+4 \vec{a} \cdot \vec{b}$

$$
=4(2)^{2}+(3)^{2}+4(0)=25
$$

$\therefore \quad|2 \vec{a}+\vec{b}|=5$
4. (b)

Given $f(x)=\left\{\begin{array}{ccc}\frac{\log (1+5 x)-\log (1+\alpha x)}{x} & ; & \text { if } x \neq 0 \\ 10 & ; & \text { if } x=0\end{array}\right.$
since $f(x)$ is continuous at $x=0$, then

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x)=f(0) \\
\Rightarrow \quad & \lim _{x \rightarrow 0} 5 \cdot \frac{\log (1+5 x)}{5 x}-\lim _{x \rightarrow 0} \alpha \cdot \frac{\log (1+\alpha x)}{\alpha x}=10 \\
\Rightarrow \quad & 5 \times 1-\alpha \times 1=10 \quad \quad\left(\because \lim _{x \rightarrow 0} \log \frac{(1+x)}{x}=1\right) \\
\Rightarrow \quad & \alpha=-5
\end{aligned}
$$

5. (a)

Let $\mathrm{I}=\int \frac{\cos \mathrm{x}-\sin \mathrm{x}}{\sqrt{8-\sin 2 \mathrm{x}}} \mathrm{dx}=\int \frac{(\cos \mathrm{x}-\sin \mathrm{x})}{\sqrt{9-(\sin \mathrm{x}+\cos \mathrm{x})^{2}}} \mathrm{dx}$
put $\sin x+\cos x=t \Rightarrow(\cos x-\sin x) d x=d t$

$$
\begin{aligned}
\therefore \quad I & =\int \frac{1}{\sqrt{9-t^{2}}} d t \\
& =\sin ^{-1}\left(\frac{t}{3}\right)+C=\sin ^{-1}\left(\frac{\sin x+\cos x}{3}\right)+C
\end{aligned}
$$

Now $\quad \sin ^{-1}\left(\frac{\sin x+\cos x}{3}\right)+C=a \sin ^{-1}\left(\frac{\sin x+\cos x}{b}\right)+C \quad$ (given)
So, $\quad a=1, b=3$
6. (a)

Given differential equation $\left(1+3 \frac{d^{2} y}{d x^{2}}\right)^{5 / 2}=2 \frac{d^{3} y}{d x^{3}}$
$\Rightarrow \quad\left(1+3 \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\right)^{5}=4\left(\frac{\mathrm{~d}^{3} \mathrm{y}}{\mathrm{dx}^{3}}\right)^{2}$
So, order $=\mathrm{m}=3$, degree $=\mathrm{n}=2$
$\therefore \quad \mathrm{m}-\mathrm{n}=3-2=1$
7. (d)

The solution region of the inequality $2 x-y \geq 1$ is an open half plane containing the line $2 x-y=1$.

8. (d)

Given $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}-2 \hat{j}+\hat{k}$
the projection of \vec{a} on $\vec{b}=\vec{a} \cdot \hat{b}$

$$
=(2 \hat{i}-\hat{j}+\hat{k}) \cdot \frac{(\hat{i}-2 \hat{j}+\hat{k})}{\sqrt{6}}=\frac{2+2+1}{\sqrt{6}}=\frac{5}{\sqrt{6}}
$$

9. (c)

Let $\mathrm{I}=\int_{0}^{1} \frac{\mathrm{dx}}{\left(1+\mathrm{x}+\mathrm{x}^{2}\right)}$

$$
\begin{aligned}
& =\int_{0}^{1} \frac{d x}{\left\{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}\right\}}=\left[\frac{2}{\sqrt{3}} \tan ^{-1} \frac{\left(x+\frac{1}{2}\right)}{\frac{\sqrt{3}}{2}}\right]_{0}^{1} \\
& =\frac{2}{\sqrt{3}}\left[\tan ^{-1} \sqrt{3}-\tan ^{-1} \frac{1}{\sqrt{3}}\right]=\frac{2}{\sqrt{3}}\left[\frac{\pi}{3}-\frac{\pi}{6}\right]=\frac{\pi}{3 \sqrt{3}}
\end{aligned}
$$

10. (c)

Given $\mathrm{A}^{-1}=\left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right]$
$\left|A^{-1}\right|=18-20=-2$
$\operatorname{adj}\left(\mathrm{A}^{-1}\right)=\left[\begin{array}{cc}6 & -4 \\ -5 & 3\end{array}\right]$
$\therefore \quad\left(\mathrm{A}^{-1}\right)^{-1}=\frac{1}{\left|\mathrm{~A}^{-1}\right|}\left(\operatorname{adj} \mathrm{A}^{-1}\right)=-\frac{1}{2}\left[\begin{array}{cc}6 & -4 \\ -5 & 3\end{array}\right]$
$\therefore \quad \mathrm{A}=\left(\mathrm{A}^{-1}\right)^{-1}=\left[\begin{array}{cc}-3 & 2 \\ 5 / 2 & -3 / 2\end{array}\right]$
11. (d)

Corner points	$\mathbf{Z}=\mathbf{5 x}+\mathbf{1 0 y}$
$\mathrm{A}(60,0)$	$\mathrm{Z}_{\mathrm{A}}=300+0=300$
$\mathrm{~B}(40,20)$	$\mathrm{Z}_{\mathrm{B}}=200+200=400$
$\mathrm{C}(60,30)$	$\mathrm{Z}_{\mathrm{C}}=300+300=600$ (Max.)
$\mathrm{D}(120,0)$	$\mathrm{Z}_{\mathrm{D}}=600+0=600$ (Max.)

Since, feasible region is bounded, so maximum value of Z occurs at all points of line segment joining the points $(60,30)$ and $(120,0)$.
12. (b)

Given $\mathrm{A} \neq \mathrm{O}, \mathrm{B} \neq \mathrm{O}$ such that $\mathrm{AB}=\mathrm{O}$
$\Rightarrow \quad|\mathrm{A}|=0$ and $|\mathrm{B}|=0$
13. (b)

Given $\mathrm{A}+\mathrm{B}=\left[\begin{array}{cc}4 & -3 \\ 1 & 6\end{array}\right]$ and $\mathrm{A}-\mathrm{B}=\left[\begin{array}{cc}-2 & -1 \\ 5 & 2\end{array}\right]$
$\Rightarrow \quad \mathrm{A}=\left[\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}3 & -1 \\ -2 & 2\end{array}\right]$
$\Rightarrow \quad|\mathrm{A}|=4+6=10,|\mathrm{~B}|=6-2=4$
$|\mathrm{AB}|=|\mathrm{A}||\mathrm{B}|=10 \times 4=40$
14. (c)

Given $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ and $\mathrm{P}\left(\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}\right)=\frac{1}{4}$
$\Rightarrow \quad \mathrm{P}(\mathrm{A} \cap \mathrm{B})^{\prime}=\frac{1}{4} \Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=1-\frac{1}{4}=\frac{3}{4}$
$\because \quad \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \neq 0$, So A and B are not mutually exclusive
given $\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{7}{12}=\frac{7}{24} \neq \mathrm{P}(\mathrm{A} \cap \mathrm{B})$
So, A and B are not independent
15. (b)

