Ð		R
path to success	KOTA (RAJASTHAN)	

CLASS - X (STANDARD)

MATHEMATICS

BOARD PRACTICE TEST

ANSWER AND SOLUTIONS

	SECTION-A	16.	Option (4)		
1.	Option (4)		$\frac{17}{16}$		
1.	720 mins	17.	Option (2)		
2.	Option (3)	1/.	-		
2.	•		$\frac{22}{46}$		
	$4\sqrt{3}-3$	18.			
3.	Option (3)	201	8		
	6 sq. units	19.			
4.	Option (1)		Assertion (A) is true but Reason (R) is false.		
	$k \leq 8$	20.	Option (4)		
5.	Option (2)		Assertion (A) is false but Reason (R) is true.		
	90				
6.	Option (4)		SECTION-B		
	IV quadrant	21.	Here, Length = 825 cm		
7.	Option (2)		Breadth = 675 cm		
-	5:1		and Height = 450 cm		
8.	Option (1)		Also, $825 = 5 \times 5 \times 3 \times 11$		
	50°		$675 = 5 \times 5 \times 3 \times 3 \times 3$		
9.	Option (1)		and $450 = 2 \times 3 \times 3 \times 5 \times 5$		
	60 cm ²		$HCF = 5 \times 5 \times 3 = 75$		
10.	Option (1)		Therefore, the length of the longest rod which		
	25°		can measure the three dimensions of the room		
11.	Option (1)		exactly is 75 cm.		
		22.	In $\triangle APB$ and $\triangle DPC$		
12.	Option (4)		$\angle A = \angle D$ [Each 90°]		
	$\sqrt{7}$		$\angle APB = \angle DPC$ [Vertically opposite angles]		
	$\frac{\sqrt{7}}{\sqrt{8}}$		$\Delta APB \sim \Delta DPC$ [AA similarity]		
13.	Option (4)		AP BP		
			$\overline{\text{DP}} = \overline{\text{PC}}$		
	$30\sqrt{3}$ m		\Rightarrow AP × PC = BP × DP		
14.	Option (4)		A D		
	9π cm ²				
15.	Option (3)	$/$ PZ \backslash			
	132 cm				
		ļ	Br AC		
1001	CPA404021230078 Your Hard Work L	leads.	to Strong Foundation 1/8		

23. In $\triangle POA$ and $\triangle POB$

PA = PB (Tangents drawn from an external point to a circle are equal)

- OP = OPOA = OB
- OA = OB(Radius) $\triangle POA \cong \triangle POB$ (by SSS cong.) $\angle APO = \angle BPO$ (by cpct)

(Common)

$$\angle APB = 80^{\circ}$$

$$\angle APO = \frac{80^{\circ}}{2} = 40^{\circ}$$

In ΔPAO

$$\angle POA = 180^{\circ} - (90^{\circ} + 40^{\circ}) = 50^{\circ}$$

24. Since $sin(A - C) = \frac{1}{2}$

 $A - C = 30^{\circ}$ But, $A + C = 90^{\circ}$ (as, $A + B + C = 180^{\circ}$) So, $C = 30^{\circ}$ and $A = 60^{\circ}$

OR

Given,
$$\sin\theta = \frac{2mn}{m^2 + n^2}$$
, we have

$$\cos\theta = \frac{m^2 - n^2}{m^2 + n^2}$$
 and $\cot\theta = \frac{m^2 - n^2}{2mn}$

So,
$$\frac{\sin\theta\cot\theta}{\cos\theta} = \frac{\frac{2mn}{m^2 + n^2} \times \frac{m^2 - n^2}{2mn}}{\frac{m^2 - n^2}{m^2 + n^2}}$$

= 1

25. Radii of two concentric circle = 7 cm and 14 cm and $\angle AOC = 40^{\circ}$ Reflex $\angle AOC = 360^{\circ} - 40^{\circ} = 320^{\circ}$ Area of shaded region

$$= \frac{320}{360} \times \frac{22}{7} (14^2 - 7^2) = \frac{320}{360} \times \frac{22}{7} \times 7 \times 21$$
$$= 410.67 \text{ cm}^2$$

OR

Let θ be the central angle of the sector and r be the radius of the circle.

