MATHEMATICS

(STANDARD)

ANSWER AND SOLUTIONS

SECTION-A

1. Option (1)

1:2
2. Option (2)
$x=4, y=2$
3. Option (4)

6
4. Option (4)

0, 8
5. Option (4)

28
6. Option (4)

5 units
7. Option (4)

Infinitely many
8. Option (2)
$\frac{\mathrm{BE}}{\mathrm{EC}}$
9. Option (3)
50°
10. Option (4)
$3 \sqrt{3} \mathrm{~cm}$
11. Option (4)
$5 \frac{1}{3}$
12. Option (2)
$b^{2}-a^{2}$
13. Option (1)

75 m
14. Option (4)

7 : 22
15. Option (3)

Both I and II
16. Option (2)
10^{5}
17. Option (1)
$\frac{9}{13}$
18. Option (2)
15.5
19. Option (4)

Assertion (A) is false but Reason (R) is true.
20. Option (2)

Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).

SECTION-B

21. Let us assume on the contrary that $\sqrt{3}$ is a rational number. Then, there exist positive integers a and b such that
$\sqrt{3}=\frac{a}{b}$, where a and b are co-prime i.e. their HCF is 1 .

Now, $\sqrt{3}=\frac{\mathrm{a}}{\mathrm{b}}$
$\Rightarrow 3=\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}$
$\Rightarrow 3 b^{2}=a^{2}$
$\Rightarrow 3$ divides $\mathrm{a}^{2} \quad\left[\because 3\right.$ divides $\left.3 \mathrm{~b}^{2}\right]$
$\Rightarrow 3$ divides a [By theorem]
$\Rightarrow \mathrm{a}=3 \mathrm{c}$ for some integer c
$\Rightarrow a^{2}=9 c^{2}$
$\Rightarrow 3 \mathrm{~b}^{2}=9 \mathrm{c}^{2}$
$\left[\because a^{2}=3 b^{2}\right]$
$\Rightarrow \mathrm{b}^{2}=3 \mathrm{c}^{2}$
$\Rightarrow 3$ divides $\mathrm{b}^{2} \quad\left[\because 3\right.$ divides $\left.3 \mathrm{c}^{2}\right]$
$\Rightarrow 3$ divides $\mathrm{b} \quad$ [By theorem]

From (i) and (ii), we observe that a and b have atleast 3 as common factor. But this contradicts the fact that a and b are co-prime. This means that our assumption is not correct.

Hence, $\sqrt{3}$ is an irrational number.
22. Given : $\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{2}{3}$ and $\frac{\mathrm{DQ}}{\mathrm{QC}}=\frac{3}{4}$

In $\triangle \mathrm{AOP}$ and $\triangle \mathrm{QOC}$
$\angle \mathrm{AOP}=\angle \mathrm{QOC}$
$\angle \mathrm{OAP}=\angle \mathrm{OCQ}$
(Alternate interior angles)
By AA criteria,
$\triangle \mathrm{AOP} \sim \Delta \mathrm{COQ}$
By similarly,
$\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{AP}}{\mathrm{CQ}}$
Let $\mathrm{AB}=\mathrm{CD}=$ ' x ' unit
then $\mathrm{QC}=\frac{4}{7} \mathrm{x}$ and $\mathrm{AP}=\frac{2}{7} \mathrm{x}$
then, from equation (1)
$\Rightarrow \frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\frac{2}{7} \mathrm{x}}{\frac{4 \mathrm{x}}{7}}=\frac{1}{2}$
$\Rightarrow \mathrm{OC}=2 \mathrm{AO}$
$\Rightarrow \mathrm{AO}=\frac{1}{2} \mathrm{OC}$
Hence proved
23. $\angle \mathrm{A}=\angle \mathrm{OPA}=\angle \mathrm{OSA}=90^{\circ}$