Given $\frac{d y}{d x}=2^{x+y}=2^{x} .2^{y}$
$\Rightarrow \quad 2^{-y} d y=2^{x} d x$
$\Rightarrow \quad \int 2^{-y} \mathrm{dx}=\int 2^{x} \mathrm{dx}$
$\Rightarrow \quad-\frac{2^{-\mathrm{y}}}{\log 2}=\frac{2^{\mathrm{x}}}{\log 2}+\log \mathrm{C}$
$\left(2^{x}+2^{-y}\right)=-\log 2 \cdot \log C$
$2^{\mathrm{x}}+2^{-\mathrm{y}}=\mathrm{C}$, where $-\log 2 \cdot \log \mathrm{C}=\mathrm{C}$
16. (d)
$\because \mathrm{y}=\cos ^{-1} \mathrm{x}$
$\Rightarrow \quad x=\cos y$
$\Rightarrow \quad 1=-\sin y \frac{d y}{d x}$
$\Rightarrow \quad \frac{d y}{d x}=-\operatorname{cosec} y$
$\Rightarrow \quad \frac{d^{2} y}{d x^{2}}=\operatorname{cosec} y \cot y \times \frac{d y}{d x}$
$\therefore \quad \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=-\cot \mathrm{y} \operatorname{cosec}^{2} \mathrm{y}$ [using (i)]
17. (d)

Given $|\vec{a}|=|\vec{b}|=|\vec{c}|=1$ and $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$
$\because \quad|\vec{a}+\vec{b}+\vec{c}|^{2}=(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c})$

$$
=|\vec{a}|^{2}+|\vec{b}|^{2}+|\overrightarrow{\mathrm{c}}|^{2}+2(\vec{a} \cdot \overrightarrow{\mathrm{~b}}+\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}})
$$

$$
=3+2(0)=3
$$

$$
\therefore \quad|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}|=\sqrt{3}
$$

18. (c) Eq. of a line through points $\mathrm{A}(3,-1,2)$ and $\mathrm{B}(0,5,-2)$ is
$\frac{x-3}{0-3}=\frac{y+1}{5+1}=\frac{z-2}{-2-2}$ i.e. $\frac{x-3}{-3}=\frac{y+1}{6}=\frac{z-2}{-4}$
coordinates of any point P on the line is $(-3 \lambda+3,6 \lambda-1,-4 \lambda+2)$, where λ is constant given $6 \lambda-1=5 \Rightarrow \lambda=1$
So, $\quad \mathrm{z}$-coordinate of the point P is

$$
-4 \times 1+2=-2
$$

19. (b)

Assertion: $\operatorname{cosec}^{-1} \mathrm{x}$ is defined if $\mathrm{x} \leq-1$ or $\mathrm{x} \geq 1$
i.e. $\operatorname{cosec}^{-1} 2 x$ will be defined if $x \leq-\frac{1}{2}$ or $x \geq \frac{1}{2}$

So, domain of $\operatorname{cosec}^{-1} 2 \mathrm{x}$ is $\left(-\infty,-\frac{1}{2}\right] \cup\left[\frac{1}{2}, \infty\right)$
Hence, A is true.
Reason: The range of $\operatorname{cosec}^{-1} \mathrm{X}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
let $\operatorname{cosec}^{-1}(-2)=\theta$
$\Rightarrow \operatorname{cosec} \theta=-2=\operatorname{cosec}\left(-\frac{\pi}{6}\right) \Rightarrow \theta=-\frac{\pi}{6} \Rightarrow \operatorname{cosec}^{-1}(-2)=-\frac{\pi}{6}$
Hence, Both A and R is true but R is not the correct explanation of A .
20. (a)

Assertion: given lines $\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ i.e. $\frac{x-1}{-3}=\frac{y-2}{(2 p / 7)}=\frac{z-3}{2}$
and $\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ i.e. $\frac{x-1}{(-3 p / 7)}=\frac{y-5}{1}=\frac{z-6}{(-5)}$
Since, lines (i) and (ii) are at right angle, then
$(-3) \times\left(\frac{-3 p}{7}\right)+\frac{2 p}{7} \times 1+2 \times(-5)=0$
$\Rightarrow \quad \frac{9 \mathrm{p}}{7}+\frac{2 \mathrm{p}}{7}-10=0 \Rightarrow \frac{11 \mathrm{p}}{7}=10 \Rightarrow \mathrm{p}=\frac{70}{11}$

Reason: Statement is true.

Hence A and R both are true and R is correct explanation of A

SECTION - B

21. Let $y=\sin \left[2 \cos ^{-1}\left(\frac{-3}{5}\right)\right]$
put $\cos ^{-1}\left(-\frac{3}{5}\right)=\theta \Rightarrow \cos \theta=-\frac{3}{5}$, where $\theta \in[0, \pi]$
Since $\theta \in[0, \pi]$, So $\sin \theta>0$
$\therefore \quad \sin \theta=\sqrt{1-\cos ^{2} \theta}=\sqrt{1-\frac{9}{25}}=\frac{4}{5}$
$\therefore \quad y=\sin [2 \theta]=2 \sin \theta \cos \theta$
$\Rightarrow \quad \mathrm{y}=2\left(\frac{4}{5}\right)\left(\frac{-3}{5}\right)=-\frac{24}{25}$

OR

Given function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(\mathrm{x})=3-4 \mathrm{x}$
Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}$ (domain) such that if

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \Rightarrow 3-4 \mathrm{x}_{1}=3-4 \mathrm{x}_{2} \\
\Rightarrow \quad & \mathrm{x}_{1}=\mathrm{x}_{2}
\end{aligned}
$$

$\therefore \quad \mathrm{f}$ is injective.
Now let $y \in R$ (codomain) and $y=f(x)$

$$
\begin{aligned}
& \Rightarrow \quad y=3-4 x \\
& \Rightarrow \quad x=\frac{3-y}{4} \in R \text { (domain), } \forall y \in R \text { (codomain) }
\end{aligned}
$$

Such that $f(x)=f\left(\frac{3-y}{4}\right)=\left\{3-\frac{4(3-y)}{4}\right\}=y$
Thus, every element of codomain has pre-image in domain
$\therefore \quad \mathrm{f}$ is onto
Hence, f is one-one and onto i.e. f is bijective.
22. Let AB be the lamp post, the lamp being at B

