ANSWER AND SOLUTIONS

SECTION-A

1. Option (4)
both (1) and (2)
2. Option (4)

2,520
3. Option (3)
no real roots
4. Option (2)
infinite solution
5. Option (3)
$\mathrm{k}=4$
6. Option (2)
$5: 1$
7. Option (1)

AAA similarity criterion
8. Option (3)
$\angle \mathrm{B}=\angle \mathrm{D}$
9. Option (1)
25°
10. Option (3)
$\sqrt{3}$
11. Option (1)
30°
12. Option (3)
$\frac{\sqrt{3}}{2}$
13. Option (3)
9π
14. Option (2)

33 cm
15. Option (3)
$\frac{1}{365}$
16. Option (3)
$30-40$
17. Option (2)
17.5
18. Option (4)
$147 \pi \mathrm{~cm}^{2}$
19. Option (4)

Assertion (A) is false but Reason (R) is true.
20. Option (4)

Assertion (A) is false but Reason (R) is true.

SECTIION-IB

21. Given system of equations is

$$
c x+3 y+(3-c)=0
$$

and $12 x+c y-c=0$
Condition for equations to have infinitely many solutions is :

$$
\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}
$$

Here, $\quad a_{1}=c, b_{1}=3, c_{1}=3-c$

$$
\mathrm{a}_{2}=12, \mathrm{~b}_{2}=\mathrm{c}, \mathrm{c}_{2}=-\mathrm{c}
$$

$\therefore \quad \frac{\mathrm{c}}{12}=\frac{3}{\mathrm{c}}=\frac{3-\mathrm{c}}{-\mathrm{c}}$
$\Rightarrow \quad \mathrm{c}^{2}=36$
$\Rightarrow \quad \mathrm{c}=6$ or $\mathrm{c}=-6$
Also, $\quad-3 \mathrm{c}=3 \mathrm{c}-\mathrm{c}^{2}$
$\Rightarrow \quad c=6$ or $c=0$
From (1) and (2), we get, $\mathrm{c}=6$
22.

Given : ABCD is a parallelogram with side AD extending at E . BE is joined intersecting CD at F . In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CFB}$
$\angle \mathrm{A}=\angle \mathrm{C}$
[opposite $\angle \mathrm{s}$ of parallelgram]
$\angle \mathrm{CFB}=\angle \mathrm{ABE}$ [Alternate $\angle \mathrm{s}$]
$\Delta \mathrm{ABE} \sim \Delta \mathrm{CFB} \quad$ [By AA similarity]
Hence proved

OR

In $\triangle \mathrm{ABO}$ and $\triangle \mathrm{CDO}$
$\angle \mathrm{OAB}=\angle \mathrm{OCD} \quad[$ Alternate $\angle \mathrm{s}$]
$\angle \mathrm{AOB}=\angle \mathrm{COD} \quad[$ Vertically opposite $\angle \mathrm{s}]$
$\triangle \mathrm{AOB} \cong \triangle \mathrm{COD} \quad$ [by AA similarly]
$\frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$
$\frac{4}{4 x-2}=\frac{x+1}{2 x+4}$
$\frac{4}{2(2 x-1)}=\frac{(x+1)}{2(x+2)}$
$4(x+2)=(2 x-1)(x+1)$
$4 \mathrm{x}+8=2 \mathrm{x}^{2}+2 \mathrm{x}-\mathrm{x}-1$
$2 x^{2}-3 x-9=0$
$2 \mathrm{x}^{2}-6 \mathrm{x}+3 \mathrm{x}-9=0$
$2 x(x-3)+3(x-3)=0$
$(x-3)(2 x+3)=0$
$x=3$ or $x=\frac{-3}{2}$ (not possible)
So, $x=3$
23. $\angle \mathrm{PQO}=90^{\circ} \quad[\because$ Tangent \perp radius $]$

Also, $\angle \mathrm{QOP}=180^{\circ}-120^{\circ}=60^{\circ}$ [Linear pair]
In $\triangle \mathrm{PQO}$,
$\angle \mathrm{OPQ}=180^{\circ}-\angle \mathrm{OQP}-\angle \mathrm{QOP}$
$=180^{\circ}-90^{\circ}-60^{\circ}$
$=30^{\circ}$
24.

