

CLASS: X

SUBJECT - MATHEMATICS

SOLUTIONS

- 1. $a = p^3q^4$ and $b = p^2q^3$ $HCF(a, b) = p^2q^3$ (i) and LCM $(a, b) = p^3q^4$ (ii)
 - But given: HCF (a, b)= p^mq^n and LCM

$$(a, b) = p^r q^s$$

From eq. (i),
$$p^{m}q^{n} = p^{2}q^{3}$$

So,
$$m = 2$$
 and $n = 3$

From eq. (iii),
$$p^r q^s = p^3 q^4$$

So,
$$r = 3$$
 and $s = 4$

$$(m+n)(r+s) = (2+3)(3+4) = 35$$

- 2. Distance of point from x-axis is |y|= |-4| = 4 units.
- 3. 3x + y = 1(i) and (2k - 1)x + (k - 1)y = 2k + 1(ii)

Comparing eq. (i) with $a_1x + b_1y + c_1 = 0$ and eq. (ii)

with
$$a_2x + b_2y + c_2 = 0$$
, we get

$$a_1 = 3$$

$$a_2 = 2k - 1$$

$$b_1 = 1$$

$$b_2 = k - 1$$
,

$$c_1 = -1$$
 and $c_2 = -(2k + 1)$

Since, system is inconsistent, then

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

$$\Rightarrow \frac{3}{2k-1} = \frac{1}{k-1} \neq \frac{-1}{-(2k+1)}$$

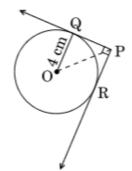
Either
$$\frac{3}{2k-1} = \frac{1}{k-1} \& \frac{1}{k-1} \neq \frac{1}{2k+1}$$

$$\Rightarrow 3k - 3 = 2k - 1 & 2k + 1 \neq k - 1$$

$$\Rightarrow k = 2 \& k \neq -2$$

Hence, the value of k is 2.

4. $OQ = 4 \text{ cm}, OQ \perp PQ \& OR \perp RP$



: OQPR is a square

5. Hence PQ = 4 cm. $(\tan x + \cot x)^2 = 4$ $\tan^2 x + \cot^2 x + 2 = 4$

$$\tan^2 x + \cot^2 x = 2$$

6. Factors of $P = P \times 1$

The quadratic equation is

$$x^2 - (P+1)x + P = 0$$

7. $2\pi r = 4a$

$$a = \frac{\pi r}{2}$$

$$\frac{\text{Area of circle}}{\text{Area of square}} = \frac{\pi r^2}{\left(\frac{\pi r}{2}\right)^2} = \frac{4}{\pi} = \frac{4 \times 7}{22}$$

$$=\frac{14}{11}$$

- 8. $0.08 \times 6000 = 480$
- 9. $(a \cos \theta + b \sin \theta)^2 = 12^2$ $+ (a \sin \theta b \cos \theta)^2 = 5^2$ $a^2(\cos^2 + \sin^2 \theta) + b^2 (\sin^2 \theta + \cos^2 \theta) +$ $2ab \sin \theta \cos \theta 2 ab \sin \theta \cos \theta$ = 144 + 25

$$= 144 + 25$$

 $a^2 + b^2 = 169$

10. We know that 5ⁿ always ends in 5 & 6ⁿ always ends in 6 for any natural number n.

$$\therefore 2(5+6) \Rightarrow 2 \times 11 = 22$$

i.e. it will always ends with 2.

11. The total surface area of sphere = $4\pi r^2$ The surface area of 1 hemisphere = $3\pi r^2$

$$\therefore \text{ Required ratio } = \frac{4\pi r^2}{6\pi r^2}$$

$$= 2 : 3$$

12.
$$\alpha + \beta = \frac{-b}{a}$$

$$3\beta + \beta = \frac{-b}{a}$$

$$\beta = \frac{-b}{4a}$$

$$\alpha\beta = \frac{c}{a}$$

$$3\beta \times \beta = \frac{c}{a}$$

$$\beta^2 = \frac{c}{3a} \qquad \dots (ii)$$

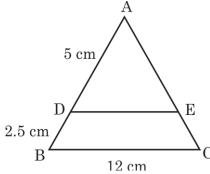
By (i) & (ii) we get

$$\frac{b^2}{16a^2} = \frac{c}{3a} \Rightarrow b^2 = \frac{16ac}{3}$$
or
$$\frac{b^2}{aa} = \frac{16}{3}$$

