MATHEMATICS

(BASIC) ANSWER AND SOLUTIONS

SECTION-A

- Option (4) 1. both (1) and (2)
- 2. Option (4) 2,520
- 3. Option (3) no real roots
- 4. Option (2) infinite solution
- 5. Option (3) k = 4
- 6. Option (2) 5:1
- 7. Option (1) AAA similarity criterion
- 8. Option (3) $\angle B = \angle D$
- 9. Option (1) 25°
- Option (3) 10. $\sqrt{3}$
- Option (1) 11. 30°
- 12. Option (3)

$$\frac{\sqrt{3}}{2}$$

- Option (3) 13. 9π
- Option (2) 14. 33 cm
- 15. Option (3)

365

- 16. Option (3) 30 - 40
- 17. Option (2) 17.5
- 18. Option (4) $147 \pi \text{ cm}^2$
- 19. Option (4) Assertion (A) is false but Reason (R) is true.
- 20. Option (1) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).

SECTION-B

21. Given system of equations is

$$cx + 3y + (3 - c) = 0$$

and 12x + cy - c = 0

Condition for equations to have infinitely many solutions is:

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Here,
$$a_1 = c$$
, $b_1 = 3$, $c_1 = 3 - c$
 $a_2 = 12$, $b_2 = c$, $c_2 = -c$

$$\therefore \frac{c}{12} = \frac{3}{c} = \frac{3-c}{-c}$$

$$\Rightarrow$$
 $c^2 = 36$

$$\Rightarrow c = 6 \text{ or } c = -6 \qquad \dots (1)$$

Also,
$$-3c = 3c - c^2$$

$$\Rightarrow$$
 c = 6 or c = 0 ...(2)

From (1) and (2), we get, c = 6

22.

Given : ABCD is a parallelogram with side AD extending at E. BE is joined intersecting CD at F. In ΔABE and ΔCFB

$$\angle A = \angle C$$
 [opposite $\angle s$ of parallelgram]

$$\angle CFB = \angle ABE$$
 [Alternate $\angle s$]

$$\triangle ABE \sim \triangle CFB$$
 [By AA similarity]

Hence proved

OR

In ΔABO and ΔCDO

$$\angle OAB = \angle OCD$$
 [Alternate $\angle s$]

$$\angle AOB = \angle COD$$
 [Vertically opposite $\angle s$]

$$\triangle AOB \cong \triangle COD$$
 [by AA similarly]

$$\frac{OA}{OC} = \frac{OB}{OD}$$

$$\frac{4}{4x-2} = \frac{x+1}{2x+4}$$

$$\frac{4}{2(2x-1)} = \frac{(x+1)}{2(x+2)}$$

$$4(x + 2) = (2x - 1)(x + 1)$$

$$4x + 8 = 2x^2 + 2x - x - 1$$

$$2x^2 - 3x - 9 = 0$$

$$2x^2 - 6x + 3x - 9 = 0$$

$$2x(x-3) + 3(x-3) = 0$$

$$(x - 3)(2x + 3) = 0$$

$$x = 3$$
 or $x = \frac{-3}{2}$ (not possible)

So,
$$x = 3$$

23.
$$\angle PQO = 90^{\circ}$$
 [: Tangent \perp radius]
Also, $\angle QOP = 180^{\circ} - 120^{\circ} = 60^{\circ}$ [Linear pair]
In $\triangle PQO$,

$$\angle OPQ = 180^{\circ} - \angle OQP - \angle QOP$$

= $180^{\circ} - 90^{\circ} - 60^{\circ}$
= 30°

Given that,
$$tan A = \frac{3}{4}$$

Let
$$BC = 3k$$
, $AB = 4k$

$$\Rightarrow$$
 AC = 5k

$$\sin A = \frac{3k}{5k} = \frac{3}{5}$$

$$\cos A = \frac{4k}{5k} = \frac{4}{5}$$

$$\frac{1}{\sin A} + \frac{1}{\cos A} = \frac{5}{3} + \frac{5}{4}$$

$$=\frac{20+15}{12}$$

$$=\frac{35}{12}$$

25. It is given that circumference of the circle is 176 m

$$\Rightarrow 2\pi r = 176$$

$$\Rightarrow 2 \times \frac{22}{7} \times r = 176$$

$$\Rightarrow$$
 r = $\frac{176 \times 7}{2 \times 22}$ = 28 cm

Also, in a quadrant $\theta = 90^{\circ}$

Area of quadrant =
$$\frac{\theta}{360^{\circ}} \times \pi r^2$$

$$=\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 28 \times 28$$

$$= 616 \text{ m}^2$$

OR

We have, radius (r) = 10.5 cm and angle (θ) = 60°

$$= \frac{\theta}{360^{\circ}} \times 2\pi r$$

$$=\frac{60^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 10.5$$

= 11 cm

Now, the perimeter of the sector OAPBO

$$= (10.5 + 11 + 10.5)$$
 cm

= 32 cm

SECTION-C

26. Let us assume, to the contrary, that $(5+2\sqrt{3})$ is rational.

So, we can find coprime integers a and b $(\neq 0)$ such that

$$(5+2\sqrt{3}) = \frac{a}{b}, b \neq 0, a, b \in I$$

$$\Rightarrow \sqrt{3} = \frac{a - 5b}{2b}$$

This contradict the given fact that $\sqrt{3}$ is irrational.

