gath to succe	CLASS - X (BASIC)							
M		CS	-	BOARD PRACTICE TEST				
	ANSWER AND SOLUTIONS							
	SEC	TION-A	16.	Option (3) 30 - 40				
1.	Option (4) both (1) and (2)		17.	Option (2) 17.5				
2.	Option (4) 2,520		18.	Option (4) 147 π cm ²				
3.	Option (3) no real roots		19.	Option (4)				
4.	Option (2) infinite solution		20.	Assertion (A) is false but Reason (R) is true. Option (4)				
5. 6.	Option (3) k = 4			Assertion (A) is false but Reason (R) is true.				
0. 7.	Option (2) 5 : 1 Option (1)		21.	Given system of equations is cx + 3y + (3 - c) = 0				
8.	AAA similarity c Option (3)	riterion		and $12x + cy - c = 0$ Condition for equations to have infinitely many solutions is :				
9.	$\angle B = \angle D$ Option (1) 25°			$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$				
10.	Option (3) $\sqrt{3}$			Here, $a_1 = c, b_1 = 3, c_1 = 3 - c$				
11.	Option (1) 30°			$a_{2} = 12, b_{2} = c, c_{2} = -c$ ∴ $\frac{c}{12} = \frac{3}{c} = \frac{3-c}{-c}$				
12.	Option (3) $\sqrt{3}$			\Rightarrow $c^2 = 36$				
13.	$\frac{\sqrt{3}}{2}$ Option (3)			$\Rightarrow c = 6 \text{ or } c = -6 \dots(1)$ Also, $-3c = 3c - c^2$				
13. 14.	9π			$\Rightarrow c = 6 \text{ or } c = 0 \qquad \dots (2)$ From (1) and (2), we get, $c = 6$				
14. 15.	Option (2) 33 cm Option (3)		22.	A D E F				
	$\frac{1}{365}$			B C				

1001CPA404021230077

1/7

1001CPA404021230077

CLASS - X (BASIC)

We have, radius (r) = 10.5 cm and angle (θ) = 60°

OR

$$=\frac{60^{\circ}}{360^{\circ}}\times 2\pi r$$

$$=\frac{60}{360^{\circ}}\times2\times\frac{22}{7}\times10.5$$

= 11 cm

Now, the perimeter of the sector OAPBO

= OA + length of an arc APB + BO

$$= (10.5 + 11 + 10.5) \text{ cm}$$

= 32 cm

SECTION-C

26. Let us assume, to the contrary, that $(5+2\sqrt{3})$ is rational.

So, we can find coprime integers a and b $(\neq 0)$ such that

$$(5+2\sqrt{3}) = \frac{a}{b}, b \neq 0, a, b \in I$$

$$\Rightarrow \sqrt{3} = \frac{a-5b}{2b}$$

This contradict the given fact that $\sqrt{3}$ is irrational.

So, we conclude that $(5+2\sqrt{3})$ is irrational.

27. Let α and β be the zeroes of $5x^2 + 2x - 3$.

Then,
$$\alpha + \beta = \left(-\frac{b}{a}\right) = -\frac{2}{5}$$
 and $\alpha\beta = \frac{c}{a} = \frac{-3}{5}$

According to the question, $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ are the zeroes of the required polynomial.

Now
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{-\frac{2}{5}}{-\frac{3}{5}} = \frac{2}{3}$$

and $\frac{1}{\alpha} \cdot \frac{1}{\beta} = \frac{1}{\alpha\beta} = \frac{1}{-\frac{3}{5}} = \frac{-5}{3}$

Thus, a quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is $k\left\{x^2 - \left(\frac{1}{\alpha} + \frac{1}{\beta}\right) \times + \frac{1}{\alpha} \cdot \frac{1}{\beta}\right\}$

$$\Rightarrow k\{x^{2} - \frac{2}{3}x - \frac{5}{3}\}$$

i.e., $k_{1}(3x^{2} - 2x - 5)$ [Let $\frac{k}{3} = k_{1}$]