13.
$$A = \frac{120}{360} \times \frac{22}{7} \times 10.5 \times 10.5$$
$$A = \frac{1}{3} \times \frac{22}{7} \times 110.25$$

$$A = 115.5 \text{ cm}^2$$

14. DE \parallel BC, \triangle ADE ~ \triangle ABC



$$\frac{AD}{AB} = \frac{DE}{BC}$$

$$\frac{5}{7.5} = \frac{DE}{12} \Rightarrow DE = 8 \text{ cm.}$$

15. Perfect square \rightarrow 9, 16, 25, 36, 49 Total = 5

$$P(\text{perfect square}) = \frac{5}{50} = \frac{1}{10}$$

16.
$$\frac{2a + (-2)}{2} = 1; \quad \frac{4+3b}{2} = 2a+1$$

$$2a - 2 = 2; \quad \frac{4+3b}{2} = 4+1$$

$$2a = 4;$$

$$a = 2. \quad 4+3b = 10$$

$$2a = 4;$$

 $a = 2,$
 $4 + 3b = 10$
 $3b = 6$
 $b = 2$

17. Mode = 3 median - 2 mean Mean = 9 k Median = 8k Z = 3 (8k) - 2(9k)= 24k - 18k Z = 6k $\frac{M}{Z} = \frac{8k}{6k} = \frac{4}{3}$

18. $\angle OAC = 90 - 40 = 50^{\circ}$ $\angle C = 90^{\circ}$ (Angle in a semicircle) Now, in $\triangle ABC$, $\angle B = 180 - (90 + 50) = 40^{\circ}$

- 19. (d)
- 20. (a)
- 21. The number which ends with 0 is divisible by 2 and 5 both.

:. Such numbers between 102 and 998 are:

110, 120, 130,...., 990.

Last term, $a_n = 990$

a + (n-1) d = 990

 $110 + (n-1) \times 10 = 990$

110 + 10n - 10 = 990

10n + 100 = 990

10n = 990 - 100

10n = 890

 $n = \frac{890}{10} = 89$

OR

Given A.P. is 3, 15, 27, 39

Here, first term, a=3 and common difference d=12

Now, 21st term of A.P. is

$$t_{21} = a + (21 - 1) d [t_n = a + (n - 1) d]$$

$$\therefore$$
 t₂₁ = 3 + 20 × 12 = 243

Therefore, 21st term is 243

We need to calculate term which is 120 more than 21st term.

i.e., it should be 243 + 120 = 363

Therefore, $t_n = 363$

$$363 = 3 + (n-1)12$$

$$360 = 12 (n-1)$$

$$n - 1 = 30$$

$$n = 31$$

22. In right angle triangle,

Opposite side = 3, adjacent side = 4

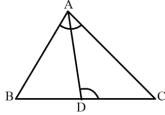
 \Rightarrow hypotenuse = 5

$$\sin A = \frac{3}{5}, \cos A = \frac{4}{5}$$

Now,
$$\frac{2\sin A \cdot \cos A}{\sin^2 A - \cos^2 A} = \frac{2 \times \frac{3}{5} \times \frac{4}{5}}{\frac{9}{25} - \frac{16}{25}}$$

$$=\frac{\frac{24}{25}}{\frac{7}{25}}=-\frac{24}{7}$$

23. In \triangle ABC and \triangle DAC, we have



 $\angle BAC = \angle ADC$ [given]

$$\angle C = \angle C$$
 [common]

$$\therefore \Delta ABC \sim \Delta DAC [By AA]$$

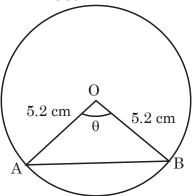
$$\frac{BC}{AC} = \frac{AC}{DC}$$

$$AC^2 = CB \times CD$$

Radius of circle (r) = 5.2 cm 24. OA = OB = r = 5.2 cm

> and the perimeter of a sector = 16.4 cm As we know that perimeter of sector

$$=2r+\frac{\theta}{360}\times2\pi r=16.4\,cm$$



$$16.4 = 2 \times 5.2 + \frac{2\pi \times 5.2 \times \theta}{360}$$

$$\frac{2\pi \times 5.2 \times \theta}{360} = 6 \qquad \Rightarrow \theta = \frac{6 \times 360}{2\pi \times 5.2}$$

Area of sector = $\frac{\theta}{360} \times \pi r^2$

$$= \frac{6 \times 360}{2\pi \times 5.2 \times 360} \times \pi \times \left(5.2\right)^2 = 3 \times 5.2$$

= 15.6 sq. units

Since, in 60 minutes, the tip of minute hand moves 360°.