Hence, $\angle \mathrm{SOP}=90^{\circ}$
Also, AP = AS
Hence, OSAP is a square.
$\mathrm{AP}=\mathrm{AS}=10 \mathrm{~cm}$
$\mathrm{CR}=\mathrm{CQ}=27 \mathrm{~cm}$
$\mathrm{BQ}=\mathrm{BC}-\mathrm{CQ}=38-27=11 \mathrm{~cm}$
$\mathrm{BP}=\mathrm{BQ}=11 \mathrm{~cm}$
$\mathrm{x}=\mathrm{AB}=\mathrm{AP}+\mathrm{BP}=10+11=21 \mathrm{~cm}$
24. $\mathrm{LHS}=\frac{\operatorname{cosec}^{2} \mathrm{x}-\sin ^{2} \mathrm{x} \cot ^{2} \mathrm{x}-\cot ^{2} \mathrm{x}}{\sin ^{2} \mathrm{x}}$
$=\frac{1-\sin ^{2} x \cot ^{2} x}{\sin ^{2} x} \quad\left(\because \operatorname{cosec}^{2} x-\cot ^{2} x=1\right)$
$=\frac{1}{\sin ^{2} x}-\cot ^{2} x=\operatorname{cosec}^{2} x-\cot ^{2} x=1$
Thus, LHS = RHS

OR

$=\underline{3\left(\frac{1}{\sqrt{3}}\right)^{2}+(\sqrt{3})^{2}+\left(\frac{2}{1}\right)-1}$
$(1)^{2}$
$=\frac{1+3+2-1}{1}=5$
25. Let the measure of $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}$ and $\angle \mathrm{D}$ be θ_{1}, θ_{2}, θ_{3} and θ_{4} respectively
Required area $=$ Area of sector with centre A

+ Area of sector with centre B + Area of sector with centre $\mathrm{C}+$ Area of sector with centre D
$=\frac{\theta_{1}}{360^{\circ}} \times \pi \times 7^{2}+\frac{\theta_{2}}{360^{\circ}} \times \pi \times 7^{2}+\frac{\theta_{3}}{360^{\circ}} \times \pi \times 7^{2}$

$$
+\frac{\theta_{4}}{360^{\circ}} \times \pi \times 7^{2}
$$

$=\frac{\left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right)}{360^{\circ}} \times \pi \times 7^{2}$
$=\frac{\left(360^{\circ}\right)}{360^{\circ}} \times \frac{22}{7} \times 7 \times 7$
(By angle sum property of a triangle) $=154 \mathrm{~cm}^{2}$

OR

We know that, in 60 minutes, the tip of minute hand moves 360°

In 1 minute, it will move $=\frac{360^{\circ}}{60}=6^{\circ}$
\therefore From $7: 05 \mathrm{pm}$ to $7: 40 \mathrm{p} . \mathrm{m}$ i.e., 35 min , it will move through $=35 \times 6^{\circ}=210^{\circ}$
\therefore Area swept by the minute hand in 35 min
$=$ Area of sector with sectorial angle 210° and radius of 6 cm
$=\frac{210}{360} \times \pi \times 6^{2}$
$=\frac{7}{12} \times \frac{22}{7} \times 6 \times 6$
$=66 \mathrm{~cm}^{2}$

SECTION-C

26. In order to arrange these books, we have to find HCF of 192, 480 and 672.
Prime factors of $192=2^{6} \times 3$
Prime factors of $480=2^{5} \times 3 \times 5$
Prime factors of $672=2^{5} \times 3 \times 7$
\therefore HCF $(192,480$ and 672$)=2^{5} \times 3=96$
\therefore There must be 96 books in each stack.
\therefore Number of stacks of Science books

$$
=\frac{192}{96}=2
$$

Number of stacks of History books $=\frac{480}{96}=5$
Number of stacks of Drawing books

$$
=\frac{672}{96}=7
$$

27. $\alpha+\beta=\frac{-b}{a}=-\frac{(-5)}{1}$
$\alpha+\beta=5$
$\alpha \beta=\frac{\mathrm{c}}{\mathrm{a}}=\frac{4}{1}$
$\alpha \beta=4$
(1) $\left(\frac{1}{\alpha}+\frac{1}{\beta}-2 \alpha \beta\right)$

$$
\left(\frac{\beta+\alpha}{\alpha \beta}\right)-2 \alpha \beta
$$

$$
\frac{5}{4}-2(4)=\left(\frac{5}{4}-8\right)=\frac{-27}{4}
$$

(2) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}=\frac{25-2(4)}{4}$

$$
=\frac{17}{4}
$$

28. Let the digits at units and tens place of the given number be x and y respectively. Then,
Number $=10 y+x$
Number obtained by reversing the order of the digits $=10 \mathrm{x}+\mathrm{y}$