Given that, $\tan \mathrm{A}=\frac{3}{4}$

Let $\mathrm{BC}=3 \mathrm{k}, \mathrm{AB}=4 \mathrm{k}$
$\Rightarrow \mathrm{AC}=5 \mathrm{k}$
$\sin \mathrm{A}=\frac{3 \mathrm{k}}{5 \mathrm{k}}=\frac{3}{5}$
$\cos \mathrm{A}=\frac{4 \mathrm{k}}{5 \mathrm{k}}=\frac{4}{5}$
$\frac{1}{\sin \mathrm{~A}}+\frac{1}{\cos \mathrm{~A}}=\frac{5}{3}+\frac{5}{4}$
$=\frac{20+15}{12}$
$=\frac{35}{12}$
25. It is given that circumference of the circle is 176 m
$\Rightarrow 2 \pi r=176$
$\Rightarrow 2 \times \frac{22}{7} \times r=176$
$\Rightarrow \mathrm{r}=\frac{176 \times 7}{2 \times 22}=28 \mathrm{~cm}$

Also, in a quadrant $\theta=90^{\circ}$

Area of quadrant $=\frac{\theta}{360^{\circ}} \times \pi r^{2}$

$$
\begin{aligned}
& =\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 28 \times 28 \\
& =616 \mathrm{~m}^{2}
\end{aligned}
$$

OR

We have, radius $(\mathrm{r})=10.5 \mathrm{~cm}$
and angle $(\theta)=60^{\circ}$

$=\frac{\theta}{360^{\circ}} \times 2 \pi \mathrm{r}$
$=\frac{60^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 10.5$
$=11 \mathrm{~cm}$
Now, the perimeter of the sector OAPBO
$=\mathrm{OA}+$ length of an arc APB +BO
$=(10.5+11+10.5) \mathrm{cm}$
$=32 \mathrm{~cm}$

SECIION-C

26. Let us assume, to the contrary, that $(5+2 \sqrt{3})$ is rational.

So, we can find coprime integers a and $\mathrm{b}(\neq 0)$ such that
$(5+2 \sqrt{3})=\frac{a}{b}, b \neq 0, a, b \in I$
$\Rightarrow \quad \sqrt{3}=\frac{a-5 b}{2 b}$

This contradict the given fact that $\sqrt{3}$ is irrational.

So, we conclude that $(5+2 \sqrt{3})$ is irrational.
27. Let α and β be the zeroes of $5 x^{2}+2 x-3$.

Then, $\alpha+\beta=\left(-\frac{b}{a}\right)=-\frac{2}{5}$ and $\alpha \beta=\frac{\mathrm{c}}{\mathrm{a}}=\frac{-3}{5}$
According to the question, $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ are the zeroes of the required polynomial.

Now $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{-\frac{2}{5}}{-\frac{3}{5}}=\frac{2}{3}$
and $\frac{1}{\alpha} \cdot \frac{1}{\beta}=\frac{1}{\alpha \beta}=\frac{1}{-\frac{3}{5}}=\frac{-5}{3}$
Thus, a quadratic polynomial whose zeroes are
$\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is
$\mathrm{k}\left\{\mathrm{x}^{2}-\left(\frac{1}{\alpha}+\frac{1}{\beta}\right) \times+\frac{1}{\alpha} \cdot \frac{1}{\beta}\right\}$
$\Rightarrow \mathrm{k}\left\{\mathrm{x}^{2}-\frac{2}{3} \mathrm{x}-\frac{5}{3}\right\}$
i.e., $k_{1}\left(3 x^{2}-2 x-5\right) \quad\left[\right.$ Let $\left.\frac{k}{3}=k_{1}\right]$
28. Let number of right answers be x

Let number of wrong answers be y
As per question
$4 \mathrm{x}-\mathrm{y}=70$
$5 \mathrm{x}-2 \mathrm{y}=80$
$2 \times$ eq.(i) - eq.(ii),
$8 \mathrm{x}-2 \mathrm{y}=140$
$5 x-2 y=80$