In 1 minute, it will move $=\frac{360^{\circ}}{60^{\circ}}=6^{\circ}$

:. From 7:05 p.m. to 7:40 p.m., i.e., 35 min, it will move through

$$= 35 \times 6^{\circ} = 210^{\circ}$$

:. Area swept by the minute hand in 35 min.

= Area of sector with angle 210° and

radius of 6 cm

$$= \frac{210^{\circ}}{360^{\circ}} \times \pi \times 6^{2}$$
$$= \frac{7}{12} \times \frac{22}{7} \times 6 \times 6$$
$$= 66 \text{ cm}^{2}$$

25. $\angle A = \angle OPA = \angle OSA = 90^{\circ}$

Hence, $\angle SOP = 90^{\circ}$

Also, AP = AS

Hence, OSAPO is a square

AP = AS = 10 cm

CR = CQ = 27 cm

BQ = BC - CQ

=38-27= 11 cm

BP = BQ = 11 cm

x = AB = AP + BP

x = 10 + 11

x = 21 cm

Let $\frac{2+\sqrt{3}}{5}$ is a rational number 26.

 \therefore we can write it in the form of p/q

$$\therefore \frac{2+\sqrt{3}}{5} = \frac{p}{q}$$

(p and q are co-prime, $q \neq 0$)

$$\Rightarrow 2 + \sqrt{3} = \frac{5p}{q} \qquad \Rightarrow \sqrt{3} = \frac{5p}{q} - 2$$

$$\Rightarrow \sqrt{3} = \frac{5p}{q} - 2$$

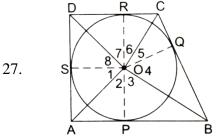
$$\Rightarrow \sqrt{3} = \frac{5p - 2q}{q}$$

Since, p and q are co-prime integers, then $\frac{5p-2q}{q}$ is a rational number.

But this contradicts the fact that $\sqrt{3}$ is an irrational number.

So, our assumption is wrong.

Therefore, $\frac{2+\sqrt{3}}{5}$ is an irrational number



Given: A quad. ABCD circumscribes a circle with centre O.

To prove : $\angle AOB + \angle COD = 180^{\circ}$,

And $\angle AOD + \angle BOC = 180^{\circ}$,

Construction: Join OP, OQ, OR and

OS

Proof: We know that the tangents drawn from an external point of a circle subtend equal angles at the centre.

∴
$$\angle 1 = \angle 2$$
, $\angle 3 = \angle 4$, $\angle 5 = \angle 6$ and $\angle 7 = \angle 8$.
and, $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 + \angle 7 + \angle 8 = 360^{\circ}$ [\angle s at a point]
⇒ $2(\angle 2 + \angle 3) + 2(\angle 6 + \angle 7) = 360^{\circ}$, and $2(\angle 1 + \angle 8) + 2(\angle 4 + \angle 5) = 360^{\circ}$
⇒ $\angle 2 + \angle 3 + \angle 6 + \angle 7 = 180^{\circ}$
and $\angle 1 + \angle 8 + \angle 4 + \angle 5 = 180^{\circ}$
⇒ $\angle AOB + \angle COD = 180^{\circ}$ and $\angle AOD + \angle BOC = 180^{\circ}$.

28. Let α and β be the zeros of the polynomial

Then
$$\alpha + \beta = \frac{5}{2}$$

And $\alpha\beta = -\frac{3}{2}$

Let 2α and 2β be the zeros x^2+px+q

Then
$$2\alpha + 2\beta = -p$$

 $2(\alpha + \beta) = -p$
 $2 \times \frac{5}{2} = -p$

So
$$p = -5$$

And
$$2\alpha \times 2\beta = q$$

$$4\alpha\beta = q$$

So
$$q = 4 \times -\frac{3}{2}$$

$$= -6$$

29. We have

$$m^2n = (\csc\theta - \sin\theta)^2 \cdot (\sec\theta - \cos\theta)$$

$$= \left(\frac{1}{\sin \theta} - \sin \theta\right)^2 \cdot \left(\frac{1}{\cos \theta} - \cos \theta\right)$$

$$= \frac{\left(1 - \sin^2 \theta\right)^2}{\sin^2 \theta} \cdot \frac{\left(1 - \cos^2 \theta\right)}{\cos \theta} = \frac{\cos^4 \theta}{\sin^2 \theta} \times \frac{\sin^2 \theta}{\cos \theta} = \cos^3 \theta$$
$$\therefore (m^2 n)^{1/3} = \cos \theta. \qquad \dots (i)$$