According to the given conditions, we have
$(10 y+x)+(10 x+y)=165$
and, $\mathrm{x}-\mathrm{y}=3$ or, $\mathrm{y}-\mathrm{x}=3$
$\Rightarrow 11 x+11 y=165$
and, $\mathrm{x}-\mathrm{y}=3$ or, $\mathrm{y}-\mathrm{x}=3$
$\Rightarrow \mathrm{x}+\mathrm{y}=15$
and, $\mathrm{x}-\mathrm{y}=3$ or, $\mathrm{y}-\mathrm{x}=3$
Thus, we obtain the following systems of linear equations.
(i) $x+y=15, x-y=3$
(ii) $\mathrm{x}+\mathrm{y}=15, \mathrm{y}-\mathrm{x}=3$

Solving first system of equations, we get
$\mathrm{x}=9, \mathrm{y}=6$
Solving second system of equations, we get $x=6, y=9$

Substituting the values of x and y in equation (i), we have

Number $=69$ or, 96 .

OR

The given system of equations may be written as
$(a-b) x+(a+b) y-\left(a^{2}-2 a b-b^{2}\right)=0$
$(a+b) x+(a+b) y-\left(a^{2}+b^{2}\right)=0$
Subtracting equation (2) from (1)

$$
\begin{aligned}
& (a-b-a-b) x+\left(a^{2}+b^{2}-a^{2}+2 a b+b^{2}\right) \\
& -2 b x+\left(2 b^{2}+2 a b\right)=0 \\
& 2 b x=2 b(b+a) \\
& x=a+b
\end{aligned}
$$

Subsitituting $\mathrm{x}=\mathrm{a}+\mathrm{b}$ in equation (1)
$(a-b)(a+b)+(a+b) y-\left(a^{2}-2 a b-b^{2}\right)=0$
$a^{2}-b^{2}+(a+b) y=a^{2}-2 a b-b^{2}$
$(\mathrm{a}=\mathrm{b}) \mathrm{y}=-2 \mathrm{ab}$
$y=\frac{-2 a b}{a+b}$
29. In the given figure

$\angle \mathrm{OAB}=30^{\circ}$
$\angle \mathrm{OAP}=90^{\circ}$
[Angle between the tangent and the radius at the point of contact]
$\angle \mathrm{PAB}=90^{\circ}-30^{\circ}=60^{\circ}$
$\mathrm{AP}=\mathrm{BP}$
[Tangents to a circle
from an external point]
$\angle \mathrm{PAB}=\angle \mathrm{PBA}$
[Angles opposite to equal sides of a triangle]

In $\triangle \mathrm{ABP}, \angle \mathrm{PAB}+\angle \mathrm{PBA}+\angle \mathrm{APB}=180^{\circ}$
[Angle sum property]
$60^{\circ}+60^{\circ}+\angle \mathrm{APB}=180^{\circ}$
$\angle \mathrm{APB}=60^{\circ}$
$\therefore \triangle \mathrm{ABP}$ is an equilateral triangle, where
$\mathrm{AP}=\mathrm{BP}=\mathrm{AB}$.
$\mathrm{PA}=6 \mathrm{~cm}$
In right $\triangle \mathrm{OAP}, \angle \mathrm{OPA}=30^{\circ}$
$\tan 30^{\circ}=\frac{\mathrm{OA}}{\mathrm{PA}}$
$\frac{1}{\sqrt{3}}=\frac{\mathrm{OA}}{6}$
$\mathrm{OA}=\frac{6}{\sqrt{3}}=2 \sqrt{3} \mathrm{~cm}$

