ANSWER AND SOLUTIONS

SECTION-A

1. Option (4)

720 mins
2. Option (3)
$4 \sqrt{3}-3$
3. Option (3)

6 sq. units
4. Option (1)
$\mathrm{k} \leq 8$
5. Option (2)

90
6. Option (4)

IV quadrant
7. Option (2)

5: 1
8. Option (1)
50°
9. Option (1)
$60 \mathrm{~cm}^{2}$
10. Option (1)
25°
11. Option (1)

1
12. Option (4)
$\frac{\sqrt{7}}{\sqrt{8}}$
13. Option (4)
$30 \sqrt{3} \mathrm{~m}$
14. Option (4)
$9 \pi \mathrm{~cm}^{2}$
15. Option (3)

132 cm
16. Option (4)

17
16
17. Option (2)
$\frac{22}{46}$
18. Option (2)

8
19. Option (3)

Assertion (A) is true but Reason (R) is false.
20. Option (4)

Assertion (A) is false but Reason (R) is true.

SECTION-B

21. Here, Length $=825 \mathrm{~cm}$

$$
\text { Breadth }=675 \mathrm{~cm}
$$

and \quad Height $=450 \mathrm{~cm}$
Also, $\quad 825=5 \times 5 \times 3 \times 11$

$$
675=5 \times 5 \times 3 \times 3 \times 3
$$

and $\quad 450=2 \times 3 \times 3 \times 5 \times 5$

$$
\mathrm{HCF}=5 \times 5 \times 3=75
$$

Therefore, the length of the longest rod which can measure the three dimensions of the room exactly is 75 cm .
22. In $\triangle \mathrm{APB}$ and $\triangle \mathrm{DPC}$
$\angle \mathrm{A}=\angle \mathrm{D}$
[Each 90°]
$\angle \mathrm{APB}=\angle \mathrm{DPC} \quad$ [Vertically opposite angles]
$\Delta \mathrm{APB} \sim \Delta \mathrm{DPC} \quad$ [AA similarity]
$\frac{\mathrm{AP}}{\mathrm{DP}}=\frac{\mathrm{BP}}{\mathrm{PC}}$
$\Rightarrow \mathrm{AP} \times \mathrm{PC}=\mathrm{BP} \times \mathrm{DP}$

23. In $\triangle \mathrm{POA}$ and $\triangle \mathrm{POB}$
$\mathrm{PA}=\mathrm{PB}$
(Tangents drawn from an
external point to a circle are equal)
$\mathrm{OP}=\mathrm{OP}$
$\mathrm{OA}=\mathrm{OB}$
(Common)
(Radius)
$\triangle \mathrm{POA} \cong \triangle \mathrm{POB}$
(by SSS cong.)
$\angle \mathrm{APO}=\angle \mathrm{BPO}$
(by cpct)
$\angle \mathrm{APB}=80^{\circ}$
$\angle \mathrm{APO}=\frac{80^{\circ}}{2}=40^{\circ}$
In $\triangle \mathrm{PAO}$
$\angle \mathrm{POA}=180^{\circ}-\left(90^{\circ}+40^{\circ}\right)=50^{\circ}$
24. Since $\sin (\mathrm{A}-\mathrm{C})=\frac{1}{2}$
$\mathrm{A}-\mathrm{C}=30^{\circ}$
But, $\mathrm{A}+\mathrm{C}=90^{\circ} \quad\left(\mathrm{as}, \mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}\right)$
So, $\mathrm{C}=30^{\circ}$ and $\mathrm{A}=60^{\circ}$

OR

Given, $\sin \theta=\frac{2 \mathrm{mn}}{\mathrm{m}^{2}+\mathrm{n}^{2}}$, we have
$\cos \theta=\frac{m^{2}-n^{2}}{m^{2}+n^{2}}$ and $\cot \theta=\frac{m^{2}-n^{2}}{2 m n}$