Then $A B=6 \mathrm{~m}$
at any time t , let MN be the position of the man and MS his shadow.
Then $\mathrm{MN}=1.6 \mathrm{~m}$
let $\mathrm{AM}=\mathrm{x} \mathrm{m}$ and $\mathrm{MS}=\mathrm{s} \mathrm{m}$
given $\frac{\mathrm{dx}}{\mathrm{dt}}=1.1 \mathrm{~m} / \mathrm{s}$
Here $\Delta \mathrm{SAB} \sim \Delta \mathrm{SMN}$
$\therefore \quad \frac{\mathrm{AS}}{\mathrm{MS}}=\frac{\mathrm{AB}}{\mathrm{MN}}$
$\Rightarrow \quad \frac{\mathrm{x}+\mathrm{s}}{\mathrm{s}}=\frac{6}{1.6}=\frac{15}{4}$
$\Rightarrow \quad \mathrm{x}=\frac{11}{4} \mathrm{~s}$
$\Rightarrow \quad \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{11}{4} \frac{\mathrm{ds}}{\mathrm{dt}}$
$\Rightarrow \quad 1.1=\frac{11}{4} \cdot \frac{\mathrm{ds}}{\mathrm{dt}}$
$\Rightarrow \quad \frac{\mathrm{ds}}{\mathrm{dt}}=\frac{1.1 \times 4}{11}=0.4 \mathrm{~m} / \mathrm{s}$
Hence, the length of the shadow is increasing at the rate of $0.4 \mathrm{~m} / \mathrm{s}$.
23. Let θ be the angle between \vec{a} and \vec{b}.
given $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
$\Rightarrow \quad \vec{a}+\vec{b}=-\vec{c}$
$\Rightarrow \quad(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=(-\vec{c}) \cdot(-\vec{c})$
$\Rightarrow \quad|\vec{a}|^{2}+|\overrightarrow{\mathrm{b}}|^{2}+2 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{c}}|^{2}$
$\left(\because \vec{a} \cdot \vec{a}=|\vec{a}|^{2}, \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}\right)$
$\Rightarrow \quad|\vec{a}|^{2}+|\mathbf{b}|^{2}+2|\vec{a}||\vec{b}| \cos \theta=|\overrightarrow{\mathbf{c}}|^{2}$
$\Rightarrow \quad 9+25+2 \times 3 \times 5 \times \cos \theta=49$
$(\because|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7)$
$\Rightarrow \quad 30 \cos \theta=15$
$\Rightarrow \quad \cos \theta=\frac{1}{2} \Rightarrow \theta=60^{\circ}$
Hence, the angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ is 60°

OR

Eq. of given line is
$6 x-2=3 y+1=2 z-2$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{x}-\frac{1}{3}}{\left(\frac{1}{6}\right)}=\frac{\mathrm{y}+\frac{1}{3}}{\left(\frac{1}{3}\right)}=\frac{\mathrm{z}-1}{\left(\frac{1}{2}\right)} \\
& \Rightarrow \quad \frac{\mathrm{x}-\frac{1}{3}}{1}=\frac{\mathrm{y}+\frac{1}{3}}{2}=\frac{\mathrm{z}-1}{3}
\end{aligned}
$$

Here, The direction ratios of the line are $1,2,3$
Now, The direction ratios of a lines parallel to given line are also 1, 2, 3 .
The Cartesian equation of the line passes through $(2,-1,-1)$ and parallel to given line, is $\frac{x-2}{1}=\frac{y+1}{2}=\frac{z+1}{3}$
24. Given $\tan ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=\mathrm{a} \Rightarrow \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\tan \mathrm{a}$

$$
\Rightarrow \quad x^{2}-y^{2}=\left(x^{2}+y^{2}\right) \tan a
$$

diff. both sides w.r.to x

$$
\begin{aligned}
& 2 x-2 y \frac{d y}{d x}=\left(2 x+2 y \frac{d y}{d x}\right) \tan a \\
& \Rightarrow \quad 2 y(1+\tan a) \frac{d y}{d x}=2 x(1-\tan a) \\
& \Rightarrow \quad \frac{d y}{d x}=\frac{x(1-\tan a)}{y(1+\tan a)}
\end{aligned}
$$

25. Given $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}, \vec{c}=3 \hat{i}+\hat{j}$

$$
\therefore \quad \vec{a}+\lambda \vec{b}=(2-\lambda) \hat{i}+(2+2 \lambda) \hat{j}+(3+\lambda) \hat{k}
$$

Now, $(\vec{a}+\lambda \vec{b}) \perp \vec{c} \Rightarrow(\vec{a}+\lambda \vec{b}) \cdot \vec{c}=0$

$$
\begin{aligned}
& \Rightarrow\{(2-\lambda) \hat{\mathrm{i}}+(2+2 \lambda) \hat{\mathrm{j}}+(3+\lambda) \hat{\mathrm{k}}\} \cdot(3 \hat{\mathrm{i}}+\hat{\mathrm{j}})=0 \\
& \Rightarrow 3(2-\lambda)+(2+2 \lambda)=0 \\
& \Rightarrow \lambda=8
\end{aligned}
$$

SECTION - C

26. Let $\mathrm{I}=\int \frac{2^{\mathrm{x}}}{\sqrt{1-4^{\mathrm{x}}}} \mathrm{dx}$

$$
\begin{aligned}
& \text { put } 2^{\mathrm{x}}=\mathrm{t}
\end{aligned} \begin{aligned}
\therefore \quad & \Rightarrow\left(2^{\mathrm{x}} \log 2\right) \mathrm{dx}=\mathrm{dt} \\
& =\frac{1}{(\log 2)} \int \frac{1}{\sqrt{1-\mathrm{t}^{2}}} \mathrm{dt} \\
& =\frac{1}{(\log 2)} \cdot \sin ^{-1} \mathrm{t}+\mathrm{C} \\
& =\frac{1}{(\log 2)} \sin ^{-1}\left(2^{\mathrm{x}}\right)+\mathrm{C}
\end{aligned}
$$

27. Let E_{1} : event that A is selected.
E_{2} : event that B is selected.

$$
\begin{array}{ll}
& \text { then } \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{1}{3}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{2}{5} \\
\Rightarrow \quad & \mathrm{P}\left(\overline{\mathrm{E}}_{1}\right)=\frac{2}{3}, \mathrm{P}\left(\overline{\mathrm{E}}_{2}\right)=\frac{3}{5}
\end{array}
$$

Req. prob. $=\mathrm{P}($ only one of them is selected $)$

$$
\begin{aligned}
& =\mathrm{P}\left(\left(\mathrm{E}_{1} \text { and not } \mathrm{E}_{2}\right) \text { or }\left(\mathrm{E}_{2} \text { and not } \mathrm{E}_{1}\right)\right) \\
& =\mathrm{P}\left(\left(\mathrm{E}_{1} \cap \overline{\mathrm{E}}_{2}\right) \cup\left(\overline{\mathrm{E}}_{1} \cap \mathrm{E}_{2}\right)\right) \\
& =\mathrm{P}\left(\mathrm{E}_{1} \cap \overline{\mathrm{E}}_{2}\right)+\mathrm{P}\left(\overline{\mathrm{E}}_{1} \cap \mathrm{E}_{2}\right) \\
& =\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\overline{\mathrm{E}}_{2}\right)+\mathrm{P}\left(\overline{\mathrm{E}}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E}_{2}\right) \\
& =\left(\frac{1}{3} \times \frac{3}{5}\right)+\left(\frac{2}{3} \times \frac{2}{5}\right) \\
& =\frac{1}{5}+\frac{4}{15}=\frac{7}{15}
\end{aligned}
$$

