1. (d) The mid-point of line segment joining $(0,0)$ and
$(-4,-2)$ is $\left(\frac{(0-4}{2}, \frac{0-2}{2}\right)$ i.e. $(-2,-1)$.
2. (c) $\tan 45^{\circ} \cos 60^{\circ}+\sin 60^{\circ} \cot 60^{\circ}$
$1 \times \frac{1}{2}+\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}}=\frac{1}{2}+\frac{1}{2}=1$
3. (a) Given equation, $2 x^{2}-\sqrt{5 x}+1=0$

On comparing it with $a x^{2}+b x+c=0$, we get
$\mathrm{a}=2, \mathrm{~b}=\sqrt{5}$ and $\mathrm{c}=1$
$\therefore \mathrm{D}=(\sqrt{5})^{2}-4(2)(1)\left[\because \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}\right]$
$=5-8=-3$
4. (b) We have, $\sqrt{3} \sin \theta=\cos \theta$

$$
\Rightarrow \frac{\sin \theta}{\cos \theta}=\frac{1}{\sqrt{3}} \quad \Rightarrow \tan \theta=\frac{1}{\sqrt{3}}
$$

$\Rightarrow \tan \theta=\tan 30^{\circ} \quad \theta=30^{\circ}$
5. (d) Given, $\mathrm{AB} \| \mathrm{EW}$
$\therefore \frac{\mathrm{DA}}{\mathrm{AE}}=\frac{\mathrm{DB}}{\mathrm{BW}}$ [by Thales theorem]
$\Rightarrow \frac{\mathrm{DA}}{\mathrm{DE}-\mathrm{DA}}=\frac{\mathrm{DB}}{\mathrm{DW}-\mathrm{DB}}$
$\Rightarrow \frac{4}{12-4}=\frac{\mathrm{D} 8}{24-\mathrm{DB}}$
$\Rightarrow \frac{4}{8}-\frac{\mathrm{DB}}{24-\mathrm{DB}}$
$\Rightarrow 24-\mathrm{DB}=2 \mathrm{DB}$
$\Rightarrow 24=3 \mathrm{DB}$
$\Rightarrow \mathrm{DB}=\frac{24}{3}=8 \mathrm{~cm}$
6. (b) Let 4 be the event 'getting an even number.'
Clearly, event A occurs, if we obtain anyone of $2,4,6$ as an outcome.
\therefore Number of outcomes favourable to

$$
A=3
$$

Hence, $P(A)=\frac{3}{6}=\frac{1}{2}$
7. (a) Length of the arc $=\frac{}{360^{\circ}} \times 2 \mathrm{nr}$
$\Rightarrow 4.4=\frac{30^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times \mathrm{r}$
$\Rightarrow 4.4=\frac{1}{12} \times \frac{44}{7} \times \mathrm{r}$
$\Rightarrow \mathrm{r}=\frac{4.4 \times 12 \times 7}{44}=8.4 \mathrm{~cm}$
8. (c) We know that

Product of zeroes $=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}$
$\therefore \alpha \beta=\frac{7}{4}$
9. (c) Total number of cards $=52$

Kings which are red in colour $=2$
$\mathrm{P}($ king of red colour $)=\frac{2}{52}=\frac{1}{26}$
10. (a) If point P lies inside the circle then no tangent can be drawn.
11. (b) Let α and β be the zeros of the polynomial $f(x)=a x^{2}+b x+c$. Then,
$\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$
Let S and P denote respectively the sum and product of the zeros of a polynomial whose zeros are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$. Then,

$$
\begin{aligned}
& S=\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{-\frac{b}{a}}{\frac{c}{a}}=-\frac{b}{c} \text { and } \\
& P=\frac{1}{\alpha} \times \frac{1}{\beta}=\frac{1}{\alpha \beta}=\frac{1}{\frac{c}{a}}=\frac{a}{c}
\end{aligned}
$$