28. Let number of right answers be x
Let number of wrong answers be y
As per question

$$4x - y = 70$$
(i)
 $5x - 2y = 80$ (ii)
 $2 \times eq.(i) - eq.(ii),$
 $8x - 2y = 140$
 $5x - 2y = 80$
 $- + -$
 $3x = 60$
 $\Rightarrow x = 20$
Substituting the value of x in equation(i) to get
vlaue of y,
 $4(20) - y = 70$
 $\Rightarrow 80 - y = 70$
 $\therefore y = 10$
Hence, total number of questions are
 $= 20 + 10 = 30$

1001CPA404021230077

PRE-NURTURE & CAREER FOUNDATION DIVISION

OR Let father's age be x-years And son's age be y-years. According to the questions, x + 2y = 70....(1) And 2x + y = 95....(2) Multiplying equation (2) by 2 and subtracting from (1)x + 2y = 704x + 2y = 190-3x = -120x = 4040 + 2y = 702y = 30y = 15 Thus, father's age = 40 years and son's age = 15 years In $\triangle OPQ$ and $\triangle OPR$ PO = PR[Tangent drawn from an external point] OP = OP[Common] OQ = OR[Radius of same circle] $\triangle OPR \cong \triangle OPQ$ [by SSS cong.] $\angle OPR = \angle OPQ = 45^{\circ}$ [by cpct] $\angle OQP = 90^{\circ}$ [Tangent \perp radius] $\angle ORP = 90^{\circ}$ [Tangent \perp radius] $\angle RPQ = \angle OPR + \angle OPQ = 90^{\circ}$ PQ = PR[Tangent from external point are equal] OR = OQ[Radius of same circle] ORPQ is square

Hence proved

30. Given,
$$sin(A + 2B) = \frac{\sqrt{3}}{2} \Rightarrow A + 2B = 60^{\circ}$$

 $cos(A + 4B) = 0 \Rightarrow A + 4B = 90^{\circ}$

Solving, we get $A = 30^{\circ}$ and $B = 15^{\circ}$

OR

 $4(\sin^4 30^\circ + \cos^4 60^\circ) - 3(\cos^2 45^\circ - \sin^2 90^\circ)$

$$= 4 \left[\left(\frac{1}{2}\right)^{4} + \left(\frac{1}{2}\right)^{4} \right] - 3 \left[\left(\frac{1}{\sqrt{2}}\right)^{2} - (1)^{2} \right]$$
$$= 4 \left[\frac{1}{16} + \frac{1}{16} \right] - 3 \left[\frac{1}{2} - 1 \right]$$
$$= 4 \times \frac{2}{16} - 3 \times \left(-\frac{1}{2} \right)$$
$$= \frac{1}{2} + \frac{3}{2}$$
$$= \frac{4}{2} = 2$$

31. Total number of balls = x + 2x + 3x = 6x
(i) P(not a red ball) = P(a white or a blue ball)

$$=\frac{2x+3x}{6x}=\frac{5}{6}$$

(ii) P(a white ball) = $\frac{2x}{6x} = \frac{1}{3}$

(iii) P(a blue or a white) = P(not a red ball)

$$=\frac{5}{6}$$
 [by (i) above]

SECTION-D

32. Let the speed of car at A be x km/h And the speed of car at B y km/h Case 1 : 8x - 8y = 80or, x - y = 10

Case 2 :
$$\frac{4}{3}x + \frac{4}{3}y = 80$$

or, x + y = 60

On solving, x = 35 and y = 25

Hence, speed of cars at A and B are 35 km/h and 25 km/h respectively.

4/7

29.

Your Hard Work Leads to Strong Foundation

1001CPA404021230077

CLASS - X (BASIC)

OR Let cost of 1 pencil = x and cost of 1 pen = y According to question 5x + 7y = 250.....(1) 7x + 5y = 302.....(2) Adding equation (1) and (2) 12x + 12y = 552x + y = 46.....(3) Subtracting equation (1) and (2) -2x + 2y = -52x - y = 26.....(4) Adding equation (3) and (4) 2x = 72x = 36From (3) y = 46 - 36 = 10

33. Given A \triangle ABC in which D, E, F are the midpoints of BC, CA and AB respectively.

To prove $\triangle AFE \sim \triangle ABC$, $\triangle FBD \sim \triangle ABC$, $\triangle EDC \sim \triangle ABC$,

and $\Delta DEF \sim \Delta ABC$

Proof We shall first show that $\triangle AFE \sim \triangle ABC$

Since F and E are the midpoints of AB and AC respectively, so by the converse of Thales theorem,

we have : $FE \parallel BC$.