Again,
$$mn^2 = (\csc\theta - \sin\theta) \cdot (\sec\theta - \cos\theta)^2$$

$$= \left(\frac{1}{\sin \theta} - \sin \theta\right) \cdot \left(\frac{1}{\cos \theta} - \cos \theta\right)^{2}$$

$$= \frac{\left(1 - \sin^{2} \theta\right)}{\sin \theta} \cdot \frac{\left(1 - \cos^{2} \theta\right)^{2}}{\cos^{2} \theta}$$

$$= \left(\frac{\cos^{2} \theta}{\sin \theta} \cdot \frac{\sin^{4} \theta}{\cos^{2} \theta}\right) = \sin^{3} \theta$$

$$\therefore (mn^2)^{1/3} = \sin\theta. \qquad \dots (ii)$$

On squaring (i) and (ii) and adding the

results, we get $(m^2n)^{2/3} + (mn^2)^{2/3} = 1$ [:: $\cos^2\theta + \sin^2\theta = 1$] Hence, $(m^2n)^{2/3} + (mn^2)^{2/3} = 1$.

OR

Given $a\cos\theta - b\sin\theta = c$(i) Now, $(a\sin\theta - b\cos\theta)^2 + (a\sin\theta + b\cos\theta)^2$ $= a^2(\cos^2\theta + \sin^2\theta) + b^2(\sin^2\theta + \cos^2\theta) = (a^2 + b^2)$.

Thus, $(a\cos\theta - b\sin\theta)^2 + (a\sin\theta + b\cos\theta)^2$ = (a^2+b^2)

$$\Rightarrow$$
 c²+(asin θ +bcos θ)² = (a²+b²)

$$\Rightarrow (a\sin\theta + b\cos\theta)^2 = (a^2 + b^2 - c^2)$$

$$\Rightarrow$$
 (asin θ +bcos θ) = $\pm \sqrt{a^2 + b^2 - c^2}$

Hence, $(a\sin\theta + b\cos\theta) = \pm \sqrt{a^2 + b^2 - c^2}$

30. All possible outcomes are (H H H), (H H T), (H T H), (H T T), (T H H), (T H T), (T T T)

:. Total number of possible outcomes=8

(a) Favourable outcomes for vidhi are (H H H) (H H T) (T H H) which are 3

$$\therefore$$
 probability of Vidhi = $\frac{3}{8}$

(b) Favourable outcomes for Unnati are (H H T) (H T H) (T H T) (H T T) which are 4

probability of Unnati
$$\frac{4}{8} = \frac{1}{2}$$

Thus, Unnati is more likely to drive the car.

31. Let the length and breadth of the rectangle be x units and y units respectively.

Then, area of the rectangle = xy sq units.

Case I: When the length is reduced by 5 units and the breadth is increased by 2 units.

Then, new length = (x-5) units and new breadth = (y + 2) units.

 \therefore new area = (x-5)(y+2) sq units.

$$\therefore$$
 xy- (x-5)(y+2)=80

$$5y - 2x = 70$$
 (i)

Case II: When the length is increased by 10 units and the breadth is decreased by 5 units.

Then, new length = (x + 10) units and new breadth = (y-5) units.

 \therefore new area = (x+10)(y-5) sq units.

$$(x+10)(y-5) - xy = 50$$

$$\Rightarrow$$
 10y-5x=100 = 2y-x=20. (ii)

On multiplying (ii) by 2 and subtracting the result from (i), we get y = 30.

Putting y = 30 in (ii), we get

$$(2\times30)$$
 -x = 20 \Rightarrow 60-x = 20

$$\Rightarrow$$
 x = (60–20) = 40.

$$\therefore$$
 x = 40 and y = 30.

Hence, length = 40 units

and breadth = 30 units.