So, $\frac{\sin \theta \cot \theta}{\cos \theta}=\frac{\frac{2 m n}{m^{2}+n^{2}} \times \frac{m^{2}-n^{2}}{2 m n}}{\frac{m^{2}-n^{2}}{m^{2}+n^{2}}}$
$=1$
25. Radii of two concentric circle $=7 \mathrm{~cm}$ and 14 cm and $\angle \mathrm{AOC}=40^{\circ}$
Reflex $\angle \mathrm{AOC}=360^{\circ}-40^{\circ}=320^{\circ}$
Area of shaded region
$=\frac{320}{360} \times \frac{22}{7}\left(14^{2}-7^{2}\right)=\frac{320}{360} \times \frac{22}{7} \times 7 \times 21$
$=410.67 \mathrm{~cm}^{2}$

OR

Let θ be the central angle of the sector and r be the radius of the circle.

Then, length of arc of sector $(\ell)=\frac{\theta}{360^{\circ}} \times 2 \pi \mathrm{r}$

So, perimeter of the sector $=\ell+r+r$
$=\frac{\theta}{360^{\circ}} \times 2 \pi r+2 \mathrm{r}$
$\Rightarrow 16.4=\frac{\theta}{360^{\circ}} \times 2 \pi \times(5.2)+2 \times 5.2$
$[\because \mathrm{r}=5.2 \mathrm{~cm}]$
$\Rightarrow \pi \theta=\frac{1080}{5.2}$
Now, area of the sector $=\frac{\theta}{360^{\circ}} \times \pi(5.2)^{2}$
$=\frac{1}{360^{\circ}} \times \frac{1080}{5.2} \times(5.2)^{2}$
[Using (i)]
$=15.6 \mathrm{~cm}^{2}$
Hence, area of the sector is $15.6 \mathrm{~cm}^{2}$

SECTION-C

26. Let us assume, to the contrary, that $\sqrt{5}$ is rational.

So, we can find coprime integers a and $\mathrm{b}(\neq 0)$ such that
$\sqrt{5}=\frac{a}{b}, b \neq 0, a, b \in I$
$\Rightarrow \quad \sqrt{5} \mathrm{~b}=\mathrm{a}$
Squaring on both sides, we get

$$
5 b^{2}=a^{2}
$$

Therefore, 5 divides a^{2}.

Therefore, 5 divides a
So, we can write $\mathrm{a}=5 \mathrm{c}$ for some integer c .
Substituting for a , we get

$$
\begin{aligned}
& 5 b^{2}=25 c^{2} \\
\Rightarrow & b^{2}=5 c^{2}
\end{aligned}
$$

This means that 5 divides b^{2}, and so 5 divides b .
Therefore, a and b have at least 5 as a common factor.

But this contradicts the fact that a and b have no common factor other than 1.

This contradict our assumption that $\sqrt{5}$ is rational.

So, we conclude that $\sqrt{5}$ is irrational.
27. $f(x)=6 x^{2}+x-2$.

Here $\mathrm{a}=6, \mathrm{~b}=1, \mathrm{c}=-2$
Sum of zeroes, $(\alpha+\beta)=\frac{-b}{a}=\frac{-1}{6}$
Product of zeroes, $(\alpha \beta)=\frac{\mathrm{c}}{\mathrm{a}}=\frac{-2}{6}=\frac{-1}{3}$
Now $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\beta \alpha}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\beta \alpha}$
$=\frac{\left(\frac{-1}{6}\right)^{2}-2 \times\left(\frac{-1}{3}\right)}{\frac{-1}{3}}=\frac{\frac{1}{36}+\frac{2}{3}}{\frac{-1}{3}}=\frac{1+24}{36} \times-3$
$=\frac{-25}{12}$
28. The given equation are $71 x+37 y=253$
and $37 x+71 y=287$
It is clear from above equations that coefficients of x and y are interchanged in both equations.
On adding equations (i) and (ii), we get
$108 x+108 y=540$
$\Rightarrow 108(\mathrm{x}+\mathrm{y})=540$
$\Rightarrow \mathrm{x}+\mathrm{y}=\frac{540}{108}=5$
On subtracting equation (ii) from equation (i), we get
$34 x-34 y=-34 \Rightarrow 34(x-y)=-34$
$\Rightarrow \mathrm{x}-\mathrm{y}=\frac{-34}{34}$
$\Rightarrow \mathrm{x}-\mathrm{y}=-1$
On adding equations (iii) and (iv), we get
$x=\frac{4}{2}=2$
On substituting the value of x in equation (iii), we get
$2+y=5 \Rightarrow y=5-2=3$
Hence, $x=2$ and $y=3$