OR

Since, X denotes the number of defective bulbs, then the possible values of X are $0,1,2$ or 3
$\therefore \quad \mathrm{P}(\mathrm{X}=0)=\mathrm{P}($ none of the bulbs is defective $)$

$$
=\frac{{ }^{7} \mathrm{C}_{3}}{{ }^{10} \mathrm{C}_{3}}=\frac{7 \times 6 \times 5}{10 \times 9 \times 8}=\frac{7}{24}
$$

$\mathrm{P}(\mathrm{X}=1)=\mathrm{P}(1$ defective and 2 non-defective bulbs $)$

$$
=\frac{{ }^{3} \mathrm{C}_{1} \times{ }^{7} \mathrm{C}_{2}}{{ }^{10} \mathrm{C}_{3}}=\left(3 \times \frac{7 \times 6}{2 \times 1} \times \frac{3 \times 2 \times 1}{10 \times 9 \times 8}\right)=\frac{21}{40}
$$

$\mathrm{P}(\mathrm{X}=2)=\mathrm{P}(2$ defective and 1 non-defective bulbs $)$

$$
=\frac{{ }^{3} \mathrm{C}_{2} \times{ }^{7} \mathrm{C}_{1}}{{ }^{10} \mathrm{C}_{3}}=\left(\frac{3 \times 2}{2 \times 1} \times 7 \times \frac{3 \times 2 \times 1}{10 \times 9 \times 8}\right)=\frac{7}{40}
$$

$\mathrm{P}(\mathrm{X}=3)=\mathrm{P}(3$ defective bulbs $)$

$$
=\frac{{ }^{3} \mathrm{C}_{3}}{{ }^{10} \mathrm{C}_{3}}=\left(1 \times \frac{3 \times 2 \times 1}{10 \times 9 \times 8}\right)=\frac{1}{120}
$$

Thus the probability distribution of X is

X	0	1	2	3
$P(X)$	$\frac{7}{24}$	$\frac{21}{40}$	$\frac{7}{40}$	$\frac{1}{120}$

$$
\begin{aligned}
\therefore \quad \text { Mean }(\mu) & =\sum \mathrm{x}_{\mathrm{i}} \times \mathrm{P}(\mathrm{x}) \\
& =0 \times \frac{7}{24}+1 \times \frac{21}{40}+2 \times \frac{7}{40}+3 \times \frac{1}{120} \\
& =\frac{63+42+3}{120}=\frac{108}{120}=\frac{9}{10}
\end{aligned}
$$

28. Let $\mathrm{I}=\int_{0}^{1} \frac{\log (1+\mathrm{x})}{\left(1+\mathrm{x}^{2}\right)} \mathrm{dx}$

$$
\text { put } x=\tan \theta \Rightarrow d x=\sec ^{2} \theta d \theta
$$

$$
\text { when } x=0, \theta=0 \& x=1, \theta=\frac{\pi}{4}
$$

$$
\therefore \quad I=\int_{0}^{\pi / 4} \frac{\log (1+\tan \theta)}{\left(1+\tan ^{2} \theta\right)} \cdot \sec ^{2} \theta d \theta
$$

$$
\begin{equation*}
\mathrm{I}=\int_{0}^{\pi / 4} \log (1+\tan \theta) \mathrm{d} \theta \tag{i}
\end{equation*}
$$

$$
\begin{aligned}
\mathrm{I} & =\int_{0}^{\pi / 4} \log \left[1+\tan \left(\frac{\pi}{4}-\theta\right)\right] \mathrm{d} \theta \\
& \mathrm{I}
\end{aligned}=\int_{0}^{\pi / 4} \log \left[1+\frac{(1-\tan \theta)}{(1+\tan \theta)}\right] \mathrm{d} \theta=\int_{0}^{\pi / 4} \log \left[\frac{2}{1+\tan \theta}\right] \mathrm{d} \theta \quad\left(\because \int_{0}^{a} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\int_{0}^{a} \mathrm{f}(\mathrm{a}-\mathrm{x}) \mathrm{dx}\right)
$$

Let $\quad I=\int_{-\pi / 4}^{\pi / 4}|\sin x| d x$

$$
\mathrm{I}=\int_{-\pi / 4}^{0}(-\sin x) \mathrm{dx}+\int_{0}^{\pi / 4} \sin x d x
$$

$$
\mathrm{I}=[\cos \mathrm{x}]_{-\pi / 4}^{0}+[-\cos \mathrm{x}]_{0}^{\pi / 4}
$$

$$
I=\left\{\cos 0-\cos \left(-\frac{\pi}{4}\right)\right\}+\left\{-\cos \frac{\pi}{4}+\cos 0\right\}
$$

$$
\mathrm{I}=\left(1-\frac{1}{\sqrt{2}}\right)+\left(-\frac{1}{\sqrt{2}}+1\right)
$$

$$
I=2-\frac{2}{\sqrt{2}}=(2-\sqrt{2})
$$

29. Given diff. equation is $\left(x+2 y^{3}\right) \frac{d y}{d x}=y$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d x}{d y}=\frac{x+2 y^{3}}{y} \\
& \Rightarrow \quad \frac{d x}{d y}-\frac{1}{y} \cdot x=2 y^{2}
\end{aligned}
$$

this is linear diff. equation of the form $\frac{d x}{d y}+P x=Q$
Here, $\quad \mathrm{P}=-\frac{1}{\mathrm{y}}, \mathrm{Q}=2 \mathrm{y}^{2}$
I.F. $=\mathrm{e}^{\int \text { Pdy }}=\mathrm{e}^{\int-\frac{1}{y} \mathrm{~d} \mathrm{dy}}=\mathrm{e}^{-\log y}=\frac{1}{y}$

So, the solution of given diff. equation is
$x \times I F=\int(Q \times I F) d y+C$
$\Rightarrow \quad x \times \frac{1}{y}=\int\left(2 y^{2} \times \frac{1}{y}\right) d y+C$
$\Rightarrow \quad \frac{x}{y}=\int 2 y d y+C$
$\Rightarrow \quad \mathrm{x}=\mathrm{y}^{3}+\mathrm{Cy}$