Hence, the required polynomial $g(x)$ is given by $\mathrm{g}(\mathrm{x})=\mathrm{k}\left(\mathrm{x}^{2}-S \mathrm{x}+\mathrm{P}\right)=\mathrm{k}\left(\mathrm{x}^{2}+\frac{\mathrm{bx}}{\mathrm{c}}+\frac{\mathrm{a}}{\mathrm{c}}\right)$, where k is any non-zero constant.
12. (a) Class mark, frequency of the class

$$
x=\frac{\sum \mathrm{fx}}{\sum \mathrm{f}}=\frac{\sum(\mathrm{A} \times \mathrm{B})}{\sum \mathrm{A}}
$$

where B is the class mark.
Class mark $=\frac{1}{2}$ (upper limit + lower limit)
and A is the frequency of the class.
13. (a) Let d be the common difference of the AR According to the question,
$\mathrm{a}_{17}-\mathrm{a}_{10}=7$
$\Rightarrow(\mathrm{a}+16 \mathrm{~d})-(\mathrm{a}+9 \mathrm{~d})=7 \Rightarrow 7 \mathrm{~d}=7 \Rightarrow \mathrm{~d}=1$
14. (b) The mode is the most frequent observation. Here, the mode is 14 with a frequency of 15 .
15. (d) $(x+2)(3 x-5)=0$
$\Rightarrow \mathrm{x}+2=0$ or $3 \mathrm{x}-5=0$
$\Rightarrow \mathrm{x}=-2$ or $\mathrm{x}=\frac{5}{3}$
Hence, the roots of the given equation are -2 and $\frac{5}{3}$.
16. (d) Given, equation $2 x^{2}-6 x+7=0$

On comparing it with $a x^{2}+b x+c=0$, we get
$\mathrm{a}=2, \mathrm{~b}=-6$ and $\mathrm{c}=7$
$\therefore \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=(-6)^{2}-4(2)(7)$
$=36-56=-20<0$
So, the roots are imaginary.
17. (c) Given, $\angle \mathrm{ABC}=60^{\circ}$

In $\triangle \mathrm{ASC}, \angle \mathrm{BAC}+\angle \mathrm{ABC}+\angle \mathrm{ACB}=$ 180°
$\Rightarrow \angle \mathrm{BAC}=180^{\circ}-90^{\circ}-60^{\circ}=30^{\circ}$

So, $\sin 30^{\circ}=\frac{B C}{A B}=\frac{h}{15}$
$\Rightarrow \frac{1}{2}=\frac{h}{15} \Rightarrow \mathrm{~h}=\frac{15}{2} \mathrm{~m}$
18. (c) Circle

19. (c). Assertion Given $x+y-8=0$ and $x-$ $y-2=0$
Here, $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=1, \mathrm{c}_{1}=8$
and $\mathrm{a}_{2}=1, \mathrm{~b}_{2}=-1, \mathrm{c}_{2}=-2$
So, $\frac{a_{1}}{a_{2}}=\frac{1}{1}, \frac{b_{1}}{b_{2}}=\frac{1}{-1}$ and $\frac{c_{1}}{c_{2}}=\frac{-8}{-2}=4$
$\because \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
So, the system of equations has a unique solution and the Assertion is true.
Reason For equations to have a unique solution,
$\frac{a_{1}}{a_{2}}$ should not be equal to $\frac{b_{1}}{b_{2}}$.
\therefore The given Reason is false.
20. (a) Reason is clearly true.

Using the relation given in reason, we have
2 Mean $=3$ Median - Mode
$=3 \times 150-154$
$=296$
\therefore Mean $=\frac{296}{2}=148$, which is true.
Thus, both Assertion and Reason are true and Reason is the correct explanation of Assertion.
21. Given, $x=a \cos \theta$ and $y=b \sin \theta$

$$
\therefore \mathrm{b}^{2} \mathrm{x}^{2}+\mathrm{a}^{2} \mathrm{y}^{2}=\mathrm{b}^{2}(\mathrm{a} \cos \theta)^{2}+\mathrm{a}^{2}(\mathrm{~b} \sin \theta)^{2}(1)
$$