OR

Let the fixed charge be Rs.x and the charge per kilometer be Rs.y.
According to first condition, $x+6 y=58 \ldots$ (i)
According to second condition,
$x+10 y=90$
On subtracting equation (ii) from equation (i),
we get
$x+6 y=58$
$x+10 y=90$

$--\quad-$
$-4 y=-32$

$\Rightarrow y=\frac{-32}{4}=8$
On substituting the value of y in equation (i), we get
$x+6 \times 8=58$
$\Rightarrow \mathrm{x}=58-48 \Rightarrow \mathrm{x}=10$
Hence, charge per km is Rs. 8 and fixed charge is Rs. 10
29. Assume the radius of the circle as $x \mathrm{~cm}$ and since NVUW is a square, $\mathrm{WU}=\mathrm{UV}=\mathrm{xcm}$. Uses the pythagoras theorem in Δ SUT and find the length of ST as $\sqrt{(400+100)}=10 \sqrt{5} \mathrm{~cm}$

Find the length of VT as $(10-x) \mathrm{cm}$ and use properties of tangents to write $\mathrm{YT}=\mathrm{VT}$
Use properties of tangents to equate SY and SW to write the equation as : $20-\mathrm{x}=10 \sqrt{5}-$ $(10-x)$
$\Rightarrow 20-\mathrm{x}=10 \sqrt{5}-10+\mathrm{x}$
$\Rightarrow 2 \mathrm{x}=30-10 \sqrt{5}$
$\Rightarrow \mathrm{x}=(15-5 \sqrt{5}) \mathrm{cm}$
Hence radius of circle is $(15-5 \sqrt{5}) \mathrm{cm}$

OR

Joints MP, NQ and uses the perpendicularity of radius to tangents to draw MR parallel line to PQ . The rough figure may look as follows :

Finds RN as $16-9=7 \mathrm{~cm}$ and MN as $9+16=25 \mathrm{~cm}$ Uses the pythagoras theorem in $\triangle \mathrm{MRN}$ to find the length of MR as $\sqrt{\left(25^{2}-7^{2}\right)}=24 \mathrm{~cm}$.

Writes the since MRQP is a rectangle, $\mathrm{PQ}=$ $\mathrm{MR}=24 \mathrm{~cm}$.
30. $\mathrm{LHS}=\frac{\sin \mathrm{A}-2 \sin ^{3} \mathrm{~A}}{2 \cos ^{3} \mathrm{~A}-\cos \mathrm{A}}$
$=\frac{\sin \mathrm{A}\left(1-2 \sin ^{2} \mathrm{~A}\right)}{\cos \mathrm{A}\left(2 \cos ^{2} \mathrm{~A}-1\right)}$
$=\frac{\sin \mathrm{A}}{\cos \mathrm{A}}\left(\frac{1-2\left(1-\cos ^{2} \mathrm{~A}\right)}{2 \cos ^{2} \mathrm{~A}-1}\right)$
$=\tan \mathrm{A}\left(\frac{1-2+2 \cos ^{2} \mathrm{~A}}{2 \cos ^{2} \mathrm{~A}-1}\right)$
$=\tan \mathrm{A}\left(\frac{2 \cos ^{2} \mathrm{~A}-1}{2 \cos ^{2} \mathrm{~A}-1}\right)$
$=\tan \mathrm{A}$
$=$ RHS
31.