OR

Given diff. equation is $\left(x \sqrt{x^{2}+y^{2}}-y^{2}\right) d x+x y d y=0$
$\Rightarrow \quad \frac{d y}{d x}=\frac{y^{2}-x \sqrt{x^{2}+y^{2}}}{x y}$
$\Rightarrow \quad \frac{d y}{d x}=\frac{y}{x}-\sqrt{\frac{x^{2}}{y^{2}}+1}$, which is homogeneous diff. equation
Put $\quad \frac{y}{x}=$ vi.e. $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$

$$
\begin{aligned}
& v+x \frac{d v}{d x}=v-\sqrt{\frac{1}{v^{2}}+1} \\
\Rightarrow & \frac{\mathrm{xdv}}{\mathrm{dx}}=-\frac{\sqrt{1+\mathrm{v}^{2}}}{v} \\
\Rightarrow & \frac{\mathrm{v}}{\sqrt{1+\mathrm{v}^{2}}} \mathrm{dv}=-\frac{\mathrm{dx}}{\mathrm{x}}
\end{aligned}
$$

on integrating both sides
$\int \frac{\mathrm{v}}{\sqrt{1+\mathrm{v}^{2}}} \mathrm{dv}=-\int \frac{\mathrm{dx}}{\mathrm{x}}$
$\sqrt{1+\mathrm{v}^{2}}=-\log |\mathrm{x}|+\mathrm{C}$
$\Rightarrow \quad \sqrt{x^{2}+y^{2}}=-x \log |x|+C x$
$\Rightarrow \quad \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}+\mathrm{x} \log |\mathrm{x}|=\mathrm{Cx}$
which is required solution.
30. given problem is

$$
\begin{array}{ll}
\text { Maximum } Z= & 400 x+300 y \\
\text { Subject to } & x+y \leq 200 \\
& x \geq 20 \tag{ii}\\
& y \geq 4 x \\
& y \geq 80
\end{array}
$$

First we find the feasible region by using given constraints (i) to (iv).

Here, obtained feasible region is bounded with its corner points are $\mathrm{A}(20,80), \mathrm{B}(40,160)$ and $\mathrm{C}(20,180)$

Corner points	$Z=400 x+300 y$
$A(20,80)$	$Z_{A}=8000+24000=32000$
$B(40,160)$	$Z_{B}=16000+48000=64000$ (Max.)
$C(20,180)$	$Z_{C}=8000+54000=62000$

Since, feasible region is bounded.
So, maximum value of Z is 64000 at point $B(40,160)$.
31. Let $I=\int \frac{x^{2}+1}{(x+1)^{2}} d x$
$\frac{x^{2}+1}{(x+1)^{2}}=1-\frac{2 x}{(x+1)^{2}}=1-\frac{A}{(x+1)}-\frac{B}{(x+1)^{2}}$
$\Rightarrow \quad \mathrm{x}^{2}+1=(\mathrm{x}+1)^{2}-\mathrm{A}(\mathrm{x}+1)-\mathrm{B}$
put $x=-1 \Rightarrow B=-2$
on equating constant terms, we get
$-\mathrm{A}-\mathrm{B}+1=1 \Rightarrow \mathrm{~A}+\mathrm{B}=0 \Rightarrow \mathrm{~A}=-\mathrm{B}=2$
$\therefore \quad \frac{\mathrm{x}^{2}+1}{(\mathrm{x}+1)^{2}}=1-\frac{2}{(\mathrm{x}+1)}+\frac{2}{(\mathrm{x}+1)^{2}}$
$\therefore \quad I=\int 1 d x-2 \int \frac{1}{(x+1)} d x+2 \int \frac{1}{(x+1)^{2}} d x$
$\Rightarrow \quad \mathrm{I}=\mathrm{x}-2 \log |\mathrm{x}+1|-\frac{2}{(\mathrm{x}+1)}+\mathrm{C}$

SECTION - D

32. \quad Given curve $y^{2}=2 y-x$
$\Rightarrow \quad y^{2}-2 y+1=-x+1$
$\Rightarrow \quad(\mathrm{y}-1)^{2}=-(\mathrm{x}-1)$
curve (i) is represents left handed parabola with vertex $(1,1)$
put $\mathrm{x}=0$ in equation (i)

$$
\begin{aligned}
& =\int_{0}^{2} x d y=\int_{0}^{2}\left(2 y-y^{2}\right) d y \\
& =\left[2 \cdot \frac{y^{2}}{2}-\frac{y^{3}}{3}\right]_{0}^{2} \\
& =\left[\left(4-\frac{8}{3}\right)-0\right]=\frac{4}{3} \text { Sq. units. }
\end{aligned}
$$

33. Given relation R on set $A=\{1,2,3,4,5,6\}$ such that
$\mathrm{R}=\{(\mathrm{a}, \mathrm{b}):|\mathrm{a}-\mathrm{b}|$ is even $\}$
Reflexive: Let $\mathrm{a} \in \mathrm{A}$ such that
if $(a, a) \in R \Rightarrow|a-a|=0$ is even
which is true, $\forall \mathrm{a} \in \mathrm{A}$
So, R is reflexive
Symmetric: Let $\mathrm{a}, \mathrm{b} \in \mathrm{A}$ such that

$$
\text { if } \begin{aligned}
(a, b) \in R \quad & \Rightarrow|a-b| \text { is even } \\
& \Rightarrow|b-a| \text { is also even } \\
& \Rightarrow(b, a) \in R
\end{aligned}
$$

So, R is symmetric
Transitive: Let $a, b, c \in R$ such that

$$
\begin{aligned}
& \text { if }(a, b) \in R \text { and }(b, c) \in R \\
& \Rightarrow|a-b| \text { and }|b-c| \text { both are even }
\end{aligned}
$$

let $|\mathrm{a}-\mathrm{b}|=2 \mathrm{k}_{1}$ and $|\mathrm{b}-\mathrm{c}|=2 \mathrm{k}_{2}$, where $\mathrm{k}_{1}, \mathrm{k}_{2} \in \mathrm{~N}$

$$
\begin{equation*}
\Rightarrow \mathrm{a}-\mathrm{b}= \pm 2 \mathrm{k}_{1} \tag{i}
\end{equation*}
$$

on adding equation (i) and (ii)
$\mathrm{a}-\mathrm{c}= \pm 2\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)$
$\Rightarrow \quad|a-c|=2\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)$
$\Rightarrow \quad|\mathrm{a}-\mathrm{c}|$ is even $\quad\left(\because \mathrm{k}_{1}+\mathrm{k}_{2} \in \mathrm{~N}\right)$
$\Rightarrow \quad(a, c) \in R$

So, R is transitive
Since R is reflexive, symmetric and transitive on A
Hence R is an equivalence relation on A
Further, \quad Let $\mathrm{x} \in \mathrm{A}$ such that $(\mathrm{x}, 2) \in \mathrm{R}$

$$
\begin{array}{ll}
\Rightarrow & |x-2| \text { is even } \\
\Rightarrow & \mathrm{x}-2=0,2,4,6 \ldots \ldots \\
\Rightarrow & \mathrm{x}=2,4,6 \quad(\because \mathrm{x} \in \mathrm{~A})
\end{array}
$$

$\therefore \quad$ Req. set $=\{2,4,6\}$

OR

Given a relation R on set N such that
$\mathrm{R}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x} \in \mathrm{N}, 2 \mathrm{x}+\mathrm{y}=20\}$
$\therefore \quad \mathrm{R}=\{(1,18),(2,16),(3,14),(4,12),(5,10),(6,8),(7,6),(8,4),(9,2)\}$
So, \quad Domain of $R=\{1,2,3, \ldots \ldots .9\}$

$$
\text { Range of } R=\{2,4,6, \ldots . .18\}
$$

Further $\because(1,1) \notin \mathrm{R}$, where $1 \in \mathrm{~N}$

So, R is not reflexive

$$
\because(1,18) \in \mathrm{R} \text { but }(18,1) \notin \mathrm{R} \text {, where } 1,18 \in \mathrm{~N}
$$