$=a^{2} b^{2} \cos ^{2} \theta+a^{2} b^{2} \sin ^{2} \theta$
$=a^{2} b^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$=\mathrm{a}^{2} \mathrm{~b}^{2}(1)\left[\because \cos ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~A}=1\right]$
$=a^{2} b^{2}(1)$
22. Let us assume that $\frac{2}{5 \sqrt{3}}$ is a rational number.
$\therefore \frac{2}{5 \sqrt{3}}=\frac{p}{q}$, where $\mathrm{p}, \mathrm{q}(\mathrm{q} \neq 0)$ are integers and p, q are coprimes. (1)
$\Rightarrow \frac{2 q}{5 \mathrm{p}}=\sqrt{3}$
Since, $2,5, \mathrm{p}$ and q are integers.
$\therefore \frac{2 q}{5 p}$ is rational, so $\sqrt{3}$ is rational.
But this contradicts the fact that $\sqrt{3}$ is irrational.
Hence, $\frac{2}{\sqrt{3}}$ is an irrational number.
Hence proved. (1)
Let us assume that $6-2 \sqrt{3}$ is rational number.

Then, it will be of the form $\frac{a}{b}$, where a, b are coprime integers and $\mathrm{b} \neq 0$.
Now, $6-2 \sqrt{3}=\frac{a}{b}$
On rearranging, we get

$$
\begin{equation*}
6-\frac{a}{b}=2 \sqrt{3} \tag{1}
\end{equation*}
$$

Since, 6 and $\frac{a}{b}$ are rational. So, their difference will be rational.
$\therefore 2 \sqrt{3}$ is rational.
But we know that, $\sqrt{3}$ is irrational.
So, this contradicts the fact that $\sqrt{3}$ is irrational.
Therefore, our assumption is wrong.
Hence, $6-2 \sqrt{3}$ is irrational.
Hence proved. (1)
23. We have, $p(x)=5 x^{2}-7 x+1$, whose zeroes are α and β.
\therefore Sum of zeroes, $\alpha+\beta=-\frac{\text { Coefficent of } \mathrm{x}}{\text { Coefficent of } \mathrm{x}^{2}}$
$=-\frac{(-7)}{5}=\frac{7}{5}$
and product of zeroes, $\alpha \beta=\frac{\text { Constant term }}{\text { Coefficent of } \mathrm{x}^{2}}$
$=\frac{1}{5} \ldots$ (ii)
Now, $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\beta+\alpha}{\alpha \beta}=\frac{7 / 5}{1 / 5}$
[from Eqs. (i) and (ii)]
$=7$ (1)
24. We have, $\frac{1}{x+1}+\frac{2}{x+2}=\frac{4}{x+4}$
$\Rightarrow \frac{(x+2)+2(x+1)}{(x+1\rangle(x+2)}=\frac{4}{x+4}$ (1)
$\Rightarrow(\mathrm{x}+4)(3 \mathrm{x}+4)=4\left(\mathrm{x}^{2}+3 \mathrm{x}+2\right)$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}-8=0$
On comparing it with $a x^{2}+b x+c=0$, we get
$\mathrm{a}=1, \mathrm{~b}=-4$ and $\mathrm{c}=-8$
$\therefore x=\frac{-\mathrm{b} \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$\Rightarrow x=\frac{-(4) \sqrt{16-4(1)(-8)}}{2}=x=\frac{4 \sqrt{48}}{2}$
$\Rightarrow \mathrm{x}=2 \pm 2 \sqrt{3}$ (1)
25. $\because \Delta \mathrm{AGF} \sim \Delta \mathrm{DBG} \ldots$..(i)
[by AA similarity criterion]
Now, in $\triangle \mathrm{AGF}$ and $\triangle \mathrm{EFC}$, we get
$\angle \mathrm{FAG}=\angle \mathrm{CEF}$ [each 90°]
and $\angle \mathrm{AFG}=\angle \mathrm{ECF}$ [corresponding angles because $\mathrm{GF} \| \mathrm{BC}$ and AC is the transversal]
$\therefore \Delta \mathrm{AGF} \sim \Delta \mathrm{EFC} . .$. (ii) (1)
From Eqs. (i) and (ii), we get
$\Delta \mathrm{DBG} \sim \Delta \mathrm{EFC}$
$\Rightarrow \frac{\mathrm{BD}}{\mathrm{EF}}=\frac{\mathrm{DG}}{\mathrm{EC}}$
$\Rightarrow \frac{\mathrm{BD}}{\mathrm{DE}}=\frac{\mathrm{DE}}{\mathrm{EC}}[\because \mathrm{DEFG}$ is a square $]$
$\therefore \mathrm{DE}^{2}=\mathrm{BD} \times E C$ Hence proved. (1)
OR
Given,
In $\triangle \mathrm{PQO}, \mathrm{DE} \| \mathrm{OQ}$