OR

In the given figure

$\angle \mathrm{TPQ}=\theta$
$\angle \mathrm{TPO}=90^{\circ}$ [Angle between the tangent and the radius at the point of contact]
$\angle \mathrm{OPQ}=90^{\circ}-\theta$
$\mathrm{TP}=\mathrm{TQ}$
[Tangents to a circle from an external point]
$\angle \mathrm{TPQ}=\angle \mathrm{TQP}=\theta$
[Angle opposite to equal sides of a triangle]
In $\triangle \mathrm{PQT}, \angle \mathrm{PQT}+\angle \mathrm{QPT}+\angle \mathrm{PTQ}=180^{\circ}$
[Angle sum property]
$\theta+\theta+\angle \mathrm{PTQ}=180^{\circ}$
$\angle \mathrm{PTQ}=180^{\circ}-2 \theta$
$\angle \mathrm{PTQ}=2\left(90^{\circ}-\theta\right)$
$\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ} \quad[$ using (1)]
Hence proved
30. We have,

LHS $=(1-\sin \theta+\cos \theta)^{2}$
\Rightarrow LHS $=1+\sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta+2 \cos \theta-2 \sin \theta \cos \theta$
\Rightarrow LHS $=2-2 \sin \theta+2 \cos \theta-2 \sin \theta \cos \theta$
\Rightarrow LHS $=2(1-\sin \theta)+2 \cos \theta(1-\sin \theta)$
\Rightarrow LHS $=2(1-\sin \theta)(1+\cos \theta)=$ RHS
31.

Life time	Frequency	x_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{A}$	$\mathrm{u}_{\mathrm{i}}=\frac{\mathrm{d}_{\mathrm{i}}}{\mathrm{h}}$	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$299.5-399.5$	14	349.5	-400	-4	-56
$399.5-499.5$	46	449.5	-300	-3	-138
$499.5-599.5$	58	549.5	-200	-2	-116
$599.5-699.5$	76	649.5	-100	-1	-76
$699.5-799.5$	68	749.5	0	0	0
$799.5-899.5$	62	849.5	100	1	62
$899.5-999.5$	48	949.5	200	2	96
$999.5-1099.5$	22	1049.5	300	3	66
$1099.5-1199.5$	6	1149.5	400	4	24
	400				-138

Let the assumed mean be $\mathrm{A}=749.5$ and $h=100$.

We have $\mathrm{N}=400, \mathrm{~A}=749.5, \mathrm{~h}=100$ and $\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$ $=-138$
$\overline{\mathrm{X}}=\mathrm{A}+\mathrm{h}\left\{\frac{1}{\mathrm{n}} \sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right\}_{\}}$
$\bar{X}=749.5+100 \times\left(\frac{-138}{400}\right)=749.5-\frac{138}{4}$
$=749.5-34.5=715$
Hence, the average life time of a tube is 715 hours.

SECTION-D

32. Let the speed of the stream be $x \mathrm{~km} / \mathrm{hr}$.
\therefore Speed of the boat upstream $=(5-\mathrm{x}) \mathrm{km} / \mathrm{hr}$.
Speed of the boat downstream $=(5+x) \mathrm{km} / \mathrm{hr}$.
Time taken for going 5.25 km upstream $=\frac{5.25}{5-\mathrm{x}}$ hours.

Time taken for going 5.25 downstream $=$ $\frac{5.25}{5+\mathrm{x}}$ hours.

Obviously, time taken for going 5.25 km upstream is more than the time taken for going 5.25 km , downstream.