- + -

$3 \mathrm{x}=60$
$\Rightarrow \mathrm{x}=20$
Substituting the value of x in equation(i) to get vlaue of y,
$4(20)-\mathrm{y}=70$
$\Rightarrow 80-\mathrm{y}=70$
$\therefore \mathrm{y}=10$
Hence, total number of questions are
$=20+10=30$

OR

Let father's age be x-years
And son's age be y -years.
According to the questions,
$x+2 y=70$
And $2 \mathrm{x}+\mathrm{y}=95$
Multiplying equation (2) by 2 and subtracting from (1)
$\mathrm{x}+2 \mathrm{y}=70$
$4 \mathrm{x}+2 \mathrm{y}=190$

- - -

$-3 \mathrm{x}=-120$

$$
\mathrm{x}=40
$$

$40+2 y=70$
$2 \mathrm{y}=30$
$y=15$
Thus, father's age $=40$ years and son's age $=15$ years
29. In $\triangle \mathrm{OPQ}$ and $\triangle \mathrm{OPR}$
$\mathrm{PQ}=\mathrm{PR} \quad[$ Tangent drawn from an external point]
$\mathrm{OP}=\mathrm{OP}$
[Common]
$O Q=O R$
[Radius of same circle]
$\Delta \mathrm{OPR} \cong \triangle \mathrm{OPQ}$ [by SSS cong.]
$\angle \mathrm{OPR}=\angle \mathrm{OPQ}=45^{\circ}$
[by cpct]
$\angle \mathrm{OQP}=90^{\circ}$
[Tangent \perp radius]
$\angle \mathrm{ORP}=90^{\circ} \quad[$ Tangent \perp radius $]$
$\angle \mathrm{RPQ}=\angle \mathrm{OPR}+\angle \mathrm{OPQ}=90^{\circ}$
$\mathrm{PQ}=\mathrm{PR} \quad[$ Tangent from external point are equal]
$\mathrm{OR}=\mathrm{OQ} \quad$ [Radius of same circle]
ORPQ is square
Hence proved
30. Given, $\sin (A+2 B)=\frac{\sqrt{3}}{2} \Rightarrow A+2 B=60^{\circ}$
$\cos (\mathrm{A}+4 \mathrm{~B})=0 \Rightarrow \mathrm{~A}+4 \mathrm{~B}=90^{\circ}$
Solving, we get $A=30^{\circ}$ and $B=15^{\circ}$

OR

$4\left(\sin ^{4} 30^{\circ}+\cos ^{4} 60^{\circ}\right)-3\left(\cos ^{2} 45^{\circ}-\sin ^{2} 90^{\circ}\right)$
$=4\left[\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{4}\right]-3\left[\left(\frac{1}{\sqrt{2}}\right)^{2}-(1)^{2}\right]$
$=4\left[\frac{1}{16}+\frac{1}{16}\right]-3\left[\frac{1}{2}-1\right]$
$=4 \times \frac{2}{16}-3 \times\left(-\frac{1}{2}\right)$
$=\frac{1}{2}+\frac{3}{2}$
$=\frac{4}{2}=2$
31. Total number of balls $=x+2 x+3 x=6 x$
(i) $\mathrm{P}($ not a red ball $)=\mathrm{P}(\mathrm{a}$ white or a blue ball $)$

$$
=\frac{2 x+3 x}{6 x}=\frac{5}{6}
$$

(ii) $\mathrm{P}($ a white ball $)=\frac{2 \mathrm{x}}{6 \mathrm{x}}=\frac{1}{3}$
(iii) $\mathrm{P}(\mathrm{a}$ blue or a white) $=\mathrm{P}($ not a red ball $)$

$$
=\frac{5}{6}[\text { by (i) above }]
$$

SEC'II(ON-I)

32. Let the speed of car at A be $x \mathrm{~km} / \mathrm{h}$

And the speed of car at B y km/h
Case 1: $8 x-8 y=80$
or, $\mathrm{x}-\mathrm{y}=10$
Case 2: $\frac{4}{3} x+\frac{4}{3} y=80$
or, $x+y=60$
On solving, $\mathrm{x}=35$ and $\mathrm{y}=25$
Hence, speed of cars at A and B are $35 \mathrm{~km} / \mathrm{h}$ and $25 \mathrm{~km} / \mathrm{h}$ respectively.