So by using Basic Proportionality Theorem,
PD/DO = PE/EQ
Again given, in $\triangle \mathrm{POR}, \mathrm{DF} \| \mathrm{OR}$,
So by using Basic Proportionality Theorem,
PD/DO = PF/FR
From equation (i) and (ii), we get, $\mathrm{PE} / \mathrm{EQ}=\mathrm{PF} / \mathrm{FR}$
Therefore, by converse of Basic Proportionality Theorem,
$\mathrm{EF} \| \mathrm{QR}$, in $\triangle \mathrm{PQR}$.
26.

Given,
Radius $=21 \mathrm{~cm}$
$\theta=60^{\circ}$
(i) Length of an arc $=\theta / 360^{\circ} \times$ Circumference (2π r)
\therefore Length of an arc $\mathrm{AB}=$
$\left(60^{\circ} / 360^{\circ}\right) \times 2 \times(22 / 7) \times 21$
$=(1 / 6) \times 2 \times(22 / 7) \times 21$
Or Arc AB Length $=22 \mathrm{~cm}$
(ii) It is given that the angle subtended by the $\operatorname{arc}=60^{\circ}$
So, the area of the sector making an angle of 60°
$=\left(60^{\circ} / 360^{\circ}\right) \times \pi \mathrm{r}^{2} \mathrm{~cm}^{2}$
$=441 / 6 \times 22 / 7 \mathrm{~cm}^{2}$
Or, the area of the sector formed by the arc APB is $231 \mathrm{~cm}^{2}$
(iii) Area of segment APB = Area of sector

OAPB - Area of $\triangle \mathrm{OAB}$
Since the two arms of the triangle are the radii of the circle and thus are equal, and one angle is $60^{\circ}, \Delta \mathrm{OAB}$ is an equilateral triangle. So, its area will be $\sqrt{3} / 4 \times a^{2}$ sq.
Units.
The area of segment $\mathrm{APB}=231-$
$(\sqrt{3} / 4) \times(\mathrm{OA})^{2}$
$=231-(\sqrt{ } 3 / 4) \times 21^{2}$
Or, the area of segment
APB $=[231-(441 \times \sqrt{ } 3) / 4] \mathrm{cm}^{2}$
27. Given A circle inscribed in a $\triangle \mathrm{PQR}$ such that
$P Q=P R$
To prove $\mathrm{QT}=\mathrm{TR}$
Proof We know that the tangents from an external points to a circle are equal in length.
PS = PU [tangents from P] ...(i)
QS =QT [tangents from O] ...(ii)
RT $=$ RU [tangents from R] ...(iii)
Now, $\mathrm{PQ}=\mathrm{PR}$ [given] (1 ½)
$\Rightarrow \mathrm{PQ}-\mathrm{PS}=\mathrm{PR}-\mathrm{PS}$
[subtracting PS from both sides]
$\Rightarrow \mathrm{PQ}-\mathrm{PS}=\mathrm{PR}-\mathrm{PU}$ [from Eq. (i)]
$\Rightarrow \mathrm{QS}=\mathrm{RU}$
$\Rightarrow \mathrm{QT}=\mathrm{RU}$ [from Eq. (ii)]
$\Rightarrow \mathrm{QT}=\mathrm{RT}$ [from Eq. (iii)]
Hence proved. ($1^{1 / 2}$)
28. There are 6 possible outcomes (1, 2, 3, 4, 5 and 6) in a single throw of a die.
(i) We know that even prime number is only 2.

So, number of favourable outcomes $=1$
$\therefore \mathrm{P}($ getting an even prime number $)=\frac{1}{6}\left(1 \frac{1}{2}\right)$
(ii) The numbers divisible by 2 are 2,4 and 6 .