OR

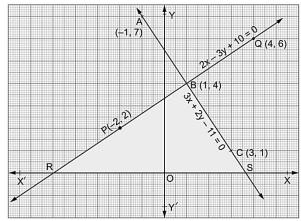
We have the following table for 3x+2v-11=0.

X	-1	1	3
y	7	4	1

We have the following table for

$$2x-3y+10=0$$

X	-2	1	4
y	2	4	6



32. Let the total number of arrows carried by Arjun = x.

Given, Number of arrows used to cut arrows of Bheeshm = Half of total

$$arrows = \frac{x}{2} \qquad \dots (1)$$

Number of arrows used to kill the rath driver = 6(2)

Number of other arrows used to knock down rath, flag and bow = 1 + 1+1=3(3)

The number of arrows, with which he laid Bheeshm unconscious = 4 times the square root of his total arrows +1

$$=4\sqrt{x}+1$$

Hence, clearly the total number of arrows carried by Arjun

x = Sum of arrows used by him for

different purpose

= Arrows used in (1) + (2) + (3) + (4)

$$\Rightarrow x = \frac{x}{2} + 6 + 3 + 4\sqrt{x} + 1$$

$$\Rightarrow 2x = x+20+8\sqrt{x}$$

$$\Rightarrow$$
 x - $8\sqrt{x}$ - 20 = 0

$$\Rightarrow$$
 x - 20 = $8\sqrt{x}$

Squaring both the sides, we get

$$(x - 20)^2 = 64x$$

$$\Rightarrow$$
 x²-40x+400 = 64x

$$\Rightarrow$$
 x²-104x+400 = 0

$$\Rightarrow$$
 x²-4x-100x+400 = 0

$$\Rightarrow$$
 x (x-4) -100 (x-4)=0

$$\Rightarrow$$
 (x-4) (x-100) = 0

$$\Rightarrow$$
 either $x - 4 = 0$

$$\Rightarrow$$
 x = 4

or
$$x-100 = 0$$

$$\Rightarrow$$
 x = 100

33. Given, In trapezium ABCD, AB||DC and

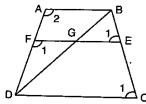
DC = 2AB, EF||AB and
$$\frac{BE}{EC} = \frac{3}{4}$$

To prove, 7FE = 10 AB

Proof. In Δ DFG and Δ DAB,

$$\angle 1 = \angle 2$$

[\therefore AB||DC||EF \therefore $\angle 1$ and $\angle 2$ are corresponding angles]



 \angle FDG = \angle ADB {Common}

So, by AA corollary

$$\Rightarrow \frac{DF}{DA} = \frac{FG}{AB} \qquad \dots (1)$$

In trapezium ABCD, EF||AB||DC.

$$\therefore \frac{AF}{DF} = \frac{BE}{EC} \Rightarrow \frac{AF}{DF} = \frac{3}{4}$$
$$\left[\because \frac{BE}{EC} = \frac{3}{4} (Given)\right]$$

$$\Rightarrow \frac{AF}{DF} + 1 = \frac{3}{4} + 1$$

(Adding 1 on both sides)

$$\Rightarrow \frac{AF + DF}{DF} = \frac{7}{4} \Rightarrow \frac{AD}{DF} = \frac{7}{4} \Rightarrow \frac{DF}{AD} = \frac{4}{7}$$
(2)

From (1) and (2), we get

$$\frac{FG}{AB} = \frac{4}{7} \Rightarrow FG = \frac{4}{7}AB$$

In \triangle BEG and \triangle BCD,

$$\angle BEG = \angle BCD$$

[corresponding angles]

$$\angle B = \angle B$$
 [Common]

$$\Rightarrow \Delta BEG \sim \Delta BCD$$
 [By AA corollary]

$$\Rightarrow \frac{BE}{BC} = \frac{EG}{CD} \Rightarrow \frac{3}{7} = \frac{EG}{CD}$$

$$\left[\because \frac{BE}{EC} = \frac{3}{4} \Rightarrow \frac{EC}{BE} = \frac{4}{3} \Rightarrow \frac{EC}{BE} + 1 = \frac{4}{3} + 1 \Rightarrow \frac{BC}{BE} = \frac{7}{3}\right]$$

$$\Rightarrow$$
 EG = $\frac{3}{7}$ CD \Rightarrow EG = $\frac{3}{7} \times 2$ AB

$$[:: CD = 2AB (Given)]$$

$$\Rightarrow$$
 EG = $\frac{6}{7}$ AB

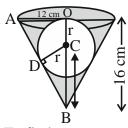
Adding (3) and (4), we get

$$FG + EG = \frac{4}{7}AB + \frac{6}{7}AB$$

$$\Rightarrow$$
 EF = $\frac{10}{7}$ AB \Rightarrow 7EF = 10AB

$$[:: FG + EG = EF]$$

34.