So, we conclude that $(5+2\sqrt{3})$ is irrational.

27. Let α and β be the zeroes of $5x^2 + 2x - 3$.

Then,
$$\alpha + \beta = \left(-\frac{b}{a}\right) = -\frac{2}{5}$$
 and $\alpha\beta = \frac{c}{a} = \frac{-3}{5}$

According to the question, $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ are the zeroes of the required polynomial.

Now
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{-\frac{2}{5}}{-\frac{3}{5}} = \frac{2}{3}$$

and
$$\frac{1}{\alpha} \cdot \frac{1}{\beta} = \frac{1}{\alpha \beta} = \frac{1}{-\frac{3}{5}} = \frac{-5}{3}$$

Thus, a quadratic polynomial whose zeroes are

$$\frac{1}{\alpha}$$
 and $\frac{1}{\beta}$ is

$$k\left\{x^2 - \left(\frac{1}{\alpha} + \frac{1}{\beta}\right) \times + \frac{1}{\alpha} \cdot \frac{1}{\beta}\right\}$$

$$\Rightarrow k\{x^2 - \frac{2}{3}x - \frac{5}{3}\}$$

i.e.,
$$k_1(3x^2 - 2x - 5)$$
 [Let $\frac{k}{3} = k_1$]

28. Let number of right answers be x

Let number of wrong answers be y

As per question

$$4x - y = 70$$
(i)

$$5x - 2y = 80$$
(ii)

$$2 \times eq.(i) - eq.(ii),$$

$$8x - 2y = 140$$

$$5x - 2y = 80$$

$$3x = 60$$

$$\Rightarrow x = 20$$

Substituting the value of x in equation(i) to get value of y,

$$4(20) - y = 70$$

$$\Rightarrow 80 - y = 70$$

$$\therefore$$
 y = 10

Hence, total number of questions are = 20 + 10 = 30

OR

Let father's age be x-years

And son's age be y-years.

According to the questions,

$$x + 2y = 70$$
(1)

And
$$2x + y = 95$$
(2)

Multiplying equation (2) by 2 and subtracting from (1)

$$x + 2y = 70$$

$$4x + 2y = 190$$

- - -

$$-3x = -120$$

$$x = 40$$

$$40 + 2y = 70$$

$$2y = 30$$

$$y = 15$$

Thus, father's age = 40 years and son's age = 15 years

29. In $\triangle OPQ$ and $\triangle OPR$

PQ = PR [Tangent drawn from an external point]

$$OP = OP$$

[Common]

$$OQ = OR$$

[Radius of same circle]

$$\triangle OPR \cong \triangle OPQ$$

[by SSS cong.]

$$\angle OPR = \angle OPQ = 45^{\circ}$$

[by cpct]

$$\angle OOP = 90^{\circ}$$

[Tangent ⊥ radius]

$$\angle ORP = 90^{\circ}$$

[Tangent ⊥ radius]

$$\angle RPQ = \angle OPR + \angle OPQ = 90^{\circ}$$

PQ = PR [Tangent from external point are equal]

$$OR = OQ$$

[Radius of same circle]

ORPQ is square

Hence proved

30. Given,
$$\sin(A + 2B) = \frac{\sqrt{3}}{2} \Rightarrow A + 2B = 60^{\circ}$$

$$\cos(A + 4B) = 0 \Rightarrow A + 4B = 90^{\circ}$$

Solving, we get $A = 30^{\circ}$ and $B = 15^{\circ}$

OR

$$4(\sin^4 30^\circ + \cos^4 60^\circ) - 3(\cos^2 45^\circ - \sin^2 90^\circ)$$

$$= 4 \left[\left(\frac{1}{2} \right)^4 + \left(\frac{1}{2} \right)^4 \right] - 3 \left[\left(\frac{1}{\sqrt{2}} \right)^2 - (1)^2 \right]$$

$$= 4 \left[\frac{1}{16} + \frac{1}{16} \right] - 3 \left[\frac{1}{2} - 1 \right]$$

$$=4\times\frac{2}{16}-3\times\left(-\frac{1}{2}\right)$$

$$=\frac{1}{2}+\frac{3}{2}$$

$$=\frac{4}{2}=2$$

31. Total number of balls = x + 2x + 3x = 6x

(i)
$$P(\text{not a red ball}) = P(\text{a white or a blue ball})$$

$$=\frac{2x+3x}{6x}=\frac{5}{6}$$

(ii) P(a white ball) =
$$\frac{2x}{6x} = \frac{1}{3}$$

$$=\frac{5}{6}$$
 [by (i) above]