So, number of favourable outcomes $=3$
$\therefore \mathrm{P}$ (getting a number divisible by 2)
$=\frac{3}{6}=\frac{1}{2}$

OR

Number of red cards $=26$
Number of queens $=4$
But, out of these 4 queens, 2 are red.
\therefore Number of queens which are not red $=2$
Now, number of cards which are red or queen
$=26+2=28$ (1)
$\therefore \mathrm{P}$ (getting either red card or queen)
$=\frac{\text { Number of card which are red or queen }}{\text { Total number of cards }}$
$=\frac{28}{52}=\frac{7}{13}$ (1)

Now, P (not getting either red card or queen)
$=1-\mathrm{P}$ (getting either red card or queen)
$=1-\frac{7}{13}=\frac{13-7}{13}=\frac{6}{13}$
29. Here, class intervals are not in inclusive form.
So, we first convert them in inclusive form by subtracting $\mathrm{h} / 2$ from the lower limit and adding $\mathrm{h} / 2$ to the upper limit of each class, where h is the difference between the lower limit of a class and the upper limit of the preceding class.
The given frequency distribution in inclusive form is as follows.

Age (in yr)	Number of cases
$4.5-14.5$	6
$14.5-24.5$	11
$24.5-34.5$	21
$34.5-44.5$	23
$44.5-54.5$	14
$54.5-64.5$	5

We observe that the class 34.5-44.5 has the maximum frequency.
So, it is the modal class such that
$\mathrm{I}=34.5, \mathrm{~h}=10, \mathrm{f}_{1}=23, \mathrm{f}_{0}=21$ and
$\mathrm{f}_{2}=14$
\therefore Mode $=l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0-f_{2}}} \times h$,
\Rightarrow Mode $=34.5+\frac{23-21}{46-21-14} \times 10$
$=34.5+\frac{2}{11} \times 10=36.31$
30. The given equations are
$10 x+3 y=75$...(i)
$6 x-5 y=11 \ldots$ (ii)
Multiplying Eq. (i) by 5 and Eq. (ii) by 3, we get
$50 x+15 y=375 \ldots$...(iii)
$18 x-15 y=33$...(iv) (1)
Adding Eqs. (iii) and (iv), we get
$68 x=408$
$\Rightarrow \mathrm{x}=\frac{408}{68} \Rightarrow \mathrm{x}=6$
Putting $\mathrm{x}=6$ in Eq.(i), we get
$(10 \times 6)+3 y=75$
$\Rightarrow 60+3 y=75$
$\Rightarrow 3 y=75-60$
$\Rightarrow 3 y=15$
$\Rightarrow \mathrm{y}=5$
$\therefore \mathrm{x}=6$ and $\mathrm{y}=5$ (1)
OR
The given equations are
$11 x+15 y+23=0 \ldots$ (i)
$7 \mathrm{x}-2 \mathrm{y}-20=0$...(ii)
Multiplying Eq. (i) by 2 and Eq. (ii) by
15 and adding the results, we get
$22 \mathrm{x}+105 \mathrm{x}=-46+300$
$\Rightarrow 127 \mathrm{x}=254$
$\Rightarrow \mathrm{x}=\frac{254}{127}=2$ (1)
Putting $x=2$ in Eq. (i), we get
$22+15 y=-23$
$\Rightarrow 15 \mathrm{y}=-23-22$
$\Rightarrow 15 \mathrm{y}=-45$
$\Rightarrow y=\frac{-45}{15} \Rightarrow y=-3$
Hence, $\mathrm{x}=2$ and $\mathrm{y}=-3$ (2)
31. Let AB and CD be two pillars of equal height h and distance between them be $\mathrm{BD}=100 \mathrm{~m}$.
Let E be a point on the road such that BE = x ,
$\mathrm{DE}=(100-\mathrm{x}), \angle \mathrm{AEB}=60^{\circ}$ and $\angle \mathrm{CED}=30^{\circ}$.