Then, length of arc of sector
$$(\ell) = \frac{\theta}{360^{\circ}} \times 2\pi r$$

So, perimeter of the sector = $\ell + r + r$

$$= \frac{\theta}{360^\circ} \times 2\pi r + 2r$$

$$\Rightarrow 16.4 = \frac{\theta}{360^{\circ}} \times 2\pi \times (5.2) + 2 \times 5.2$$

[:: r = 5.2 cm]

$$\Rightarrow \pi \theta = \frac{1080}{5.2} \qquad \dots (i)$$

Now, area of the sector = $\frac{\theta}{360^{\circ}} \times \pi (5.2)^2$

$$= \frac{1}{360^{\circ}} \times \frac{1080}{5.2} \times (5.2)^2 \qquad [Using (i)]$$

 $= 15.6 \text{ cm}^2$

Hence, area of the sector is 15.6 cm²

SECTION-C

26. Let us assume, to the contrary, that $\sqrt{5}$ is rational.

So, we can find coprime integers a and b $(\neq 0)$ such that

$$\sqrt{5} = \frac{a}{b}, b \neq 0, a, b \in I$$

 $\Rightarrow \sqrt{5} b = a$

Squaring on both sides, we get

$$5b^2 = a^2$$

Therefore, 5 divides a^2 .

Your Hard Work Leads to Strong Foundation

1001CPA404021230078

CLASS - X (STANDARD)

Therefore, 5 divides a

So, we can write a = 5c for some integer c. Substituting for a, we get

$$5b^2 = 25c^2$$

$$\Rightarrow b^2 = 5c^2$$

This means that 5 divides b^2 , and so 5 divides b. Therefore, a and b have at least 5 as a common factor.

But this contradicts the fact that a and b have no common factor other than 1.

This contradict our assumption that $\sqrt{5}$ is rational.

So, we conclude that $\sqrt{5}$ is irrational.

27. $f(x) = 6x^2 + x - 2$.

Here a = 6, b = 1, c = -2

Sum of zeroes, $(\alpha + \beta) = \frac{-b}{a} = \frac{-1}{6}$

Product of zeroes, $(\alpha\beta) = \frac{c}{a} = \frac{-2}{6} = \frac{-1}{3}$

Now
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\beta\alpha} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\beta\alpha}$$

$$=\frac{\left(\frac{-1}{6}\right)^2 - 2 \times \left(\frac{-1}{3}\right)}{\frac{-1}{3}} = \frac{\frac{1}{36} + \frac{2}{3}}{\frac{-1}{3}} = \frac{1 + 24}{36} \times -3$$
$$=\frac{-25}{12}$$

28. The given equation are 71x + 37y = 253 ...(i) and 37x + 71y = 287(ii) It is clear from above equations that coefficients of x and y are interchanged in both equations.

On adding equations (i) and (ii), we get 108x + 108y = 540 $\Rightarrow 108(x + y) = 540$