SECTION-D

32. Let the speed of car at A be x km/h

And the speed of car at B y km/h

Case
$$1: 8x - 8y = 80$$

or,
$$x - y = 10$$

Case 2:
$$\frac{4}{3}x + \frac{4}{3}y = 80$$

or,
$$x + y = 60$$

On solving, x = 35 and y = 25

Hence, speed of cars at A and B are 35 km/h and 25 km/h respectively.

OR

Let cost of 1 pencil = x and cost of 1 pen = yAccording to question

$$5x + 7y = 250$$
(1)

$$7x + 5y = 302$$
(2)

Adding equation (1) and (2)

$$12x + 12y = 552$$

$$x + y = 46$$
(3)

Subtracting equation (1) and (2)

$$-2x + 2y = -52$$

$$x - y = 26$$

Adding equation (3) and (4)

$$2x = 72$$

$$x = 36$$

From (3)

$$y = 46 - 36 = 10$$

33. Given A \triangle ABC in which D, E, F are the midpoints of BC, CA and AB respectively.

To prove $\triangle AFE \sim \triangle ABC$,

 Δ FBD ~ Δ ABC,

 $\Delta EDC \sim \Delta ABC$.

and

ΔDEF~ ΔABC

Proof We shall first show that $\triangle AFE \sim \triangle ABC$ Since F and E are the midpoints of AB and AC respectively, so by the converse of Thales theorem,

we have : FE || BC.

 \therefore $\angle AFE = \angle B$ [corresponding $\angle s$]

Now, in $\triangle AFE$ and $\triangle ABC$, we have :

 $\angle AFE = \angle B$ [corresponding $\angle s$]

and $\angle A = \angle A$ (common)

 $\therefore \Delta AFE \sim \Delta ABC$ [by AA-similarity].

Similarly, $\Delta FBD \sim \Delta ABC$ and $\Delta EDC \sim \Delta ABC$.

Now, we shall show that $\Delta DEF \sim \Delta ABC$.

In the same manner as above, we can prove that ED || AF and DF || EA.

:. AFDE is a llgm.

 \therefore \angle EDF = \angle A [opposite angles of a $\|gm$] Similarly, BDEF is a $\|gm$.

 \therefore \angle DEF = \angle B [opposite angles of a ||gm]

Thus, in ΔDEF and ΔABC , we have :

$$\therefore$$
 $\angle EDF = \angle A$ and $\angle DEF = \angle B$

$$\therefore$$
 $\triangle DEF \sim \triangle ABC$ [by AA-similarity]

Hence, the result follows.

OR

Given A \triangle ABC in which P and Q are the points on AB and AC respectively such that PQ \parallel BC and AD is the median, cutting BC at E.

To prove PE = EQ

Proof

In $\triangle APE$ and $\triangle ABD$, we have :

$$\angle PAE = \angle BAD$$
 (common)

$$\angle APE = \angle ABD$$
 (corresponding $\angle s$)

$$\therefore \triangle APE \sim \triangle ABD$$
 [by AA-similarity].

But, in similar triangles, the corresponding sides are proportional.

$$\therefore \frac{AE}{AD} = \frac{PE}{BD} \qquad ...(1)$$

In \triangle AEQ and \triangle ADC, we have :

$$\angle QAE = \angle CAD$$
 (common)

$$\angle AQE = \angle ACD$$
 (corresponding $\angle s$)

$$\therefore$$
 \triangle AEQ ~ \triangle ADC [by AA-similarity].

But, in similar triangles, the corresponding sides are proportional.

$$\therefore \quad \frac{AE}{AD} = \frac{EQ}{DC} \qquad ...(2)$$

From (1) and (2), we get:

$$\frac{PE}{BD} = \frac{EQ}{DC} \qquad \qquad \left[\text{ each equal to } \frac{AE}{AD} \right]$$

But, BD = DC [\because Ad is the median] \therefore PE = EQ.