OR

Let cost of 1 pencil $=x$ and cost of 1 pen $=y$
According to question
$5 x+7 y=250$
$7 x+5 y=302$
Adding equation (1) and (2)
$12 x+12 y=552$
$x+y=46$
Subtracting equation (1) and (2)
$-2 x+2 y=-52$
$x-y=26$
Adding equation (3) and (4)
$2 \mathrm{x}=72$
$\mathrm{x}=36$
From (3)
$y=46-36=10$
33. Given $\mathrm{A} \triangle \mathrm{ABC}$ in which $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are the midpoints of BC, CA and AB respectively.

To prove $\triangle \mathrm{AFE} \sim \triangle \mathrm{ABC}$,
$\triangle \mathrm{FBD} \sim \triangle \mathrm{ABC}$,
$\Delta \mathrm{EDC} \sim \triangle \mathrm{ABC}$,
and $\quad \triangle \mathrm{DEF} \sim \triangle \mathrm{ABC}$
Proof We shall first show that $\triangle \mathrm{AFE} \sim \Delta \mathrm{ABC}$
Since F and E are the midpoints of $A B$ and $A C$ respectively, so by the converse of Thales theorem,
we have : $\mathrm{FE} \| \mathrm{BC}$.
$\therefore \quad \angle \mathrm{AFE}=\angle \mathrm{B}$
[corresponding $\angle \mathrm{s}$]
Now, in $\triangle A F E$ and $\triangle A B C$, we have :

$$
\angle \mathrm{AFE}=\angle \mathrm{B}
$$

and $\angle \mathrm{A}=\angle \mathrm{A}$
[corresponding $\angle \mathrm{s}$]
$\therefore \triangle \mathrm{AFE} \sim \triangle \mathrm{ABC}$
(common)

Similarly , $\triangle \mathrm{FBD} \sim \triangle \mathrm{ABC}$ and $\triangle \mathrm{EDC} \sim \triangle \mathrm{ABC}$.

In the same manner as above, we can prove that ED \| AF and DF \| EA.
$\therefore \quad \mathrm{AFDE}$ is a $\| \mathrm{gm}$.
$\therefore \quad \angle \mathrm{EDF}=\angle \mathrm{A} \quad$ [opposite angles of a $\| \mathrm{gm}$]
Similarly, BDEF is a \|gm.
$\therefore \quad \angle \mathrm{DEF}=\angle \mathrm{B} \quad$ [opposite angles of a $\| \mathrm{gm}$]
Thus, in $\triangle \mathrm{DEF}$ and $\triangle \mathrm{ABC}$, we have :
$\therefore \quad \angle \mathrm{EDF}=\angle \mathrm{A}$ and $\angle \mathrm{DEF}=\angle \mathrm{B}$
$\therefore \quad \triangle \mathrm{DEF} \sim \triangle \mathrm{ABC} \quad$ [by AA-similarity]
Hence, the result follows.

OR

Given $\mathrm{A} \triangle \mathrm{ABC}$ in which P and Q are the points on $A B$ and $A C$ respectively such that $P Q \| B C$ and AD is the median, cutting BC at E .