It is given that the time taken for going 5.25 km . upstream is 1 hour more than the time taken for going 5.25 downstream.
$\therefore \frac{5.25}{5-\mathrm{x}}-\frac{5.25}{5+\mathrm{x}}=1$
$\Rightarrow 5.25\left\{\frac{1}{5-x}-\frac{1}{5+x}\right\}=1$
$\Rightarrow \frac{21}{4}\left\{\frac{5+x-5+x}{(5-x)(5+x)}\right\}=1$
$\Rightarrow \frac{21}{4} \times \frac{2 \mathrm{x}}{25-\mathrm{x}^{2}}=1$
$\Rightarrow \frac{21}{2} \times \frac{\mathrm{x}}{25-\mathrm{x}^{2}}=1$
$\Rightarrow 21 \mathrm{x}=50-2 \mathrm{x}^{2}$
$\Rightarrow 2 \mathrm{x}^{2}+21 \mathrm{x}-50=0$
$\Rightarrow 2 \mathrm{x}^{2}+25 \mathrm{x}-4 \mathrm{x}-50=0$
$\Rightarrow \mathrm{x}(2 \mathrm{x}+25)-2(2 \mathrm{x}+25)=0$
$\Rightarrow(2 x+25)(x-2)=0$
$\Rightarrow \mathrm{x}-2=0,2 \mathrm{x}+25=0$
$\Rightarrow \mathrm{x}=2 \quad\left[\because \mathrm{x} \neq-\frac{25}{2}\right.$ as $\left.\mathrm{x}>0\right]$
Hence, the speed of the stream is $2 \mathrm{~km} / \mathrm{hr}$.

OR

Let the original duration of the tour be x days. Total expenditure on tour $=$ Rs 360
\therefore Expenditure per day $=$ Rs. $\frac{360}{\mathrm{x}}$
Duration of the extended tour $=(x+4)$ days
\therefore Expenditure per day according to new schedule $=$ Rs. $\frac{360}{x+4}$

It is given that the daily expenses are cut down by Rs. 3
$\therefore \frac{360}{x}-\frac{360}{x+4}=3$
$\Rightarrow \frac{360(x+4)-360 x}{x(x+4)}=3$
$\Rightarrow \frac{1440}{x^{2}+4 \mathrm{x}}=3$
$\Rightarrow x^{2}+4 \mathrm{x}=480$
$\Rightarrow \mathrm{x}^{2}+4 \mathrm{x}=480$
$\Rightarrow \mathrm{x}^{2}+24 \mathrm{x}-20 \mathrm{x}-480=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+24)-20(\mathrm{x}+24)=0$
$\Rightarrow(\mathrm{x}-20)(\mathrm{x}+24)=0$
$\Rightarrow \mathrm{x}-20=0$ or, $\mathrm{x}+24=0 \Rightarrow \mathrm{x}=20$ or, $\mathrm{x}=-24$
But, the number of days cannot be negative.
So, $x=20$.
Hence, the original duration of the tour was of 20 days.
33.

In $\triangle \mathrm{OLA}$ and $\triangle \mathrm{DCA}$
$\angle \mathrm{OAL}=\angle \mathrm{DAC}=\theta$
$\angle \mathrm{OLA}=\angle \mathrm{DCA}=90^{\circ}$
By AA criteria
$\angle \mathrm{OLA} \sim \triangle \mathrm{DCA}$
By similarly $\frac{\mathrm{OL}}{\mathrm{DC}}=\frac{\mathrm{LA}}{\mathrm{AC}}$
$\frac{\mathrm{h}}{\mathrm{b}}=\frac{\mathrm{LA}}{\mathrm{p}}$
Similarly $\triangle \mathrm{OLC} \sim \triangle \mathrm{BAC}$
(By similarly)
By similarity, $\frac{\mathrm{OL}}{\mathrm{BA}}=\frac{\mathrm{CL}}{\mathrm{AC}}$
$\Rightarrow \frac{\mathrm{h}}{\mathrm{a}}=\frac{\mathrm{CL}}{\mathrm{p}}$
By adding equation (1) and equation (2)
$\frac{\mathrm{h}}{\mathrm{b}}+\frac{\mathrm{h}}{\mathrm{a}}=\left(\frac{\mathrm{LA}}{\mathrm{p}}+\frac{\mathrm{CL}}{\mathrm{p}}\right)=\frac{\mathrm{AC}}{\mathrm{p}}=\frac{\mathrm{p}}{\mathrm{p}}$
$\mathrm{h}\left(\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{a}}\right)=\frac{\mathrm{p}}{\mathrm{p}}=1$
$h=\frac{a b}{a+b}$
Hence proved
34. We have,