$$\Rightarrow x + y = \frac{540}{108} = 5 \qquad \dots (iii)$$

On subtracting equation (ii) from equation (i), we get

 $34x - 34y = -34 \Longrightarrow 34(x - y) = -34$ $\Rightarrow x - y = \frac{-34}{34}$ $\Rightarrow x - y = -1$(iv) On adding equations (iii) and (iv), we get $x = \frac{4}{2} = 2$ On substituting the value of x in equation (iii), we get $2 + y = 5 \implies y = 5 - 2 = 3$ Hence, x = 2 and y = 3OR Let the fixed charge be Rs.x and the charge per kilometer be Rs.y. According to first condition, x + 6y = 58 ...(i) According to second condition, x + 10y = 90....(ii) On subtracting equation (ii) from equation (i), we get x + 6y = 58x + 10y = 90 $\Rightarrow y = \frac{-32}{4} = 8$ On substituting the value of y in equation (i), we get $x + 6 \times 8 = 58$ \Rightarrow x = 58 - 48 \Rightarrow x = 10 Hence, charge per km is Rs.8 and fixed charge is Rs.10 Assume the radius of the circle as x cm and since NVUW is a square, WU = UV = x cm. Uses the pythagoras theorem in Δ SUT and find the length of ST as $\sqrt{(400+100)} = 10\sqrt{5}$ cm Find the length of VT as (10 - x) cm and use properties of tangents to write YT = VTUse properties of tangents to equate SY and SW to write the equation as : $20 - x = 10\sqrt{5}$ -

$$(10 - x)$$

$$\Rightarrow 20 - x = 10\sqrt{5} - 10 + x$$

$$\Rightarrow 2x = 30 - 10\sqrt{5}$$

 \Rightarrow x = (15 - 5 $\sqrt{5}$) cm

Hence radius of circle is $(15-5\sqrt{5})$ cm

29.

OR

Joints MP, NQ and uses the perpendicularity of radius to tangents to draw MR parallel line to PQ. The rough figure may look as follows :

Finds RN as 16-9=7 cm and MN as 9+16=25 cm Uses the pythagoras theorem in Δ MRN to find the length of MR as $\sqrt{(25^2-7^2)} = 24$ cm.

Writes the since MRQP is a rectangle, PQ = MR = 24 cm.

30. LHS =
$$\frac{\sin A - 2\sin^3 A}{2\cos^3 A - \cos A}$$
$$= \frac{\sin A(1 - 2\sin^2 A)}{\cos A(2\cos^2 A - 1)}$$
$$= \frac{\sin A}{\cos A} \left(\frac{1 - 2(1 - \cos^2 A)}{2\cos^2 A - 1} \right)$$
$$= \tan A \left(\frac{1 - 2 + 2\cos^2 A}{2\cos^2 A - 1} \right)$$
$$= \tan A \left(\frac{2\cos^2 A - 1}{2\cos^2 A - 1} \right)$$
$$= \tan A$$
$$= \operatorname{RHS}$$

31.

Marks	Number of students (f _i)	e unitaliati + e
0-10	10	10
10-20	Х	10 + x
20-30	25	35 + x
30-40	30	65 + x
40-50	у	65 + x + y
50-60	10	75 + x + y
Total	100	

It is given that,

 \Rightarrow 75 + x + y = 100

$$\Rightarrow x + y = 25 \qquad \dots (i)$$

Also, it is given that median is 32. So, the median class is 30-40

For this class,

$$\ell = 30, f = 30, cf = 35 + x, \frac{N}{2} = 50 and h = 10$$

Now, Median =
$$\ell + \left(\frac{\frac{N}{2} - cf}{f}\right) \times h$$

$$\Rightarrow 32 = 30 + \left(\frac{50 - (35 + x)}{30}\right) \times 10$$
$$\Rightarrow 2 \times 3 = 15 - x$$

 $\Rightarrow x = 15 - 6 = 9$

Putting the value of 'x' in equation (i), we get y = 25 - 9 = 16

Hence, the values of 'x' and 'y' are 9 and 16 respectively.

SECTION-D

32. Let the original speed of the train be x km/h. Then, time taken to cover the journey of

$$480 \text{ km} = \frac{480}{\text{x}} \text{hours}$$

Time taken to cover the journey of 480 km

with speed of
$$(x - 8)$$
 km/h = $\frac{480}{x - 8}$ hours

Now according to questions,

$$\frac{480}{x-8} - \frac{480}{x} = 3$$
$$\implies 480 \left[\frac{x-x+8}{x(x-8)} \right] = 3$$

4/8

Your Hard Work Leads to Strong Foundation

1001CPA404021230078

CLASS - X (STANDARD)

33.