Marks	Number of students $\left(\mathrm{f}_{\mathrm{i}}\right)$	Cumulative frequency
$0-10$	10	10
$10-20$	x	$10+\mathrm{x}$
$20-30$	25	$35+\mathrm{x}$
$30-40$	30	$65+\mathrm{x}$
$40-50$	y	$65+\mathrm{x}+\mathrm{y}$
$50-60$	10	$75+\mathrm{x}+\mathrm{y}$
Total	100	

It is given that,
$\mathrm{N}=100$
$\Rightarrow 75+\mathrm{x}+\mathrm{y}=100$
$\Rightarrow \mathrm{x}+\mathrm{y}=25$
Also, it is given that median is 32 .
So, the median class is $30-40$
For this class,
$\ell=30, \mathrm{f}=30, \mathrm{cf}=35+\mathrm{x}, \frac{\mathrm{N}}{2}=50$ and $\mathrm{h}=10$

Now, Median $=\ell+\left(\frac{\frac{\mathrm{N}}{2}-\mathrm{cf}}{\mathrm{f}}\right) \times \mathrm{h}$
$\Rightarrow 32=30+\left(\frac{50-(35+x)}{30}\right) \times 10$
$\Rightarrow 2 \times 3=15-x$
$\Rightarrow \mathrm{x}=15-6=9$
Putting the value of ' x ' in equation (i), we get $y=25-9=16$
Hence, the values of ' x ' and ' y ' are 9 and 16 respectively.

SECTION-I)

32. Let the original speed of the train be $x \mathrm{~km} / \mathrm{h}$. Then, time taken to cover the journey of
$480 \mathrm{~km}=\frac{480}{\mathrm{x}}$ hours
Time taken to cover the journey of 480 km with speed of $(x-8) k m / h=\frac{480}{x-8}$ hours

Now according to questions,

$$
\frac{480}{x-8}-\frac{480}{x}=3
$$

$\Rightarrow 480\left[\frac{x-x+8}{x(x-8)}\right]=3$
$\Rightarrow 3 \mathrm{x}(\mathrm{x}-8)=3840$
$\Rightarrow \mathrm{x}(\mathrm{x}-8)=1280$
$\Rightarrow \mathrm{x}^{2}-8 \mathrm{x}-1280=0$
$\Rightarrow \mathrm{x}^{2}-40 \mathrm{x}+32 \mathrm{x}-1280=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-40)+32(\mathrm{x}-40)=0$
$\Rightarrow(\mathrm{x}+32)(\mathrm{x}-40)=0$
$\Rightarrow \mathrm{x}+32=0$ or $\mathrm{x}-40=0$
$\because \mathrm{x}=-32$ (not possible)
$\therefore \mathrm{x}=40$
Thus, the original speed of the train is $40 \mathrm{~km} / \mathrm{h}$.

OR

Let the time taken by larger pipe alone to fill the tank $=x$ hours

Therefore, the time taken by the smaller pipe $=\mathrm{x}+10$ hours
water filled by larger pipe running for 4 hours
$=\frac{4}{x}$ litres
Water filled by smaller pipe running for 9 hours
$=\frac{9}{x+10}$ litres

We know that, $\frac{4}{x}+\frac{9}{x+10}=\frac{1}{2}$
Which on simplification gives :
$x^{2}-16 x-80=0$
$x^{2}-20 x+4 x-80=0$
$\mathrm{x}(\mathrm{x}-20)+4(\mathrm{x}-20)=0$
$(x+4)(x-20)=0$
$\mathrm{x}=-4,20$
x cannot be negative.
Thus, $\mathrm{x}=20$
$x+10=30$
Larger pipe would alone fill the tank in 20 hours and smaller pipe would fill the tank alone in 30 hours.
33.

We are given a triangle ABC in which a line parallel to side BC intersects other two sides AB and AC at D and E respectively.

We need to prove that $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$.
Let us join BE and CD and then draw $\mathrm{DM} \perp \mathrm{AC}$ and $\mathrm{EN} \perp \mathrm{AB}$.