 $\therefore \ \angle AFE = \angle B \qquad [corresponding \ \angle s]$ Now, in $\triangle AFE$ and $\triangle ABC$, we have :

 $\angle AFE = \angle B$ [corresponding $\angle s$] and $\angle A = \angle A$ (common) $\therefore \Delta AFE \sim \Delta ABC$ [by AA-similarity]. Similarly, $\Delta FBD \sim \Delta ABC$ and $\Delta EDC \sim \Delta ABC$. Now, we shall show that $\Delta DEF \sim \Delta ABC$. In the same manner as above, we can prove that ED \parallel AF and DF \parallel EA.

 \therefore AFDE is a ||gm.

 $\therefore \angle EDF = \angle A$ [opposite angles of a ||gm] Similarly, BDEF is a ||gm.

 $\therefore \angle DEF = \angle B$ [opposite angles of a ||gm] Thus, in $\triangle DEF$ and $\triangle ABC$, we have :

 \therefore \angle EDF = \angle A and \angle DEF = \angle B

 $\therefore \Delta DEF \sim \Delta ABC$ [by AA-similarity]

Hence, the result follows.

OR

Given A \triangle ABC in which P and Q are the points on AB and AC respectively such that PQ || BC and AD is the median, cutting BC at E.

To prove PE = EQ

Proof

In $\triangle APE$ and $\triangle ABD$, we have :

$\angle PAE = \angle BAD$	(common)
$\angle APE = \angle ABD$	(corresponding $\angle s$]
$\therefore \Delta APE \sim \Delta ABD$	[by AA-similarity].

But, in similar triangles, the corresponding sides are proportional.

$$\therefore \quad \frac{AE}{AD} = \frac{PE}{BD} \qquad \dots (1)$$

In $\triangle AEQ$ and $\triangle ADC$, we have :

 $\angle QAE = \angle CAD$ (common)

 $\angle AQE = \angle ACD$ (corresponding $\angle s$]

 $\therefore \Delta AEQ \sim \Delta ADC$ [by AA-similarity].

But, in similar triangles, the corresponding sides are proportional.

$$\therefore \quad \frac{AE}{AD} = \frac{EQ}{DC} \qquad \dots (2)$$

1001CPA404021230077

Your Hard Work Leads to Strong Foundation

5/7

PRE-NURTURE & CAREER FOUNDATION DIVISION

From (1) and (2), we get :

$$\frac{PE}{BD} = \frac{EQ}{DC} \qquad \left[\text{ each equal to } \frac{AE}{AD} \right]$$

But, BD = DC [:: Ad is the median]

$$\therefore$$
 PE = EQ.

34.

Volume of Ist cylinder

 $= \pi r^2 h$

$$= \pi (12)^2 \times 220$$

= $144 \times 220\pi$

 $= 31680\pi$

Volume of IInd cylinder

 $= \pi R^2 H$

 $= \pi 8^2 \times 60$

$$= 3840 \pi$$

Total volume = $31680\pi + 3840\pi$

$$= 32520\pi$$

= 32520 × 3.14
= 111532.8 cm³
Mass of 1 cm³ of iron = 8g
Total weigh = 111532.8 × 8
= 892262.4 gm
= 892.26 kg

OR

Capacity of first glass =
$$\pi r^2 H - \frac{2}{3}\pi r^3$$

= $\pi \times 9(10 - 2)$
= 72π cm³
Capacity of second glass = $\pi r^2 H - \frac{1}{3}\pi r^2 h$
= $\pi \times 3 \times 3(10 - 0.5)$
= $85.5 \pi cm^3$

- : Suresh got 42.39 cm³ more quantity of juice.
- **35.** Convert the given frequency distribution to cumulative frequency distribution type.