So, $\quad R$ is not symmetric
again, $(6,8) \in R$ and $(8,4) \in R$ but $(6,4) \notin R$
So, $\quad \mathrm{R}$ is not transitive
Hence, R is neither reflexive nor symmetric nor transitive on set N .
34. The equation of given line are

$$
\begin{equation*}
\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1} \tag{i}
\end{equation*}
$$

and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$
any points on the lines (i) and (ii) are $\mathrm{P}(3 \lambda+3,-\lambda+8, \lambda+3)$ and $\mathrm{Q}(-3 \mu-3,2 \mu-7,4 \mu+6)$ respectively
The dr's of line PQ are $-3 \mu-3 \lambda-6,2 \mu+\lambda-15,4 \mu-\lambda+3$, if PQ is the line of shortest distance, then PQ is perpendicular to both lines (i) and (ii)
$3(-3 \mu-3 \lambda-6)+(-1)(2 \mu+\lambda-15)+1(4 \mu-\lambda+3)=0$
and $-3(-3 \mu-3 \lambda-6)+2(2 \mu+\lambda-15)+4(4 \mu-\lambda+3)=0$
$\Rightarrow \quad-11 \lambda-7 \mu=0$
and $\quad 7 \lambda+29 \mu=0$
from equation (iii) and (iv)
$\lambda=0$ and $\mu=0$
put values of λ and μ in P and Q
So, $\quad \mathrm{P}(3,8,3)$ and $\mathrm{Q}(-3,-7,6)$

$$
\begin{aligned}
\therefore \quad \text { S.D. }=P Q & =\sqrt{(3+3)^{2}+(8+7)^{2}+(3-6)^{2}} \\
& =\sqrt{36+225+9}=\sqrt{270}=3 \sqrt{30} \text { units }
\end{aligned}
$$

The equation of line of shortest distance PQ is

$$
\begin{aligned}
& \frac{x-3}{-3-3}=\frac{y-8}{-7-8}=\frac{z-3}{6-3} \\
\Rightarrow \quad & \frac{x-3}{2}=\frac{y-8}{5}=\frac{z-3}{-1}
\end{aligned}
$$

OR

The equation of given line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$
Let N be the foot of perpendicular drawn from point $\mathrm{P}(1,6,4)$ on the line, then
$\mathrm{N}(\lambda, 2 \lambda+1,3 \lambda+2)$
The dr's of line PN are $\lambda-1,2 \lambda-5,3 \lambda-1$
Since PN is perpendicular to line (i), then
$1(\lambda-1)+2(2 \lambda-5)+3(3 \lambda-1)=0$
$\Rightarrow \lambda=1$
So the coordinates of point $\mathrm{N}(1,3,5)$
Let $\mathrm{M}(\alpha, \beta, \gamma)$ be the image of point $\mathrm{P}(1,6,3)$ in the line (i), then N is mid-point of PM .

$$
\begin{array}{ll}
\therefore & \frac{\alpha+1}{2}=1, \frac{\beta+6}{2}=3, \frac{\gamma+3}{2}=5 \\
\Rightarrow & \alpha=1, \beta=0, \gamma=7
\end{array}
$$

Hence, the image of point $\mathrm{P}(1,6,3)$ in the line (i) is $\mathrm{M}(1,0,7)$.
35. Given $\mathrm{A}=\left[\begin{array}{ccc}3 & 4 & 2 \\ 0 & 2 & -3 \\ 1 & -2 & 6\end{array}\right]$
$\Rightarrow \quad|\mathrm{A}|=\left|\begin{array}{ccc}3 & 4 & 2 \\ 0 & 2 & -3 \\ 1 & -2 & 6\end{array}\right|=3(12-6)-4(0+3)+2(0-2)=2$
$\because \quad|\mathrm{A}| \neq 0$ i.e. A is non-singular matrix

So, $\quad \mathrm{A}^{-1}$ be exists
Here, the cofactors of element of $|\mathrm{A}|$ are
$\mathrm{A}_{11}=6, \mathrm{~A}_{12}=-3, \mathrm{~A}_{13}=-2$
$\mathrm{A}_{21}=-28, \mathrm{~A}_{22}=16, \mathrm{~A}_{23}=10$
$\mathrm{A}_{31}=-16, \mathrm{~A}_{32}=9, \mathrm{~A}_{33}=6$
$\therefore \quad \operatorname{adj} A=\left[\begin{array}{ccc}6 & -3 & -2 \\ -28 & 16 & 10 \\ -16 & 9 & 6\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}6 & -28 & -16 \\ -3 & 16 & 9 \\ -2 & 10 & 6\end{array}\right]$
$\therefore \quad \mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \cdot(\operatorname{adj} \mathrm{A})$
$\Rightarrow \quad \mathrm{A}^{-1}=\frac{1}{2}\left[\begin{array}{ccc}6 & -28 & -16 \\ -3 & 16 & 9 \\ -2 & 10 & 6\end{array}\right]$
Now, given system of linear equations is

$$
\begin{aligned}
& 3 x+4 y+2 z=8 \\
& 2 y-3 z=3 \\
& x-2 y+6 z=-2
\end{aligned}
$$

This system can be written in matrix equation form as

$$
\begin{array}{ll}
& {\left[\begin{array}{ccc}
3 & 4 & 2 \\
0 & 2 & -3 \\
1 & -2 & 6
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
8 \\
3 \\
-2
\end{array}\right]} \\
\Rightarrow & \mathrm{AX}=\mathrm{B} \\
\Rightarrow & \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B} \\
\Rightarrow & {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ccc}
6 & -28 & -16 \\
-3 & 16 & 9 \\
-2 & 10 & 6
\end{array}\right]\left[\begin{array}{c}
8 \\
3 \\
-2
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
48-84+32 \\
-24+48-18 \\
-16+30-12
\end{array}\right]} \\
\Rightarrow & {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
-4 \\
6 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
3 \\
1
\end{array}\right]} \\
\therefore & \mathrm{x}=-2, \mathrm{y}=3, \mathrm{z}=1
\end{array}
$$

SECTION - E

36. (i) Let area of the poster is A , then

$$
A=1064+2(w \times 12)+2(h \times 8)-4(8 \times 12)
$$

$A=1064+24 w+16 h-384$
$A=680+24 w+16 h$
(ii) $\because \quad \mathrm{A}=\mathrm{w} \times \mathrm{h}$
$\Rightarrow \quad 680+24 \mathrm{w}+16 \mathrm{~h}=\mathrm{wh}$