In right angled $\triangle \mathrm{ABE}$,
$\frac{A B}{B E}=\tan 60^{\circ}$
$\Rightarrow \frac{h}{x}-=\sqrt{3}\left[\because \tan 60^{\circ}=\sqrt{3}\right]$
$\Rightarrow h=\sqrt{3} \mathrm{x} \ldots$ (i) (1)
In right angled $\triangle \mathrm{CDE}$,
$\frac{C D}{D E}=\tan 30^{\circ}$
$\Rightarrow \frac{h}{100-x}=\frac{1}{\sqrt{3}}$..
From Eqs. (i) and (ii); we get

$$
\sqrt{3}=\frac{100-x}{\sqrt{3}}
$$

$$
\Rightarrow 3 x=100-x \quad \Rightarrow 4 x=100
$$

$\therefore x=25$
On putting $x=25$ in Eq. (i), we get $\mathrm{h}=\sqrt{3} \times 25$
$=25 \times 1.732$

$$
=43.3 \mathrm{~m}
$$

Hence, height of each pillar is 43.3 m and position of the point from pillar making an angle of 60° is 25 m .
32. Lets be the total surface area of the remaining solid.

Then, $S=$ Curved surface area of the cylinder + Area of the base of the cylinder + Curved surface area of the cone
$=2 \pi \mathrm{rh}+\pi \mathrm{r}^{2}+\pi \mathrm{rl}$
$=\pi\left[2 \mathrm{rh}+\mathrm{r}^{2}+\mathrm{r} \sqrt{r^{2}+h^{2}}\right]$
$\left[\because l=\sqrt{r^{2}+h^{2}}\right]$
$=\frac{22}{7}[5.04+0.81+0.9 \sqrt{0.81+7.84}$
$=\frac{22}{7}[5.85+0.9 \sqrt{8.65}]$
$=\frac{22}{7}[5.85+0.9 \times 2.94]$
$=\frac{22}{7} \times[5.85+2.64]=\frac{186.78}{7}$
$=26.68 \mathrm{~cm}^{2}$

Given, speed of flow of water $=10 \mathrm{~km} / \mathrm{h}$ $=10 \times 1000 \mathrm{~m} / \mathrm{h}[\because 1 \mathrm{~km}=1000 \mathrm{~m}]$
\Rightarrow Length of water flow in $1 \mathrm{~h}=10 \times 1000 \mathrm{~m}$
\Rightarrow Length of water flow in 30 min (i.e. in $\frac{1}{2} \mathrm{~h}$)
$=\frac{1}{2} \times 10 \times 1000$
$=5000 \mathrm{~m}$ (1)

Now, volume of water flowing in 30 min $=$ Volume of cuboid of length 5000 m , width 6 m and depth 1.5 m
$=500 \times 6 \times 1.5 \mathrm{~m}^{3}=45000 \mathrm{~m}^{3}$ (1)
Hence, the required area covered for irrigation with 8 cm or m of standing water

$$
\begin{aligned}
& =\frac{4500}{8} \times 100=562500 \mathrm{~m}^{2} \\
& =\frac{562500}{1000} \text { hec }\left[\because 1 \text { hec }=10000 \mathrm{~m}^{2}\right] \\
& =56.25 \text { hec }(2)
\end{aligned}
$$

33. Given, equations are $5 x-y=5$...(i)
and $3 x-y=3$...(ii)
Table for $5 x-y=5$ or $y=5 x-5$ is

\mathbf{X}	1	0
\mathbf{Y}	0	-5
Points	A $(1,0)$	$B(0,-5)$
Po		

Plot the points $\mathrm{A}(1,0)$ and $\mathrm{B}(0,-5)$ on a graph paper and join these points to form line AB . (1)
Table for $3 \mathrm{x}-\mathrm{y}=3$ or $\mathrm{y}=3 \mathrm{x}-3$ is

\mathbf{X}	1	0
\mathbf{Y}	0	-3
Points	A $(1,0)$	$\mathrm{C}(0,-3)$

Plot the points A $(1,0)$ and $\mathrm{C}(0,-3)$ on the same graph paper and join these points to form line AC. (1)