To prove $\mathrm{PE}=\mathrm{EQ}$
Proof
In $\triangle \mathrm{APE}$ and $\triangle \mathrm{ABD}$, we have :

$$
\begin{array}{rlrl}
\angle \mathrm{PAE} & =\angle \mathrm{BAD} & & (\text { common }) \\
\angle \mathrm{APE} & =\angle \mathrm{ABD} & & (\text { corresponding } \angle \mathrm{s}] \\
\therefore \triangle \mathrm{APE} \sim \triangle \mathrm{ABD} & & {[\text { by AA-similarity }]}
\end{array}
$$

But, in similar triangles, the corresponding sides are proportional.
$\therefore \quad \frac{\mathrm{AE}}{\mathrm{AD}}=\frac{\mathrm{PE}}{\mathrm{BD}}$
In $\triangle \mathrm{AEQ}$ and $\triangle \mathrm{ADC}$, we have :

$$
\begin{aligned}
& \angle \mathrm{QAE}=\angle \mathrm{CAD}(\text { common }) \\
& \angle \mathrm{AQE}=\angle \mathrm{ACD} \text { (corresponding } \angle \mathrm{s}]
\end{aligned}
$$

$\therefore \triangle \mathrm{AEQ} \sim \Delta \mathrm{ADC}$ [by AA-similarity].
But, in similar triangles, the corresponding sides are proportional.
$\therefore \quad \frac{\mathrm{AE}}{\mathrm{AD}}=\frac{\mathrm{EQ}}{\mathrm{DC}}$

From (1) and (2), we get :

$$
\frac{\mathrm{PE}}{\mathrm{BD}}=\frac{\mathrm{EQ}}{\mathrm{DC}} \quad\left[\text { each equal to } \frac{\mathrm{AE}}{\mathrm{AD}}\right]
$$

But, $\mathrm{BD}=\mathrm{DC}[\because$ Ad is the median $]$
$\therefore \mathrm{PE}=\mathrm{EQ}$.
34.

Volume of I^{st} cylinder
$=\pi r^{2} \mathrm{~h}$
$=\pi(12)^{2} \times 220$
$=144 \times 220 \pi$
$=31680 \pi$
Volume of II $^{\text {nd }}$ cylinder
$=\pi \mathrm{R}^{2} \mathrm{H}$
$=\pi 8^{2} \times 60$
$=3840 \pi$
Total volume $=31680 \pi+3840 \pi$

$$
\begin{aligned}
& =32520 \pi \\
& =32520 \times 3.14 \\
& =111532.8 \mathrm{~cm}^{3}
\end{aligned}
$$

Mass of $1 \mathrm{~cm}^{3}$ of iron $=8 \mathrm{~g}$
Total weigh $=111532.8 \times 8$
$=892262.4 \mathrm{gm}$
$=892.26 \mathrm{~kg}$

OR

Capacity of first glass $=\pi r^{2} \mathrm{H}-\frac{2}{3} \pi r^{3}$

$$
\begin{aligned}
& =\pi \times 9(10-2) \\
& =72 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Capacity of second glass $=\pi r^{2} \mathrm{H}-\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& =\pi \times 3 \times 3(10-0.5) \\
& =85.5 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

\because Suresh got $42.39 \mathrm{~cm}^{3}$ more quantity of juice.
35. Convert the given frequency distribution to cumulative frequency distribution type.

Class interval	Frequency	c.f.
$0-10$	5	5
$10-20$	x	$5+\mathrm{x}$
$20-30$	20	$25+\mathrm{x}$
$30-40$	15	$40+\mathrm{x}$
$40-50$	y	$40+\mathrm{x}+\mathrm{y}$
$50-60$	5	$45+\mathrm{x}+\mathrm{y}$

Given : Median $=28.5$
\therefore Median class $=20-30$
\because Sum of frequencies $=60$
$\therefore 5+\mathrm{x}+20+15+\mathrm{y}+5=60$
$\Rightarrow 45+x+y=60$
$\Rightarrow \mathrm{x}+\mathrm{y}=15$
We know,
Median $=\ell+\left(\frac{\frac{\mathrm{n}}{2}-\mathrm{cf}}{\mathrm{f}}\right) \times \mathrm{h}$
Here, median $=28.5 \ell=20, \frac{\mathrm{n}}{2}=30, \mathrm{cf}=5+\mathrm{x}$
$\mathrm{f}=20$ and $\mathrm{h}=10$
$\therefore 28.5=20+\left(\frac{30-5-\mathrm{x}}{20}\right) \times 10$
$\Rightarrow 8.5 \times 2=25-\mathrm{x}$
$\Rightarrow \mathrm{x}=25-17=8$
Now, put the value of ' x ' in equation (i), we get
$\therefore \mathrm{x}=8$ and $\mathrm{y}=7$