[using equation (i)]
$\Rightarrow \quad(\mathrm{h}-24) \mathrm{w}=16 \mathrm{~h}+680$
$\Rightarrow \quad \mathrm{w}=\frac{(16 \mathrm{~h}+680)}{(\mathrm{h}-24)}$
put value of w in equation (ii)
$A=\frac{(16 h+680)}{(h-24)} \times h$
$A=\frac{\left(16 h^{2}+680 h\right)}{(h-24)}$
(iii) $\quad \because \quad \mathrm{A}=\frac{\left(16 \mathrm{~h}^{2}+680 \mathrm{~h}\right)}{(\mathrm{h}-24)}$
$\Rightarrow \quad \frac{\mathrm{dA}}{\mathrm{dh}}=\frac{(\mathrm{h}-24)(32 \mathrm{~h}+680)-\left(16 \mathrm{~h}^{2}+680 \mathrm{~h}\right)}{(\mathrm{h}-24)^{2}}=\frac{16 \mathrm{~h}^{2}-24 \times 32 \mathrm{~h}-24 \times 680}{(\mathrm{~h}-24)^{2}}$
$\Rightarrow \quad \frac{\mathrm{dA}}{\mathrm{dh}}=\frac{16\left(\mathrm{~h}^{2}-48 \mathrm{~h}-1020\right)}{(\mathrm{h}-24)^{2}}$
for minimum value of A

$$
\begin{aligned}
& \frac{\mathrm{dA}}{\mathrm{dh}}=\frac{16\left(\mathrm{~h}^{2}-48-1020\right)}{(\mathrm{h}-24)^{2}}=0 \\
& \Rightarrow \quad \mathrm{~h}^{2}-48 \mathrm{~h}-1020=0 \\
& \Rightarrow \quad \mathrm{~h}=-\frac{(-48) \pm \sqrt{(-48)^{2}-4(1)(-1020)}}{2}=\frac{48 \pm \sqrt{2304+4080}}{2} \\
& \Rightarrow \quad \mathrm{~h}=\frac{48 \pm \sqrt{6384}}{2}=24 \pm \sqrt{1581}=24 \pm 39.94 \\
& \Rightarrow \quad \mathrm{~h}=63.94 \text { or }-15.94 \\
& \Rightarrow \quad \mathrm{~h}=63.94 \quad(\because \mathrm{~h} \text { cannot be negative })
\end{aligned}
$$

$$
\begin{aligned}
\text { Further } \begin{aligned}
\frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{dh}^{2}} & =\frac{(\mathrm{h}-24)^{2} \times 16(2 \mathrm{~h}-48)-16\left(\mathrm{~h}^{2}-48 \mathrm{~h}-1020\right) \times 2(\mathrm{~h}-24)}{(\mathrm{h}-24)^{4}} \\
& =\frac{32(\mathrm{~h}-24)^{3}-32(\mathrm{~h}-24)\left(\mathrm{h}^{2}-48 \mathrm{~h}-1020\right)}{(\mathrm{h}-24)^{4}} \\
& =\frac{32\left[(\mathrm{~h}-24)^{2}-\left(\mathrm{h}^{2}-48 \mathrm{~h}-1020\right)\right]}{(\mathrm{h}-24)^{3}} \\
& =\frac{32(1596)}{(\mathrm{h}-24)^{3}}
\end{aligned} \\
\text { at } \mathrm{h}=63.94 \\
\frac{\mathrm{~d}^{2} \mathrm{~A}}{\mathrm{dh}^{2}}>0
\end{aligned}
$$

So, A is min. at $\mathrm{h}=63.94$
when $\mathrm{h}=63.94$ then,
$\mathrm{w}=\frac{(16 \times 63.94+680)}{(63.94-24)} \quad$ [using equation (iii)]
$\mathrm{w}=\frac{1703.04}{39.94}=42.63$
Thus A is minimum when $\mathrm{h}=63.94 \mathrm{~cm}$ and $\mathrm{w}=42.63 \mathrm{~cm}$

OR

(iii) $\quad \because \quad \mathrm{A}=\frac{\left(16 \mathrm{~h}^{2}+680 \mathrm{~h}\right)}{(\mathrm{h}-24)}$
$\Rightarrow \quad \frac{\mathrm{dA}}{\mathrm{dh}}=\frac{(\mathrm{h}-24)(32 \mathrm{~h}+680)-\left(16 \mathrm{~h}^{2}+680 \mathrm{~h}\right)}{(\mathrm{h}-24)^{2}}=\frac{16 \mathrm{~h}^{2}-24 \times 32 \mathrm{~h}-24 \times 680}{(\mathrm{~h}-24)^{2}}$
$\Rightarrow \quad \frac{\mathrm{dA}}{\mathrm{dh}}=\frac{16\left(\mathrm{~h}^{2}-48 \mathrm{~h}-1020\right)}{(\mathrm{h}-24)^{2}}$
for minimum value of A

$$
\begin{aligned}
& \frac{\mathrm{dA}}{\mathrm{dh}}=\frac{16\left(\mathrm{~h}^{2}-48-1020\right)}{(\mathrm{h}-24)^{2}}=0 \\
& \Rightarrow \quad \mathrm{~h}^{2}-48 \mathrm{~h}-1020=0 \\
& \Rightarrow \quad \mathrm{~h}=-\frac{(-48) \pm \sqrt{(-48)^{2}-4(1)(-1020)}}{2}=\frac{48 \pm \sqrt{2304+4080}}{2} \\
& \Rightarrow \quad \mathrm{~h}=\frac{48 \pm \sqrt{6384}}{2}=24 \pm \sqrt{1581}=24 \pm 39.94 \\
& \Rightarrow \quad \mathrm{~h}=63.94 \text { or }-15.94 \\
& \Rightarrow \quad \mathrm{~h}=63.94 \quad(\because \mathrm{~h} \text { cannot be negative })
\end{aligned}
$$

Further $\frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{dh}^{2}}=\frac{(\mathrm{h}-24)^{2} \times 16(2 \mathrm{~h}-48)-16\left(\mathrm{~h}^{2}-48 \mathrm{~h}-1020\right) \times 2(\mathrm{~h}-24)}{(\mathrm{h}-24)^{4}}$

$$
\begin{aligned}
& =\frac{32(\mathrm{~h}-24)^{3}-32(\mathrm{~h}-24)\left(\mathrm{h}^{2}-48 \mathrm{~h}-1020\right)}{(\mathrm{h}-24)^{4}} \\
& =\frac{32\left[(\mathrm{~h}-24)^{2}-\left(\mathrm{h}^{2}-48 \mathrm{~h}-1020\right)\right]}{(\mathrm{h}-24)^{3}} \\
& =\frac{32(1596)}{(\mathrm{h}-24)^{3}}
\end{aligned}
$$

at $\mathrm{h}=63.94$
$\frac{\mathrm{d}^{2} h}{\mathrm{dh}^{2}}>0$
So, A is min. at $\mathrm{h}=63.94$
when $\mathrm{h}=63.94$ then,
$\mathrm{w}=\frac{(16 \times 63.94+680)}{(63.94-24)}$
$\mathrm{w}=\frac{1703.04}{39.94}=42.63$
minimum area of the poster, is
$\mathrm{A}_{\text {min. }}=42.63 \times 63.94 \quad$ [using equation (ii)]
$=2775.76 \mathrm{~cm}^{2}$
37. (i) Given $\mathrm{AC}+\mathrm{BC}=10$