To find r

Now, $\triangle BOA \approx \triangle BDC$,

$$\Rightarrow \frac{AO}{CD} = \frac{AB}{BC} \begin{bmatrix} AB = \sqrt{OB^2 + OC^2} = \sqrt{16^2 + 12^2} \\ = \sqrt{256 + 144} = \sqrt{400} = 20 \end{bmatrix}$$

$$\Rightarrow \frac{12}{r} = \frac{20}{16-r}$$

$$\Rightarrow$$
 16 × 12 – 12r = 20r

$$\Rightarrow$$
 32r = 16 × 12

$$r = \frac{16 \times 12}{32}$$
 cm = 6 cm

Volume of water that overflows = Volume of the sphere

$$= \frac{4}{3}\pi r^3 = \frac{4}{3} \times \frac{22}{7} (6)^3 = \frac{6336}{7} \text{cm}^3$$

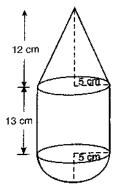
Volume of water in conical vessel

$$\frac{1}{3}\pi R^2 h = \frac{1}{3} \times \frac{22}{7} \times (12)^2 \times 16 = \frac{1}{3} \times \frac{22}{7} \times 12 \times 12 \times 16 = \frac{16896}{7} cm^3$$

Fraction of water that over flows

$$= \frac{\text{Volume of water overflows}}{\text{Volume of water in conical vessel}} = \frac{6336}{7} \times \frac{7}{16896} = \frac{3}{8}$$

OR



(i) Radius of hemispherical part = 5 cm Curved surface area of hemispherical portion = $2\pi r^2$

$$=2\times\frac{22}{7}\times5\times5=\frac{1100}{7}$$
cm².

(ii) Height of cylindrical part = 13 cm. And radius = 5 cm.

 \therefore Curved surface area of cylindrical portion = $2\pi rh$

$$=2\times\frac{22}{7}\times5\times3=\frac{2860}{7}$$
 cm².

(iii) Height of conical part = 12 cm

And radius = 5 cm

Salnt height =

$$\sqrt{r^2 + h^2} = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \text{ cm}.$$

:. Curved surface area =

$$\pi rl = \frac{22}{7} \times 5 \times 13 = \frac{1430}{7} \text{ cm}^2$$

∴ Total surface area of the toy

$$= \left(\frac{1100}{7} + \frac{2860}{7} + \frac{1430}{7}\right) \text{cm}^2 = \frac{5390}{7} \text{cm}^2 = 770 \text{ cm}^2$$

35.

Marks	Number of students (cumulative frequency)	Number of students (Frequenc y)	Cumulative frequency (less than type)
0-10	80	3	3
10-20	77	5	8
20-30	72	7	15
30-40	65	10	25
40-50	55	12	37
50-60	43	15	52
60-70	28	12	64
70-80	16	6	70
80-90	10	2	72
90-100	8	8	80

$$N = 80 \Rightarrow \frac{N}{2} = 40$$

∴ 50–60 is the median class

$$Median = \ell + \frac{\frac{N}{2} - c.f.}{f} \times h$$

Where,
$$\frac{N}{2} = 40$$
, c.f. = 37, f = 15

and h = 10

$$\Rightarrow$$
 Median = $50 + \frac{40-37}{15} \times 10 = 52$

50-60 is the modal class

Further, mode =
$$\ell + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$

where,
$$l = 50$$
, $f_1 = 15$, $f_0 = 12$,

$$f_2 = 12$$
 and $h = 10$

$$\Rightarrow$$
 Mode = 50 + $\frac{15-12}{2\times15-12-12}\times10=55$

OR

(a) Mean (Using Assumed Mean Method)