Now, area of $\Delta \mathrm{ADE}=\left(\frac{1}{2} \times\right.$ base \times height $)$

$$
=\frac{1}{2} \times \mathrm{AD} \times \mathrm{EN}
$$

area of $\triangle \mathrm{ADE}$ is denoted as $\operatorname{ar}(\mathrm{ADE})$.

So, $\operatorname{ar}(\mathrm{ADE})=\frac{1}{2} \times \mathrm{AD} \times \mathrm{EN}$

Similarly, $\operatorname{ar}(B D E)=\frac{1}{2} \times D B \times E N$
$\operatorname{ar}(\mathrm{ADE})=\frac{1}{2} \times \mathrm{AE} \times \mathrm{DM}$
and $\operatorname{ar}(\mathrm{DEC})=\frac{1}{2} \times \mathrm{EC} \times \mathrm{DM}$

Therefore, $\frac{\operatorname{ar}(\mathrm{ADE})}{\operatorname{ar}(\mathrm{BDE})}=\frac{\frac{1}{2} \times \mathrm{AD} \times \mathrm{EN}}{\frac{1}{2} \times \mathrm{DB} \times \mathrm{EN}}=\frac{\mathrm{AD}}{\mathrm{DB}}$
$\frac{\operatorname{ar}(\mathrm{ADE})}{\operatorname{ar}(\mathrm{DEC})}=\frac{\frac{1}{2} \times \mathrm{AE} \times \mathrm{DM}}{\frac{1}{2} \times \mathrm{EC} \times \mathrm{DM}}=\frac{\mathrm{AE}}{\mathrm{EC}}$

Note that $\triangle \mathrm{BDE}$ and $\triangle \mathrm{DEC}$ are on the same base and between the same parallels BC and DE .
So, $\operatorname{ar}(\mathrm{BDE})=\operatorname{ar}(\mathrm{DEC})$
Thereofore, form (i), (ii) and (iii), we have :
$\frac{A D}{D B}=\frac{A E}{E C}$
Hence, proved

In $\triangle \mathrm{DAB}$
PO || AB
$\frac{\mathrm{DP}}{\mathrm{PA}}=\frac{\mathrm{DO}}{\mathrm{OB}}$
In $\triangle \mathrm{DBC}$
OQ \| CD
$\frac{\mathrm{CQ}}{\mathrm{QB}}=\frac{\mathrm{DO}}{\mathrm{OB}}$
from (1) and (2)
$\frac{D P}{P A}=\frac{C Q}{B Q}$
34. Radius of the base of cylinder $(\mathrm{r})=2.8 \mathrm{~m}$
$=$ Radius of the base of the cone (r)
Height of the cylinder (h) $=3.5 \mathrm{~m}$
Height of the cone $(\mathrm{H})=2.1 \mathrm{~m}$
Slant height of conical part $(\ell)=\sqrt{\mathrm{r}^{2}+\mathrm{H}^{2}}$
$=\sqrt{(2.8)^{2}+(2.1)^{2}}$
$=\sqrt{7.84+4.41}$
$=\sqrt{12.25}$
$=3.5 \mathrm{~m}$
Area of canvas used to make tent
$=$ CSA of cylinder + CSA of cone
$=2 \times \pi \times 2.8 \times 3.5+\pi \times 2.8 \times 3.5$
$=61.6+30.8$
$=92.4 \mathrm{~m}^{2}$
Cost of 1500 tents at Rs. 120 per sq.m
$=1500 \times 120 \times 92.4$
$=16,632,000$
Share of each school to set up the tents
$=\frac{16632000}{50}$
$=$ Rs.332,640

OR

(i) Total surface area of the block
$=$ TSA of cube + CSA of hemisphere
$=$ Base area of hemisphere
$=6 a^{2}+2 \pi r^{2}-\pi r^{2}$
$=6 \mathrm{a}^{2}+\pi \mathrm{r}^{2}$
$=\left(6 \times 6^{2}+\frac{22}{7} \times 2.1 \times 2.1\right)=229.86$ sq. cm
(ii) Volume of the block

$$
\begin{aligned}
& =6^{3}+\frac{2}{3} \times \frac{22}{7} \times(2.1)^{3} \mathrm{cu.cm} \\
& =(216+19.40) \mathrm{cu} . \mathrm{cm} \\
& =235.40 \mathrm{cu} . \mathrm{cm}
\end{aligned}
$$