Volume of the water that flows out in one minute
$=$ Volume of the cylinder of diameter 5 mm and length 10 metre
$=$ Volume of the cylinder of radius $\frac{5}{2} \mathrm{~mm}$
$\left(=\frac{1}{4} \mathrm{~cm}\right)$ and length 1000 cm
$=\frac{22}{7} \times \frac{1}{4} \times \frac{1}{4} \times 1000 \mathrm{~cm}^{3}$
Volume of a conical vessel of base radius 20 cm and depth 24 cm
$=\frac{1}{3} \times \frac{22}{7} \times(20)^{2} \times 24 \mathrm{~cm}^{3}$
Suppose the conical vessel is filled in x minutes.
\therefore Volume of the water that flows out in x minutes $=$ Volume of the conical vessel
$\Rightarrow \frac{22}{7} \times \frac{1}{4} \times \frac{1}{4} \times 1000 \times \mathrm{x}=\frac{1}{3} \times \frac{22}{7} \times 20^{2} \times 24$
$\Rightarrow x=\frac{1}{3} \times \frac{400 \times 24 \times 4 \times 4}{1000}=\frac{512}{10}$ minutes
$\Rightarrow \mathrm{x}=51$ minutes 12 seconds.
OR

For conical portion, we have $\mathrm{r}=2 \mathrm{~m}$ and $\ell=2.8 \mathrm{~m}$
$\therefore \mathrm{S}_{1}=$ curved surface area of conical portion
$=\pi \mathrm{r} \ell$
$=\pi \times 2 \times 2.8 \mathrm{~m}^{2}$
$=5.6 \pi \mathrm{~m}^{2}$
For cylindrical portion, we have
$\mathrm{r}=2 \mathrm{~m}, \mathrm{~h}=2.1 \mathrm{~m}$
$\therefore \mathrm{S}_{2}=$ curved surface area of cylindrical portion
$=2 \pi \mathrm{rh}=2 \pi \times 2 \times 2.1 \mathrm{~m}=8.4 \pi \mathrm{~m}^{2}$
Area of canvas used for making the tent
$=S_{1}+S_{2}$
$=(5.6 \pi+8.4 \pi) \mathrm{m}^{2}=14 \times \frac{22}{7} \mathrm{~m}^{2}=44 \mathrm{~m}^{2}$
Total cost of the canvas at the rate of
Rs. 500 per $\mathrm{m}^{2}=$ Rs. $(500 \times 44)=$ Rs. 22000
35.

Class intervals	Frequency (\mathbf{f})	Cumulative frequency (cf)
$0-10$	5	5
$10-20$	x	$5+x$
$20-30$	20	$25+x$
$30-40$	15	$40+x$
$40-50$	y	$40+x+y$
$50-60$	5	$45+x+y$
	$\Sigma f_{i}=60$	

We have,
Median $=28.5$
Clearly, it lies in the class interval 20-30.
So, 20-30 is the median class.
$\ell=20, \mathrm{~h}=10, \mathrm{f}=20, \mathrm{cf}=5+\mathrm{x}$ and $\mathrm{N}=60$
Now,
Median $=\ell+\frac{\frac{\mathrm{N}}{2}-\mathrm{cf}}{\mathrm{f}} \times \mathrm{h}$
$\Rightarrow 28.5=20+\frac{30-(5+x)}{20} \times 10$
$\Rightarrow 28.5=20+\frac{25-x}{2}$
$\Rightarrow 8.5=\frac{25-\mathrm{x}}{2} \Rightarrow 25-\mathrm{x}=17 \Rightarrow \mathrm{x}=8$
We have,
$\mathrm{N}=60$
$45+x+y=60 \Rightarrow x+y=15$
Putting $x=8$ in $x+y=15$, we get $y=7$
Hence, $\mathrm{x}=8$ and $\mathrm{y}=7$.

