THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

- 1. AB is a straight road of length 400 metres. From A, Samrud runs at a speed of 6m/s towards B and at the same time Saket starts from B and runs towards A at a speed of 5m/s. After reaching their destinations, they return with the same speeds. They repeat it again and again. How many times do they meet each other in 15 minutes?
 - (A) 25
- (B) 23
- (C) 24
- (D) 20

Ans. Bonus

Sol.

$$1^{\text{st}}$$
 Meeting time $t_1 = \frac{400}{11} \sec = 36.36 \sec$

For second meeting

Total distance covered =
$$\frac{800}{11} \approx 72.72 \text{ sec}$$

So, according to question

For 1^{st} meeting, relative distance covered = 400 m

For 2^{nd} and upcoming meeting, relative distance covered = 800 m

So, According to question

Distance covered in 15 min (900 sec)

$$= 900 \times 11 = 9900 \text{ m} \text{ (relative speed} = 11 \text{ m/s)}$$

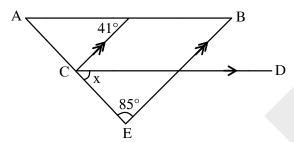
So,
$$\underbrace{400}_{1^{st}} + \underbrace{800 + 800 + \dots n^{times}}_{\text{'n'meetings}} \le 9900$$

$$\Rightarrow$$
 800n \leq 9900 – 400

$$n \leq \frac{9500}{800}$$

$$n \le 11.875$$

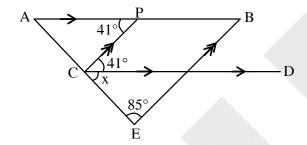
$$n = 11$$


Total meetings = 1 + n

$$= 1 + 11$$

$$= 12$$

THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES


In the adjoining figure, the measure of the angle x is 2.

- (A) 84°
- (B) 44°
- (C) 64°
- (D) 54°

Ans. (D)

Sol.

$$\angle APC = \angle PCD = 41^{\circ}$$

$$\Rightarrow$$
 (x + 41°) + 85 = 180°

(co-interior angles)

$$\Rightarrow$$
 x = 95 – 41°

$$\Rightarrow$$
 x = 54°

- The value of x which satisfies $\frac{1}{x+a} + \frac{1}{x+b} = \frac{1}{x+a+b} + \frac{1}{x}$ is **3.**
 - (A) $\frac{a+b}{2}$

- (B) $\frac{a-b}{2}$ (C) $\frac{b-a}{2}$ (D) $\frac{-(a+b)}{2}$

Ans. (D)

Sol.
$$\frac{1}{x+a} + \frac{1}{x+b} = \frac{1}{x+a+b} + \frac{1}{x}$$

$$\frac{1}{x+a} - \frac{1}{x} = \frac{1}{x+a+b} - \frac{1}{x+b}$$

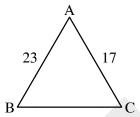
THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

$$\frac{x - (x + a)}{x(x + a)} = \frac{(x + b) - (x + a + b)}{(x + b)(x + a + b)}$$

$$\Rightarrow \frac{-a}{x(x+a)} = \frac{-a}{(x+b)(x+a+b)}$$

$$\Rightarrow$$
 x² + x(a + 2b) + b(a + b) = x² + ax

$$\Rightarrow$$
 ax + 2bx + b(a + b) = ax

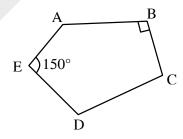

$$\Rightarrow$$
 b[2x + (a + b)] = 0

$$x = -\frac{(a+b)}{2}$$

- **4.** Two sides of an isosceles triangle are 23 cm and 17 cm respectively. The perimeter of the triangle (in cm) is
 - (A) 63
- (B) 57
- (C) 63 or 57
- (D) 40

Ans. (C)

Sol.