Volume of Ist cylinder

$$= \pi r^2 h$$

$$= \pi(12)^2 \times 220$$

$$= 144 \times 220\pi$$

$$= 31680\pi$$

Volume of IInd cylinder

$$= \pi R^2 H$$

$$= \pi 8^2 \times 60$$

$$= 3840 \pi$$

Total volume = $31680\pi + 3840\pi$

$$= 32520\pi$$

$$= 32520 \times 3.14$$

 $= 111532.8 \text{ cm}^3$

Mass of 1 cm 3 of iron = 8g

Total weigh = 111532.8×8

$$= 892.26 \text{ kg}$$

OR

Capacity of first glass =
$$\pi r^2 H - \frac{2}{3} \pi r^3$$

= $\pi \times 9(10 - 2)$
= 72π cm³

Capacity of second glass =
$$\pi r^2 H - \frac{1}{3} \pi r^2 h$$

= $\pi \times 3 \times 3(10 - 0.5)$
= $85.5 \pi cm^3$

: Suresh got 42.39 cm³ more quantity of juice.

35. Convert the given frequency distribution to cumulative frequency distribution type.

Class interval	Frequency	c.f.
0-10	5	5
10-20	X	5+ x
20-30	20	25 + x
30-40	15	40 + x
40-50	у	40 + x + y
50-60	5	45 + x + y

Given: Median = 28.5

$$\therefore$$
 Median class = $20 - 30$

: Sum of frequencies = 60

$$\therefore$$
 5 + x + 20 + 15 + y + 5 = 60

$$\Rightarrow$$
 45 + x + y = 60

$$\Rightarrow$$
 x + y = 15

We know,

$$Median = \ell + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$$

Here, median = 28.5 ℓ = 20, $\frac{n}{2}$ = 30, cf = 5 + x

f = 20 and h = 10

$$\therefore 28.5 = 20 + \left(\frac{30 - 5 - x}{20}\right) \times 10$$

$$\Rightarrow 8.5 \times 2 = 25 - x$$

$$\Rightarrow$$
 x = 25 - 17 = 8

Now, put the value of 'x' in equation (i), we get

$$\therefore$$
 x = 8 and y = 7

SECTION-E

36. (i) From figure, the electrician is required to reach at the point B on the pole AD.

So, BD = AD – AB
=
$$(5 - 1.3)$$
 m = 3.7 m

(ii) In ΔBDC,

$$\sin 60^{\circ} = \frac{BD}{BC}$$

$$\Rightarrow \frac{\sqrt{3}}{2} = \frac{3.7}{BC}$$

$$BC = \frac{3.7 \times 2}{\sqrt{3}} = \frac{3.7 \times 2 \times \sqrt{3}}{3}$$

- \Rightarrow BC = 4.28 m (approx.)
- (iii) In ΔBDC,

$$\because \cot 60^{\circ} = \frac{DC}{BD}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{DC}{3.7}$$

$$\Rightarrow DC = \frac{3.7}{\sqrt{3}} = \frac{3.7\sqrt{3}}{3}$$

$$\Rightarrow DC = 2.14 \text{ m(approx)}$$
OR

In ΔBDC,

$$\therefore \sin 30^{\circ} = \frac{BD}{BC}$$

$$\Rightarrow \frac{1}{2} = \frac{3.7}{BC}$$

$$\Rightarrow$$
 BC = 3.7 × 2 = 7.4 m

- 37. (i) Point A lies in x = 3 and y = 4.
 ∴ A(3, 4) is the correct position.
 Point D lies at x = 6 and y = 1.
 So, the correct position of D is (6, 1)
 - (ii) Position of A = (3, 4)Position of B = (6, 7)

∴ Distance of AB =
$$\left| \sqrt{(3-6)^2 + (4-7)^2} \right|$$

= $\left| \sqrt{(-3)^2 + (-3)^2} \right|$
= $\sqrt{18} = 3\sqrt{2}$ units

OR

$$P\left(\frac{18+3}{4}, \frac{21+4}{4}\right)$$

$$P\left(\frac{21}{4}, \frac{25}{4}\right)$$

- (iii) Position of B = (6, 7)and position of C = (9, 4)
 - $\therefore \text{ Mid-point of B and C} = \left(\frac{6+9}{2}, \frac{7+4}{2}\right)$

$$=\left(\frac{15}{2},\frac{11}{2}\right)$$

38. (i) Since the top and the bottom rungs are apart by

$$2\frac{1}{2}m = \frac{5}{2}m$$

$$=\frac{5}{2} \times 100 \text{ cm} = 250 \text{ cm}$$

(ii) The distance between the two rungs is 25 cm Hence, the total number of rungs

$$=\frac{250}{25}+1=11$$

(iii) The required length of the wood,

$$S_{11} = \frac{11}{2} [25 + 45]$$

= $\frac{11}{2} \times 70 = 385 \text{ cm}$

OR

$$a_{11} = 25$$

 $a + 10d = 25$
 $45 + 10d = 25$
 $10d = -20$
 $d = -2$
 $a_{10} = a + 9d$
 $= 45 + 9 \times (-2) = 45 - 18 = 27 \text{ m}$