Class interval	Frequency	c.f.
0-10	5	5
10-20	Х	5+ x
20-30	20	25 + x
30-40	15	40 + x
40-50	у	40 + x + y
50-60	5	45 + x + y

Given : Median = 28.5

 \therefore Median class = 20 - 30

 \therefore Sum of frequencies = 60

 $\therefore 5 + x + 20 + 15 + y + 5 = 60$

$$\Rightarrow 45 + x + y = 60$$

 $\Rightarrow x + y = 15$

We know,

Median = $\ell + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$

Here, median = 28.5 ℓ = 20, $\frac{n}{2}$ = 30, cf = 5 + x f = 20 and h = 10 \therefore 28.5 = 20 + $\left(\frac{30-5-x}{20}\right) \times 10$ \Rightarrow 8.5 × 2 = 25 - x \Rightarrow x = 25 - 17 = 8 Now, put the value of 'x' in equation (i), we get \therefore x = 8 and y = 7

CLASS - X (BASIC)

SECTION-E

36. (i) From figure, the electrician is required to reach at the point B on the pole AD. So, BD = AD - AB= (5 - 1.3) m = 3.7 m(ii) In $\triangle BDC$, $\sin 60^\circ = \frac{BD}{BC}$ $\Rightarrow \frac{\sqrt{3}}{2} = \frac{3.7}{BC}$ $BC = \frac{3.7 \times 2}{\sqrt{3}} = \frac{3.7 \times 2 \times \sqrt{3}}{3}$ \Rightarrow BC = 4.28 m (approx.) (iii) In $\triangle BDC$, $\therefore \cot 60^\circ = \frac{DC}{BD}$ $\Rightarrow \frac{1}{\sqrt{3}} = \frac{DC}{37}$ $\Rightarrow DC = \frac{3.7}{\sqrt{3}} = \frac{3.7\sqrt{3}}{3}$ \Rightarrow DC = 2.14 m(approx) OR In $\triangle BDC$, $\therefore \sin 30^\circ = \frac{BD}{BC}$ $\Rightarrow \frac{1}{2} = \frac{3.7}{BC}$ \Rightarrow BC = 3.7 × 2 = 7.4 m 37. (i) Point A lies in x = 3 and y = 4. \therefore A(3, 4) is the correct position. Point D lies at x = 6 and y = 1. So, the correct position of D is (6, 1)(ii) Position of A = (3, 4)Position of B = (6, 7): Distance of AB = $\sqrt{(3-6)^2 + (4-7)^2}$ $= \sqrt{(-3)^2 + (-3)^2}$ $=\sqrt{18}=3\sqrt{2}$ units

$A P B (3 4) 3 \cdot 1 (6 7)$ $P\left(\frac{18+3}{4},\frac{21+4}{4}\right)$ $P\left(\frac{21}{4},\frac{25}{4}\right)$

(iii) Position of B = (6, 7)and position of C = (9, 4) \therefore Mid-point of B and C = $\left(\frac{6+9}{2}, \frac{7+4}{2}\right)$

 $=\left(\frac{15}{2},\frac{11}{2}\right)$

38. (i) Since the top and the bottom rungs are apart by

$$2\frac{1}{2}m = \frac{1}{2}m$$

= $\frac{5}{2} \times 100 \text{ cm} = 250 \text{ cm}$

5

(ii) The distance between the two rungs is 25 cm Hence, the total number of rungs

$$=\frac{250}{25}+1=11$$

1

(iii) The required length of the wood,

$$S_{11} = \frac{11}{2} [25 + 45]$$

$$=\frac{11}{2} \times 70 = 385$$
 cm

OR

$$a_{11} = 25$$

$$a + 10d = 25$$

$$45 + 10d = 25$$

$$10d = -20$$

$$d = -2$$

$$a_{10} = a + 9d$$

$$= 45 + 9 \times (-2) = 45 - 18 = 27 \text{ m}$$

1001CPA404021230077

OR