Hence, the triangle formed by given lines is $\triangle \mathrm{ABC}$ whose vertices are $\mathrm{A}(1,0), \mathrm{B}(0,-5)$ and $\mathrm{C}(0,-3)$.
34. Let OA be the tree of height h metre. In triangles POA and QOA, we have $\tan 30^{\circ}=\frac{\mathrm{OA}}{\mathrm{OP}}$ and $\tan 45^{\circ}=\frac{\mathrm{OA}}{\mathrm{OQ}}$

$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{h}}{\mathrm{OP}}$ and $1=\frac{\mathrm{h}}{\mathrm{OQ}}$
$\Rightarrow \mathrm{OP}=\sqrt{3} \mathrm{~h}$ and $\mathrm{OQ}=\mathrm{h}$
$\Rightarrow \mathrm{OP}+\mathrm{OQ}=\sqrt{3} \mathrm{~h}+\mathrm{h}$
$\Rightarrow \mathrm{PQ}=(\sqrt{3}+1) \mathrm{h}$
$\Rightarrow 100=(\sqrt{3}+1) \mathrm{h}[\because \mathrm{PQ}=100 \mathrm{~m}]$
$\Rightarrow \quad h=\frac{100}{\sqrt{3}+1} m$
$\Rightarrow \mathrm{h}=\frac{100(\sqrt{3}-1)}{2} \mathrm{~m}$
$\Rightarrow \mathrm{h}=50(1.732-1) \mathrm{m}=36.6 \mathrm{~m}$

Hence, the height of the tree is 36.6 m OR
Let P and Q be the positions of two aeroplanes when Q is vertically below P and $\mathrm{OP}=4000 \mathrm{~m}$. Let the angles of elevation of P and Q at a point A on the ground be 60° and 45° respectively.

In triangles AOP and AOQ, we have

$$
\begin{array}{ll}
& \tan 60^{\circ}=\frac{\mathrm{OP}}{\mathrm{OA}} \text { and } \tan 45^{\circ}=\frac{\mathrm{OQ}}{\mathrm{OA}} \\
\Rightarrow & \sqrt{3}=\frac{4000}{\mathrm{OA}} \text { and } 1=\frac{\mathrm{OQ}}{\mathrm{OA}} \\
\Rightarrow & \mathrm{OA}=\frac{4000}{\sqrt{3}} \text { and } \mathrm{OQ}=\mathrm{OA} \\
\Rightarrow & \mathrm{OQ}=\frac{4000}{\sqrt{3}} \mathrm{~m}
\end{array}
$$

\therefore Vertical distance between the aeroplanes

$$
\begin{aligned}
& =P Q=\mathrm{OP}-\mathrm{OQ} \\
& =\left(4000-\frac{4000}{\sqrt{3}}\right) \mathrm{m}=4000 \frac{(\sqrt{3}-1)}{\sqrt{3}} \mathrm{~m} \\
& =1690.53 \mathrm{~m}
\end{aligned}
$$

35. Given ABCD is a trapezium in which AB || DC.

To prove $\frac{O A}{O C}=\frac{O B}{O D}$ (2)
Proof In $\triangle \mathrm{OAS}$ and $\triangle \mathrm{ODC}$, we have AB || DC

Then, $\angle \mathrm{OAB}=\angle \mathrm{OCD}$ [alternate interior angles]
$\angle \mathrm{AOB}=\angle \mathrm{DOC}$ [vertically opposite angles]
and $\angle \mathrm{ABO}=\angle \mathrm{CDO}$ [alternate interior angles]
$\therefore \Delta \mathrm{OAB} \sim \Delta \mathrm{OCD}$ [by AAA similarity criterion]

Hence, $\frac{O A}{O C}=\frac{O B}{O D}$
[if two triangles are similar, then their corresponding sides are proportional]