SECTION-E

36. (i) For the 1 st step, the volume of required concrete is $\frac{1}{4} \times \frac{1}{2} \times 50=\frac{25}{4} \mathrm{~m}^{3}$
(ii) For the $2^{\text {nd }}$ step, the volume of required concrete is $\frac{2}{4} \times \frac{1}{2} \times 50=\frac{50}{4} \mathrm{~m}^{3}$
(iii) For the $3^{\text {rd }}$ step, the volume of required concrete is $\frac{3}{4} \times \frac{1}{2} \times 50=\frac{75}{4} \mathrm{~m}^{3}$

OR

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\
& \mathrm{S}_{15}=\frac{15}{2}\left[2 \times \frac{25}{4}+(15-1) \times \frac{25}{4}\right] \\
& =\frac{15}{2}\left[\frac{50}{4}+\frac{350}{4}\right] \\
& =\frac{15}{2} \times \frac{400}{4} \\
& =750 \mathrm{~m}^{3} .
\end{aligned}
$$

37. Given : point A lies in $\mathrm{x}=3$ and $\mathrm{y}=4$.
$\therefore \mathrm{A}(3,4)$ is the correct position.
Point B lies at $\mathrm{x}=6$ and $\mathrm{y}=7$.
So, the correct position of B is $(6,7)$.
(i) Position of $\mathrm{A}=(3,4)$

Position of $B=(6,7)$
\therefore Distance of AB
$=\left|\sqrt{(3-6)^{2}+(4-7)^{2}}\right|$
$=\left|\sqrt{(3)^{2}+(-3)^{2}}\right|$
$=\sqrt{18}=3 \sqrt{2}$ unit.
(ii) Position of $B=(6,7)$ and position of $C=(9,4)$

$\mathrm{P}=\left(\frac{57}{8}, \frac{47}{8}\right)$

OR

Position of $\mathrm{B}=(6,7)$ and position of $\mathrm{A}=(3,4)$

$\mathrm{R}=(4,5)$
(iii) Position of $\mathrm{B}=(6,7)$ and position of $\mathrm{C}=(9,4)$
\therefore Mid-point of B and $C=\left(\frac{6+9}{2}, \frac{7+4}{2}\right)$

$$
=\left(\frac{15}{2}, \frac{11}{2}\right)
$$

38. (i) In $\triangle \mathrm{PBM}, \tan 45^{\circ}=\frac{\mathrm{PM}}{\mathrm{BM}}$
$\Rightarrow 1=\frac{300}{y}$
$\Rightarrow \mathrm{y}=300$ meters.
(ii) In $\triangle \mathrm{AMP}, \tan 60^{\circ}=\frac{\mathrm{PM}}{\mathrm{AM}}$
$\Rightarrow \sqrt{3}=\frac{300}{x}$
$\Rightarrow \mathrm{x}=\frac{300}{\mathrm{x}}=100 \sqrt{3}$
$=100 \times 1.732$
$=173.2$ meters.
(iii) We have proved that
$\mathrm{x}=173.2 \mathrm{~m}$ and $\mathrm{y}=300 \mathrm{~m}$
$\therefore \quad A B=x+y$
$=(173.2+300) \mathrm{m}$
$=473.2 \mathrm{~m}$
(iv) In $\triangle \mathrm{PMB}$,
$\mathrm{PM}=300, \mathrm{BM}=\mathrm{y}=300 \mathrm{~m}$
and $\angle \mathrm{PMB}=90^{\circ}$
$\therefore \quad(\mathrm{PB})^{2}=(\mathrm{PM})^{2}+(\mathrm{BM})^{2}$
[Using Pythogoras theorem]
$=(300)^{2}+(300)^{2}$
$=90000+90000$
$=180000$
$\therefore \quad \mathrm{PB}=\sqrt{18 \times 10000}$
$=100 \times 3 \sqrt{2}$
$=300 \sqrt{2} \mathrm{~m}$.