If \triangle ABC is isosceles \triangle

$$\Rightarrow$$
 BC = 23 or 17

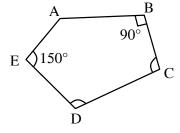
Then perimeter =
$$23 + 17 + 23 = 63$$

$$= 23 + 17 + 17 = 57$$

5. ABCDE is a pentagon with $\angle B = 90^\circ$ and $\angle E = 150^\circ$. If $\angle C + \angle D = 180^\circ$ and $\angle A + \angle D = 180^\circ$, then the external angle $\angle D$ is

(A) 120°

(B) 110°


(C) 105°

(D) 115°

Ans. (A)

THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

Sol.

$$\Rightarrow \angle A + \angle B + \angle C + \angle D + \angle E = 540^{\circ}$$
 (Angle sum property)

$$\Rightarrow$$
 \angle A + 90° + 180° + 150° = 540°

$$\Rightarrow \angle A = 120^{\circ}$$

As,
$$\angle$$
A + \angle D = 180°

$$\angle D = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

$$\Rightarrow$$
 ext. \angle D = 120°

- **6.** The unit's digit of the product $3^{2025} \times 7^{2024}$ is
 - (A) 1
- (B) 2

- (C) 3
- (D) 6

Ans. (C)

Sol.
$$3^{2025} \times 7^{2024}$$

By cyclicity of 3 & 7

$$(_{_{_{_{_{3}}}}}3) \times (_{_{_{_{_{1}}}}}1)$$
= $(_{_{_{_{_{3}}}}}3)$

- 7. The smallest positive integer n for which $18900 \times n$ is a perfect cube is
 - (A) 189
- (B) 18900
- (C) 21
- (D) 490

Ans. (D)

Sol. $18900 \times n \rightarrow perfect cube$

$$\Rightarrow$$
 n × 3³ × 7¹ × 2² × 5² \Rightarrow To convert into perfect cube, all power should be multiple of 3
 \Rightarrow n = 7² × 2¹ × 5¹
n = 490

- **8.** Two numbers a and b are respectively 20% and 50% more of a third number c. The percentage of a to b is
 - (A) 120%
- (B) 80%
- (C) 75%
- (D) 110%

Ans. (B)

THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

Sol. According to questions

$$a = \frac{120c}{100}$$

$$b = \frac{150c}{100}$$

Divide

$$\frac{\text{eq.}(1)}{\text{eq.}(2)} \Rightarrow \frac{a}{b} = \frac{4}{5}$$

Then,
$$\frac{a}{b} \times 100 = \frac{4}{5} \times 100 = 80\%$$

9. If
$$a + b = 2$$
, $\frac{1}{a} + \frac{1}{b} = 18$, then $a^3 + b^3$ lies between

- (A) 7 and 8
- (B) 6 and 7
- (C) 8 and 9
- (D) 5 and 6

Ans. (A)

Sol.
$$a + b = 2$$

$$\frac{1}{a} + \frac{1}{b} = 18 \Rightarrow \frac{a+b}{ab} = 18$$

$$\Rightarrow \frac{2}{ab} = 18$$

$$\Rightarrow$$
 ab = $\frac{1}{9}$

$$\Rightarrow a^3 + b^3 = (a+b)^3 - 3ab(a+b)$$

$$= (2)^3 - 3\left(\frac{1}{9}\right)(2)$$

$$=8-\frac{2}{3}=\frac{22}{3}=7\frac{1}{3}$$

10. If
$$\sqrt{12+\sqrt[3]{x}} = \frac{7}{2}$$
 and $x = \frac{p}{q}$, p, q are natural numbers with G.C.D. (p. q) = 1, then p + q is

- (A) 65
- (B) 56
- (C) 45
- (D) 54

Ans. (A)

THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

Sol.
$$\sqrt{12+\sqrt[3]{x}}=\frac{7}{2}$$

By squaring

$$12 + \sqrt[3]{x} = \frac{49}{4}$$

$$\sqrt[3]{x} = \left(\frac{49}{4} - 12\right) = \frac{1}{4}$$

By Cubing

$$x = \frac{1}{64} = \frac{p}{q}$$

Then, p + q = 65

- 11. The smallest number of 4-digits leaving a remainder 1 when divided by 2 or 3 or 4 or 6 has
 - (A) 5 as its unit digit