Hence proved. (1)
36. (i) In quadrilateral POOR, we have

$\angle \mathrm{QPR}+\angle \mathrm{PRO}+\angle \mathrm{PQO}+\angle \mathrm{ROQ}=360^{\circ}$
$\Rightarrow 30^{\circ}+90^{\circ}+90^{\circ}+\angle \mathrm{ROQ}=360^{\circ}$
$[\because$ radius is always perpendicular to the tangent at point of contact]
$\Rightarrow \angle \mathrm{ROQ}=360^{\circ}-210^{\circ}=150^{\circ}$
(ii) We know that angle subtended by an arc at centre is double the angle subtended by it at any other part of the circle.
$2 \angle \mathrm{RSQ}=\angle \mathrm{ROQ}$
$\angle \mathrm{RSQ}=\frac{1}{2} \times 150^{\circ}=75^{\circ}$
(iii) In $\triangle \mathrm{QOR}, \mathrm{OQ}=\mathrm{OR}$ [radii]
$\angle \mathrm{ORQ}=\angle \mathrm{OQR}$
Now, $\angle \mathrm{ROQ}+\angle \mathrm{ORQ}+\angle \mathrm{OQR}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{OQR}=180^{\circ}-150^{\circ}$
$\Rightarrow 2 \angle \mathrm{OQR}=30^{\circ}$
$\Rightarrow \angle \mathrm{OQR}=15^{\circ}$
Again, $\angle \mathrm{OQP}=90^{\circ} \quad[\because \mathrm{OQ} \perp \mathrm{QP}]$
$\Rightarrow \angle \mathrm{OQR}+\angle \mathrm{RQP}=90^{\circ}$
$\Rightarrow \angle \mathrm{RQP}=90^{\circ}-15^{\circ}=75^{\circ}$
OR
Draw a tangent to the circles at point C .
Let it meets AB at P

Then, $\mathrm{PA}=\mathrm{PC}$ and $\mathrm{PS}=\mathrm{PC}$
[the tangents from an external points to a circle are equal in length]
$\mathrm{PA}=\mathrm{PC} \Rightarrow \angle \mathrm{PAC}=\angle \mathrm{PCA}$
$\mathrm{PB}=\mathrm{PC} \Rightarrow \angle \mathrm{PBC}=\angle \mathrm{PCB}$
$\therefore \angle \mathrm{PAC}+\angle \mathrm{PBC}=\angle \mathrm{PCA}+\angle \mathrm{PCB}=$ $\angle \mathrm{ACB}$
$\Rightarrow \angle \mathrm{PAC}+\angle \mathrm{PBC}+\angle \mathrm{ACB}=2 \angle \mathrm{ACB}$
$\Rightarrow 180^{\circ}=2 \angle \mathrm{ACB}$
$\Rightarrow \angle \mathrm{ACB}=90^{\circ}$
37. (i) For first metre, the charge is Rs. 100
i.e. first term, $a=100$

As, there is increasing of Rs. 25 for each subsequent metres, therefore common differenece, $\mathrm{d}=25$

So, the AP thus formed is
$100,125,150, \ldots$
(ii) Labour charge to dig the wellis the 15th term of AP.

We know, $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\therefore \mathrm{a}_{15}=100+(15-1) 25$
$=100+14 \times 25=450$
\therefore Labour charge $=$ Rs. 450
(iii) Money saved by Ram = Rs. 450 - Rs. 400 = Rs. 50

OR

We know that $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$

Sum of 15 terms, $S_{15}=\frac{15}{2}[2 \times 100+14 \times 25]$

$$
=\frac{15}{2}[200+350]=\frac{15}{2} \times 550=4125
$$

38. (i) Given, number of students in Section A $=32$
Number of students in Section B $=36$
The minimum number of books to be acquired for the class library $=$ LCM of $(32,36)$

$$
\begin{aligned}
& =2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \\
& =2^{5} \times 3^{2} \\
& =32 \times 9 \quad=288
\end{aligned}
$$

(ii) The prime factors of 36 are

$$
36=2 \times 2 \times 3 \times 3=2^{2} \times 3^{2}
$$

(iii) $\operatorname{HCF}(867,255)=51$

$$
O R
$$

Given, $\operatorname{LCM}(12,42)=10 \mathrm{~m}+4$
Factors of $12=2 \times 2 \times 3$
and factors of $42=2 \times 3 \times 7$
Now, LCM $(12,42)=2 \times 2 \times 3 \times 7=84$
$\therefore 84=10 \mathrm{~m}+4$
$\Rightarrow 84-4=10 \mathrm{~m}$
$\therefore \mathrm{m}=\frac{80}{10}=8$