SECTION-E

36. (i) From figure, the electrician is required to reach at the point B on the pole $A D$.
So, $\mathrm{BD}=\mathrm{AD}-\mathrm{AB}$
$=(5-1.3) \mathrm{m}=3.7 \mathrm{~m}$
(ii) In $\triangle \mathrm{BDC}$,
$\sin 60^{\circ}=\frac{B D}{B C}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{3.7}{\mathrm{BC}}$
$\mathrm{BC}=\frac{3.7 \times 2}{\sqrt{3}}=\frac{3.7 \times 2 \times \sqrt{3}}{3}$
$\Rightarrow \mathrm{BC}=4.28 \mathrm{~m}$ (approx.)
(iii) In $\triangle \mathrm{BDC}$,

$$
\begin{aligned}
& \because \cot 60^{\circ}=\frac{\mathrm{DC}}{\mathrm{BD}} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{DC}}{3.7} \\
& \Rightarrow \mathrm{DC}=\frac{3.7}{\sqrt{3}}=\frac{3.7 \sqrt{3}}{3} \\
& \Rightarrow \mathrm{DC}=2.14 \mathrm{~m}(\text { approx })
\end{aligned}
$$

OR

In $\triangle \mathrm{BDC}$,
$\therefore \sin 30^{\circ}=\frac{\mathrm{BD}}{\mathrm{BC}}$
$\Rightarrow \frac{1}{2}=\frac{3.7}{\mathrm{BC}}$
$\Rightarrow \mathrm{BC}=3.7 \times 2=7.4 \mathrm{~m}$
37. (i) Point A lies in $x=3$ and $y=4$.
$\therefore \mathrm{A}(3,4)$ is the correct position.
Point D lies at $\mathrm{x}=6$ and $\mathrm{y}=1$.
So, the correct position of D is $(6,1)$
(ii) Position of $\mathrm{A}=(3,4)$

Position of $B=(6,7)$
\therefore Distance of $\mathrm{AB}=\left|\sqrt{(3-6)^{2}+(4-7)^{2}}\right|$

$$
\begin{aligned}
& =\left|\sqrt{(-3)^{2}+(-3)^{2}}\right| \\
& =\sqrt{18}=3 \sqrt{2} \text { units }
\end{aligned}
$$

OR
$\xrightarrow[(3,4)]{\mathrm{A}} \underset{\sim}{\mathrm{P}} \underset{(6,7)}{\mathrm{P}}$
$\mathrm{P}\left(\frac{18+3}{4}, \frac{21+4}{4}\right)$
$\mathrm{P}\left(\frac{21}{4}, \frac{25}{4}\right)$
(iii) Position of $\mathrm{B}=(6,7)$
and position of $\mathrm{C}=(9,4)$
\therefore Mid-point of B and $\mathrm{C}=\left(\frac{6+9}{2}, \frac{7+4}{2}\right)$

$$
=\left(\frac{15}{2}, \frac{11}{2}\right)
$$

38. (i) Since the top and the bottom rungs are apart by

$$
2 \frac{1}{2} \mathrm{~m}=\frac{5}{2} \mathrm{~m}
$$

$=\frac{5}{2} \times 100 \mathrm{~cm}=250 \mathrm{~cm}$
(ii) The distance between the two rungs is 25 cm Hence, the total number of rungs
$=\frac{250}{25}+1=11$
(iii) The required length of the wood,
$S_{11}=\frac{11}{2}[25+45]$

$$
=\frac{11}{2} \times 70=385 \mathrm{~cm}
$$

OR

$a_{11}=25$
$a+10 d=25$
$45+10 d=25$
$10 \mathrm{~d}=-20$
$d=-2$
$\mathrm{a}_{10}=\mathrm{a}+9 \mathrm{~d}$
$=45+9 \times(-2)=45-18=27 \mathrm{~m}$