Let
$$A = 35$$
, $h = 10$

Class	f	Xi	$d_i = x_i - 35$	$f_i d_i$
0-10	5	5	-30	-150
10-20	8	15	-20	-160
20-30	12	25	-10	-120
30-40	15	35 = A	0	0
40-50	14	45	10	140
50-60	6	55	20	120
	$\Sigma f_{i=60}$			$\sum f_i d_i = -170$

$$\Sigma f_i = 60, \ \Sigma f_i d_i = -170$$

$$\Rightarrow$$
 Mean = $a + \frac{\sum f_i d_i}{\sum f_i}$

$$35 + \frac{\left(-170\right)}{60}$$

$$= 35-2.83 = 32.17$$

Mode

Modal class = 30-40

[Highest frequency = 15]

$$l = 30$$
.

$$f_1 = 15$$
,

$$f_0 = 12$$
,

$$f_2 = 14$$
,

$$h = 10$$

Mode =
$$\ell + \frac{f_1 - f_0}{2f_1 - f_0 - f_1} \times h$$

= $30 + \frac{15 - 12}{2 \times 15 - 12 - 14} \times 10$

$$2 \times 15 - 12 - 14$$

$$= 30 + \frac{3}{4} \times 10 = 37.5$$

36. (i) For first tree

=20 m distance is covered in to fro from well

- (ii) For second tree = $2(10+1\times5) = 30$ m distance is covered in to fro from well
- (iii) For 25th tree =

$$2(10+24\times5)=260 \text{ m}$$

Distance is covered in to-fro from well.

OR

So total distance = $20 + 30 + 40 + \dots + 260$

This is a A.P with a=20,d=10 and n=25

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{25} = \frac{25}{2} [2 \times 20 + (25 - 1)10]$$

$$S_{25} = \frac{25}{2} [40 + 24 \times 10]$$

$$S_{25} = 25[20 + 12 \times 10]$$

$$S_{25} = 25 \times 140$$

$$S_{25} = 3500$$
m

37. (i) Coordinate of
$$A = (-5, 4)$$

Coordinate of X = (2, 6)

: Distance =
$$\sqrt{(-5-2)^2 + (4-6)^2}$$

$$=\sqrt{53}$$
 units

(ii) Coordinate of A = (-5, 4)

Coordinate of Y = (5, 2)

$$\therefore \text{ Distance} = \sqrt{(-5-5)^2 + (4-2)^2}$$

$$=\sqrt{104} = 2\sqrt{26}$$
 units

(iii) Coordinate of X = (2, 6)

Coordinate of Y = (5, 2)

Mid-point =
$$\left(\frac{2+5}{2}, \frac{6+2}{2}\right)$$
 = (3.5, 4)

OR

Coordinate of A = (-5, 4)

Coordinate of X = (2, 6)

: Coordinate of P

$$= \left(\frac{3\times(-5)+2\times2}{5}, \frac{4\times3+6\times2}{5}\right)$$

$$=\left(-\frac{11}{5},\frac{24}{5}\right)$$

38. (i)
$$\sin 60^\circ = \frac{PC}{PA}$$

$$\Rightarrow \frac{\sqrt{3}}{2} = \frac{18}{PA} \Rightarrow PA = 12\sqrt{3}m$$

(ii)
$$\sin 30^{\circ} = \frac{PC}{PB}$$

$$\Rightarrow \frac{1}{2} = \frac{18}{PB} \Rightarrow PB = 36 \text{ m}$$

(iii)
$$\tan 60^\circ = \frac{PC}{AC} \Rightarrow \sqrt{3} = \frac{18}{AC}$$

$$\Rightarrow$$
 AC = $6\sqrt{3}$ m

$$\tan 30^{\circ} = \frac{PC}{CB} \Rightarrow \frac{1}{\sqrt{3}} = \frac{18}{CB} \Rightarrow CB = 18\sqrt{3}m$$

Width
$$AB = AC + CB$$

$$=6\sqrt{3}+18\sqrt{3}=24\sqrt{3}$$
m

OR

$$RB = PC = 18m$$
 and $PR = CB = 18\sqrt{3}$ m

$$\tan 30^{\circ} = \frac{QR}{PR} \Rightarrow \frac{1}{\sqrt{3}} = \frac{QR}{18\sqrt{3}} \Rightarrow QR = 18m$$

$$QB = QR + RB = 18 + 18 = 36 \text{ m}$$

Hence height BQ is 36 m