 $\Rightarrow 3x(x - 8) = 3840$ $\Rightarrow x(x - 8) = 1280$ $\Rightarrow x^{2} - 8x - 1280 = 0$ $\Rightarrow x^{2} - 40x + 32x - 1280 = 0$ $\Rightarrow x(x - 40) + 32(x - 40) = 0$ $\Rightarrow (x + 32)(x - 40) = 0$ $\Rightarrow x + 32 = 0 \text{ or } x - 40 = 0$ $\therefore x = -32 \text{ (not possible)}$ $\therefore x = 40$

Thus, the original speed of the train is 40 km/h.

OR

Let the time taken by larger pipe alone to fill the tank = x hours

Therefore, the time taken by the smaller pipe = x + 10 hours

water filled by larger pipe running for 4 hours

$$=\frac{4}{x}$$
 litres

Water filled by smaller pipe running for 9 hours

$$=\frac{9}{x+10}$$
 litres

We know that, $\frac{4}{x} + \frac{9}{x+10} = \frac{1}{2}$

Which on simplification gives :

$$x^{2} - 16x - 80 = 0$$

$$x^{2} - 20x + 4x - 80 = 0$$

$$x(x - 20) + 4(x - 20) = 0$$

$$(x + 4)(x - 20) = 0$$

$$x = -4, 20$$

$$x \text{ cannot be negative.}$$

Thus, $x = 20$

$$x + 10 = 30$$

Larger pipe would alone fill the tank in 20 hours and smaller pipe would fill the tank alone in 30 hours.

We are given a triangle ABC in which a line parallel to side BC intersects other two sides AB and AC at D and E respectively.

We need to prove that $\frac{AD}{DB} = \frac{AE}{EC}$.

Let us join BE and CD and then draw $DM \perp AC$ and $EN \perp AB$.

Now, area of $\triangle ADE = (\frac{1}{2} \times base \times height)$

 $=\frac{1}{2} \times AD \times EN$

area of $\triangle ADE$ is denoted as ar(ADE).

So,
$$ar(ADE) = \frac{1}{2} \times AD \times EN$$

Similarly,
$$ar(BDE) = \frac{1}{2} \times DB \times EN$$

$$ar(ADE) = \frac{1}{2} \times AE \times DM$$

and
$$\operatorname{ar}(\operatorname{DEC}) = \frac{1}{2} \times \operatorname{EC} \times \operatorname{DM}$$

Therefore,
$$\frac{\operatorname{ar}(ADE)}{\operatorname{ar}(BDE)} = \frac{\frac{1}{2} \times AD \times EN}{\frac{1}{2} \times DB \times EN} = \frac{AD}{DB}$$
.(i)

$$\frac{\operatorname{ar}(ADE)}{\operatorname{ar}(DEC)} = \frac{\frac{1}{2} \times AE \times DM}{\frac{1}{2} \times EC \times DM} = \frac{AE}{EC} \qquad \dots(ii)$$

5/8

Note that $\triangle BDE$ and $\triangle DEC$ are on the same base and between the same parallels BC and DE. So, ar(BDE) = ar(DEC)(iii) Thereofore, form (i), (ii) and (iii), we have :

$$\frac{AD}{DB} = \frac{AE}{EC}$$

Hence, proved

In ADAB

 $\mathrm{PO} \, \| \, \mathrm{AB}$

$\frac{DP}{DP} = \frac{DO}{DO}$	(1)
PA OB	(1)
In ADBC	

OQ || CD

 $\frac{CQ}{QB} = \frac{DO}{OB} \qquad \dots (2)$

from (1) and (2)

$$\frac{DP}{PA} = \frac{CQ}{BQ}$$

34. Radius of the base of cylinder (r) = 2.8 m
= Radius of the base of the cone (r)
Height of the cylinder (h) = 3.5 m
Height of the cone (H) = 2.1 m