35. The frequency distribution for calculating the mean, for the given data is

Classes	Frequency ($\left.\mathrm{f}_{\mathrm{i}}\right)$	Clas mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{A}$ where $\mathrm{A}=50$	$\mathrm{f}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}$
$0-20$	5	10	-40	-200
$20-40$	f_{1}	30	-20	$-20 \mathrm{f}_{1}$
$40-60$	10	$50=\mathrm{A}$	0	0
$60-80$	f_{2}	70	20	$20 \mathrm{f}_{2}$
$80-100$	7	90	40	280
$100-120$	8	110	60	480
	$\sum \mathrm{f}_{\mathrm{i}}=30+\mathrm{f}_{1}+\mathrm{f}_{2}$			$\sum \mathrm{f}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}=560+20 \mathrm{f}_{2}-20 \mathrm{f}_{1}$

We know that,
$30+\mathrm{f}_{1}+\mathrm{f}_{2}=50$
$\Rightarrow \mathrm{f}_{1}+\mathrm{f}_{2}=20$
$\Rightarrow \mathrm{f}_{2}=20-\mathrm{f}_{1}$
Now, mean $=A+\frac{\sum f_{i} d_{i}}{\sum f_{i}}$
$\Rightarrow 62.8=50+\frac{560+20 \mathrm{f}_{2}-20 \mathrm{f}_{1}}{50}$
$\Rightarrow 12.8=\frac{560+20\left(20-\mathrm{f}_{1}\right)-20 \mathrm{f}_{1}}{50} \quad[\mathrm{Using}(\mathrm{i})]$
$\Rightarrow 640=960-40 \mathrm{f}_{1}$
$\Rightarrow 40 \mathrm{f}_{1}=320$
$\Rightarrow \mathrm{f}_{1}=8$
$\therefore \mathrm{f}_{2}=20-8=12$
$\therefore \mathrm{f}_{1}=8, \mathrm{f}_{2}=12$

SECTION-E

36. (i) $a_{6}=16,000$
$a+(n-1) d=16,000$
$a+(6-1) d=16,000$
$a+5 d=16,000$
$\mathrm{a}_{9}=22,600$
$a+(n-1) d=22,600$
$a+(9-1) d=22,600$
$a+8 d=22,600$
Solving equation (i) and (ii)
$a+5 d=16,000$
$a+8 d=22,600$
$-3 \mathrm{~d}=-6,600$
$\mathrm{d}=2,200$
Now, putting $\mathrm{d}=2,200$ in equation (i)
$a+5 d=16,000$
$a+5 \times 2,200=16,000$
$a+11,000=16,000$
$a=5,000$
(ii) Production during $8^{\text {th }}$ year is $(\mathrm{a}+7 \mathrm{~d})$

$$
=5000+7(2200)=20400
$$

(iii) Production during first 3 year

$$
\begin{aligned}
& =5000+7200+9400 \\
& =21600
\end{aligned}
$$

OR

$a_{n}=29,200$
$a+(n-1) d=29,200$
$(\mathrm{n}-1) 2,200=29,200-5,000$
$2200 \mathrm{n}-2,200=24,200$
$2200 \mathrm{n}=26,400$
$n=\frac{26,400}{2,200}$
$\mathrm{n}=12$
In $12^{\text {th }}$ year, the production is Rs. 29,200
37. (i) $\mathrm{LB}=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}$
$\Rightarrow \mathrm{LB}=\sqrt{(0-5)^{2}+(7-10)^{2}}$
$\mathrm{LB}=\sqrt{(5)^{2}+(3)^{2}} \Rightarrow \mathrm{LB}=\sqrt{25+9}$
$\mathrm{LB}=\sqrt{34}$