In right angle $\triangle \mathrm{ABC}$

$$
\begin{array}{ll}
& \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2} \\
\Rightarrow \quad & \mathrm{AB}^{2}+\mathrm{BC}^{2}=(10-\mathrm{BC})^{2} \quad \quad \text { (using equation (i) } \\
\Rightarrow \quad & \mathrm{AB}^{2}+\mathrm{BC}^{2}=100-20 \mathrm{BC}+\mathrm{BC}^{2} \\
\Rightarrow \quad & \mathrm{AB}^{2}=100-20 \mathrm{BC} \\
\Rightarrow \quad & \mathrm{BC}=\frac{100-\mathrm{AB}^{2}}{20} \\
\Rightarrow \quad & \mathrm{BC}=\frac{100-\mathrm{x}^{2}}{20} \quad \ldots \quad \text { (ii) } \quad(\because \mathrm{AB}=\mathrm{x})
\end{array}
$$

(ii) Area of triangle $\mathrm{ABC}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{BC}$
$\Rightarrow \quad \mathrm{S}=\frac{1}{2} \times \mathrm{x} \times \frac{\left(100-\mathrm{x}^{2}\right)}{20}=\frac{\left(100 \mathrm{x}-\mathrm{x}^{3}\right)}{40} \quad \quad$ (using equation (ii))
$\Rightarrow \quad \frac{\mathrm{dS}}{\mathrm{dx}}=\frac{\left(100-3 \mathrm{x}^{2}\right)}{40}$
for critical point of S

$$
\begin{array}{ll}
& \frac{\mathrm{dS}}{\mathrm{dx}}=0 \\
\Rightarrow & \frac{100-3 \mathrm{x}^{2}}{40}=0 \\
\Rightarrow \quad & \mathrm{x}^{2}=\frac{100}{3} \\
\Rightarrow & \mathrm{x}=\frac{10}{\sqrt{3}} \text { or } \frac{10 \sqrt{3}}{3}
\end{array}
$$

($\because \mathrm{x}$ not be negative)
(iii) $\because \quad \frac{\mathrm{dS}}{\mathrm{dx}}=\frac{100-3 \mathrm{x}^{2}}{40}$
$\Rightarrow \quad \frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dx}^{2}}=-\frac{6 \mathrm{x}}{40}=-\frac{3}{20} \mathrm{x}$

$$
\text { at } \mathrm{x}=\frac{10}{\sqrt{3}}, \frac{\mathrm{~d}^{2} \mathrm{~S}}{\mathrm{dx}^{2}}=-\frac{3}{20} \times \frac{10}{\sqrt{3}}=-\frac{3}{2 \sqrt{3}}<0
$$

So, $\quad S$ is maximum at $x=\frac{10}{\sqrt{3}}$

Hence, maximum area of the triangle is
$\mathrm{S}_{\text {max }}=\frac{1}{40}\left(100 \times \frac{10}{\sqrt{3}}-\frac{1000}{3 \sqrt{3}}\right)=\frac{1}{40} \times \frac{2000}{3 \sqrt{3}}$
$S_{\text {max }}=\frac{50}{3 \sqrt{3}}$ Sq. units

OR

(iii) $\quad \because \quad \frac{\mathrm{dS}}{\mathrm{dx}}=\frac{100-3 \mathrm{x}^{2}}{40}$

$$
\begin{aligned}
\Rightarrow \quad & \frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dx}^{2}}=-\frac{6 \mathrm{x}}{40}=-\frac{3}{20} \mathrm{x} \\
\quad \text { at } \mathrm{x} & =\frac{10}{\sqrt{3}}, \frac{\mathrm{~d}^{2} \mathrm{~S}}{\mathrm{dx}^{2}}=-\frac{3}{20} \times \frac{10}{\sqrt{3}}=-\frac{3}{2 \sqrt{3}}<0
\end{aligned}
$$

So, $\quad \mathrm{S}$ is maximum at $\mathrm{x}=\frac{10}{\sqrt{3}}$
\because area of triangle is maximum at $\mathrm{x}=\frac{10}{\sqrt{3}}$
$\therefore \quad \mathrm{BC}=\frac{100-\left(\frac{10}{\sqrt{3}}\right)^{2}}{20} \quad$ [using equation. (ii)]
$\Rightarrow \quad \mathrm{BC}=\frac{200}{60}=\frac{10}{3}$
$\because \quad \mathrm{AC}+\mathrm{BC}=10 \quad$ [using (i)]
$\Rightarrow \quad \mathrm{AC}=10-\mathrm{BC}$
$\Rightarrow \quad \mathrm{AC}=10-\frac{10}{3}=\frac{20}{3}$
Hence, length of hypotenuse, when area of triangle be maximum, is $\mathrm{AC}=\frac{20}{3}$ units
38.

Consider the following events
E : A is fails, F : B is fails
then, $\mathrm{P}(\mathrm{E})=0.2, \mathrm{P}(\mathrm{E} \cap \mathrm{F})=0.15$ and $\mathrm{P}(\overline{\mathrm{E}} \cap \mathrm{F})=0.15$
(i) $\quad \because \quad \mathrm{P}(\overline{\mathrm{E}} \cap \mathrm{F})=0.15$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{P}(\mathrm{~F})-\mathrm{P}(\mathrm{E} \cap \mathrm{~F})=0.15 \\
\Rightarrow & \mathrm{P}(\mathrm{~F})=0.15+\mathrm{P}(\mathrm{E} \cap \mathrm{~F}) \\
\Rightarrow & \mathrm{P}(\mathrm{~F})=0.15+0.15=0.30
\end{array}
$$

Hence $P(B$ fails $)=P(F)=0.30$
Further

$$
\begin{aligned}
\because \quad \mathrm{P}(\mathrm{E} \cap \overline{\mathrm{~F}}) & =\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{E} \cap \mathrm{~F}) \\
& =0.2-0.15 \\
& =0.05
\end{aligned}
$$

Hence $\mathrm{P}(\mathrm{A}$ fails alone $)=\mathrm{P}(\mathrm{E} \cap \overline{\mathrm{F}})=0.05$
(ii) $\quad \mathrm{P}($ whole system fail $)=\mathrm{P}(\mathrm{E} \cup \mathrm{F})$

$$
\begin{aligned}
& =\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{~F})-\mathrm{P}(\mathrm{E} \cap \mathrm{~F}) \\
& =0.2+0.3-0.15 \\
& =0.5-0.15=0.35
\end{aligned}
$$

Hence, $\mathrm{P}($ whole system fails $)=0.35$
again $\quad P(B$ fails/A has failed $)=P(F / E)$

$$
=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{~F})}{\mathrm{P}(\mathrm{E})}=\frac{0.15}{0.2}=0.75
$$

Hence $\mathrm{P}(\mathrm{B}$ fails/ A as failed $)=0.75$