Slant height of conical part (ℓ) = $\sqrt{r^2 + H^2}$

$$= \sqrt{(2.8)^2 + (2.1)^2}$$

= $\sqrt{7.84 + 4.41}$
= $\sqrt{12.25}$
= 3.5 m
Area of canvas used to make tent
= CSA of cylinder + CSA of cone
= $2 \times \pi \times 2.8 \times 3.5 + \pi \times 2.8 \times 3.5$

= 61.6 + 30.8

= 92.4 m²

Cost of 1500 tents at Rs.120 per sq.m

 $= 1500 \times 120 \times 92.4$

= 16,632,000

Share of each school to set up the tents

$$\frac{16632000}{50}$$

=

= Rs.332,640

OR

(i) Total surface area of the block

- = TSA of cube + CSA of hemisphere
- = Base area of hemisphere

$$= 6a^2 + 2\pi r^2 - \pi r^2$$

$$= 6a^2 + \pi r^2$$

$$= \left(6 \times 6^2 + \frac{22}{7} \times 2.1 \times 2.1\right) = 229.86 \text{ sq. cm}$$

(ii) Volume of the block

$$= 6^{3} + \frac{2}{3} \times \frac{22}{7} \times (2.1)^{3} \text{ cu. cm}$$
$$= (216 + 19.40) \text{ cu.cm}$$

- = 235.40 cu.cm
- **35.** The frequency distribution for calculating the mean, for the given data is

Classes	Frequency (f _i)	Clas mark	$d_i = x_i - A$	$f_i d_i$
		(x _i)	where $A = 50$	
0-20	5	10	-40	-200
20-40	f_1	30	-20	-20f ₁
40-60	10	50 = A	0	0
60-80	f_2	70	20	$20f_2$
80-100	7	90	40	280
100-120	8	110	60	480
	$\sum f_i = 30 + f_1 + f_2$			$\sum f_i d_i = 560 + 20f_2 - 20f_1$

We know that,

$$30 + f_1 + f_2 = 50$$

$$\Rightarrow f_1 + f_2 = 20$$

$$\Rightarrow f_2 = 20 - f_1 \qquad \dots(i)$$

Now, mean =
$$A + \frac{\sum f_i d_i}{\sum f_i}$$

Your Hard Work Leads to Strong Foundation 1001CPA404021230078

36.

CLASS - X (STANDARD)

$$\Rightarrow 62.8 = 50 + \frac{560 + 20(20 - f_1) - 20f_1}{50}$$
 [Using (i)]

$$\Rightarrow 640 = 960 - 40 f_1$$

$$\Rightarrow 40f_1 = 320$$

$$\Rightarrow f_1 = 8$$

$$\therefore f_2 = 20 - 8 = 12$$

$$\therefore f_1 = 8, f_2 = 12$$

SECTION-E
(i) $a_6 = 16,000$
 $a + (n - 1)d = 16,000$
 $a + (6 - 1)d = 16,000$
 $a + (6 - 1)d = 16,000$
 $a + (5d = 16,000$ (i)
 $a_9 = 22,600$
 $a + (n - 1)d = 22,600$
 $a + (9 - 1)d = 22,600$
 $a + 8d = 22,600$ (ii)
Solving equation (i) and (ii)
 $a + 5d = 16,000$
 $a + 8d = 22,600$ (ii)
Solving equation (i) and (ii)
 $a + 5d = 16,000$
 $a + 8d = 2,200$
Now, putting $d = 2,200$ in equation (i)
 $a + 5d = 16,000$
 $a + 5x + 2,200 = 16,000$
 $a + 11,000 = 16,000$
(ii) Production during 8th year is (a + 7d)