Hence the distance is $\sqrt{34} \mathrm{~km}$
(ii) Coordinate of Kota (K) is
$\left(\frac{3 \times 0+2 \times 5}{3+2}, \frac{3 \times 7+2 \times 10}{3+2}\right)$
$=\left(\frac{10+0}{5}, \frac{21+20}{5}\right)=\left(2, \frac{41}{5}\right)$
(iii) $\mathrm{L}(5,10), \mathrm{N}(2,6), \mathrm{P}(8,6)$

$$
\begin{array}{r}
\mathrm{LN}=\sqrt{(2-5)^{2}+(6-10)^{2}}=\sqrt{(3)^{2}+(4)^{2}} \\
=\sqrt{9+16}=\sqrt{25}=5
\end{array} \begin{array}{r}
\mathrm{NP}=\sqrt{(8-2)^{2}+(6-6)^{2}}=\sqrt{(6)^{2}+(0)^{2}}=6
\end{array} \mathrm{PL}=\sqrt{(8-5)^{2}+(6-10)^{2}}=\sqrt{(3)^{2}+(4)^{2}}=5 .
$$

as $\mathrm{LN}=\mathrm{PL} \neq \mathrm{NP}$, so $\triangle \mathrm{LNP}$ is an isosceles triangle.

OR

Let $A(0, b)$ be a point on the y-axis then $\mathrm{AL}=\mathrm{AP}$
$\Rightarrow \sqrt{(5-0)^{2}+(10-\mathrm{b})^{2}}=\sqrt{(8-0)^{2}+(6-\mathrm{b})^{2}}$
$\Rightarrow(5)^{2}+(10-\mathrm{b})^{2}=(8)^{2}+(6-\mathrm{b})^{2}$
$\Rightarrow 25+100-20 b+b^{2}=64+36-12 b+b^{2}$
$\Rightarrow 8 \mathrm{~b}=25 \Rightarrow \mathrm{~b}=\frac{25}{8}$
So, the coordinates on y-axis is $\left(0, \frac{25}{8}\right)$
38. (i) Since, $\cos \mathrm{A}=\frac{1}{2}$
$\Rightarrow \cos A=\cos 60^{\circ}$
$\Rightarrow \cos A=\cos 60^{\circ}$
$\Rightarrow A=60^{\circ}$
Then $12 \cot ^{2} \mathrm{~A}-2=12\left(\cot 60^{\circ}\right)^{2}-2$

$$
\begin{aligned}
& =12\left(\frac{1}{\sqrt{3}}\right)^{2}-2 \\
& =12 \times \frac{1}{3}-2 \\
& =4-2=2
\end{aligned}
$$

(ii) Since, $\mathrm{AC} \perp \mathrm{BC}$,
then $\angle \mathrm{C}=90^{\circ}$
$\sin C \times \cos A=\sin 90^{\circ} \times \frac{A C}{A B}$

$$
=1 \times \frac{4}{8}=\frac{1}{2}
$$

(iii) In $\triangle \mathrm{ABC}$

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{\mathrm{AC}}{\mathrm{BC}} \\
& \frac{1}{\sqrt{3}}=\frac{4}{\mathrm{BC}} \\
& \mathrm{BC}=4 \sqrt{3} \mathrm{~m} \\
& \sin 30^{\circ}=\frac{\mathrm{AC}}{\mathrm{AB}} \\
& \frac{1}{2}=\frac{4}{\mathrm{AB}} \\
& \mathrm{AB}=8 \mathrm{~m}
\end{aligned}
$$

OR

In $\triangle \mathrm{ABC}$
$\tan 60^{\circ}=\frac{\mathrm{AC}}{\mathrm{BC}}$
$\sqrt{3}=\frac{4}{\mathrm{BC}}$
$B C=\frac{4 \sqrt{3}}{3} \mathrm{~m}$
$\sin 60^{\circ}=\frac{A C}{A B}$
$\frac{\sqrt{3}}{2}=\frac{4}{\mathrm{AB}}$
$A B=\frac{8}{\sqrt{3}}=\frac{8 \sqrt{3}}{3} \mathrm{~m}$