(iii) Production during first 3 year = 5000 + 7200 + 9400

OR

$$a_n = 29,200$$

 $a + (n - 1)d = 29,200$
 $(n - 1)2,200 = 29,200 - 5,000$
 $2200n - 2,200 = 24,200$
 $2200n = 26,400$
 $n = \frac{26,400}{2,200}$

n = 12In 12^{th} year, the production is Rs.29,200

37. (i)
$$LB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $\Rightarrow LB = \sqrt{(0 - 5)^2 + (7 - 10)^2}$
 $LB = \sqrt{(5)^2 + (3)^2} \Rightarrow LB = \sqrt{25 + 9}$
 $LB = \sqrt{34}$
Hence the distance is $\sqrt{24}$ km

Hence the distance is $\sqrt{34}$ km

(ii) Coordinate of Kota (K) is

$$\left(\frac{3 \times 0 + 2 \times 5}{3 + 2}, \frac{3 \times 7 + 2 \times 10}{3 + 2}\right)$$
$$= \left(\frac{10 + 0}{5}, \frac{21 + 20}{5}\right) = \left(2, \frac{41}{5}\right)$$

(iii) L(5, 10), N(2, 6), P(8, 6)

LN =
$$\sqrt{(2-5)^2 + (6-10)^2} = \sqrt{(3)^2 + (4)^2}$$

= $\sqrt{9+16} = \sqrt{25} = 5$
NP = $\sqrt{(8-2)^2 + (6-6)^2} = \sqrt{(6)^2 + (0)^2} = 6$
PL = $\sqrt{(8-5)^2 + (6-10)^2} = \sqrt{(3)^2 + (4)^2} = 5$
as LN = PL \neq NP, so Δ LNP is an isosceles

as $LN = PL \neq NP$, so ΔLNP is an isosceles triangle.

(iii) In ΔABC OR Let A(0, b) be a point on the y-axis then $\tan 30^\circ = \frac{AC}{BC}$ AL = AP $\Rightarrow \sqrt{(5-0)^2 + (10-b)^2} = \sqrt{(8-0)^2 + (6-b)^2}$ $\frac{1}{\sqrt{3}} = \frac{4}{BC}$ $\Rightarrow (5)^2 + (10 - b)^2 = (8)^2 + (6 - b)^2$ BC = $4\sqrt{3}$ m $\Rightarrow 25 + 100 - 20b + b^2 = 64 + 36 - 12b + b^2$ \Rightarrow 8b = 25 \Rightarrow b = $\frac{25}{8}$ $\sin 30^\circ = \frac{AC}{AB}$ So, the coordinates on y-axis is $\left(0, \frac{25}{8}\right)$ $\frac{1}{2} = \frac{4}{AB}$ AB = 8 m(i) Since, $\cos A = \frac{1}{2}$ OR 38. In $\triangle ABC$ $\Rightarrow \cos A = \cos 60^{\circ}$ $\tan 60^\circ = \frac{AC}{BC}$ $\Rightarrow \cos A = \cos 60^{\circ}$ $\Rightarrow A = 60^{\circ}$ Then $12\cot^2 A - 2 = 12(\cot 60^\circ)^2 - 2$ $\sqrt{3} = \frac{4}{BC}$ $= 12\left(\frac{1}{\sqrt{3}}\right)^2 - 2$ BC = $\frac{4\sqrt{3}}{3}$ m $= 12 \times \frac{1}{3} - 2$ $\sin 60^\circ = \frac{AC}{AR}$ = 4 - 2 = 2(ii) Since, $AC \perp BC$, $\frac{\sqrt{3}}{2} = \frac{4}{AB}$ then $\angle C = 90^{\circ}$ $sinC \times cosA = sin90^{\circ} \times \frac{AC}{AB}$ $AB = \frac{8}{\sqrt{3}} = \frac{8\sqrt{3}}{3}m$ $= 1 \times \frac{4}{8} = \frac{1}{2}$