- (B) Only one zero as one of the digits
- (C) Exactly two zeroes as its digits
- (D) 7 as its unit digit

Ans. (C)

Sol. According to question

Smallest,
$$x = LCM(2, 3, 4, 6) + 1$$

$$= 12 + 1$$

Then smallest 4-digit number is 1008 i.e. divisible by 2, 3, 4, 6

Required number x

$$\Rightarrow$$
 x = 1008 + 1

$$x = 1009$$

According to question

Exactly two zeroes as its digits

- **12.** If a:b=2:3, b:c=4:5 and a+c=736, then the value of b is
 - (A) 392
- (B) 378
- (C) 384
- (D) 386

Ans. (C)

Sol.
$$\frac{a}{b} = \frac{2}{3} = \frac{8}{12}$$

$$\begin{vmatrix} a:b:c \\ 8:12:15 \end{vmatrix} \Rightarrow \frac{a}{c} = \frac{8}{15}$$

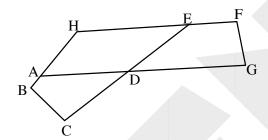
Let
$$a = 8k$$

$$c = 15k$$

$$a + c = 736$$

For Class 6th to 10th, Olympiads & Board

SOLUTION


THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

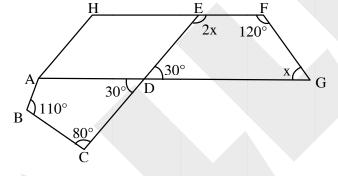
$$23k = 736$$

$$\Rightarrow$$
 k = 32

Then, $b = 12k = 12 \times 32 = 384$

13. In the given figure, $\angle B = 110^\circ$; $\angle C = 80^\circ$; $\angle F = 120^\circ$; $\angle ADC = 30^\circ$; $2\angle DGF = \angle DEF$. The measure of $\angle BHF$ is

(A) 115°


(B) 135°

(C) 100°

(D) 130°

Ans. (D)

In quadrilateral □ABCD

$$\angle BAD + 110^{\circ} + 80^{\circ} + 30^{\circ} = 360^{\circ}$$

$$\angle BAD = 360^{\circ} - 220^{\circ}$$

$$\angle BAD = 140^{\circ}$$

$$\angle HAD = 180^{\circ} - 140^{\circ}$$

(Linear pair)

$$2\angle DGF = \angle DEF$$

Let,
$$\angle DGF = x$$

$$\angle DEF = 2x$$

$$\angle$$
EDG = \angle ADC = 30°

(Vertically opposite angles)

For Class 6th to 10th, Olympiads & Board

SOLUTION

THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

$$\angle$$
F = 120°

In quadrilateral □EDGF

$$2x + 120^{\circ} + x + 30^{\circ} = 360^{\circ}$$

$$3x + 150^{\circ} = 360^{\circ}$$

$$3x = 360^{\circ} - 150^{\circ}$$

$$3x = 210^{\circ}$$

$$x = 70^{\circ}$$

Now, In quadrilateral □HAGF

$$\angle$$
AHF + \angle HAG + \angle AGF + \angle GFH = 360°

$$\angle AHF + 40^{\circ} + x + 120^{\circ} = 360^{\circ}$$

$$\angle AHF = 360^{\circ} - 120^{\circ} - 40^{\circ} - x$$
 (use x = 70°)

$$=360^{\circ}-120^{\circ}-40^{\circ}-70^{\circ}$$

$$=360^{\circ} - 230^{\circ}$$

$$\angle$$
AHF = 130°

14. If
$$\frac{1}{b+c} + \frac{1}{c+a} = \frac{2}{a+b'}$$
 then the value of $\frac{a^2 + b^2}{c^2}$ is

- (A) 2
- (B) 1

- (C) $\frac{1}{2}$
- (D) 3

Ans. (A)

Sol.
$$\frac{2c+a+b}{(b+c)(c+a)} = \frac{2}{a+b}$$

$$(a + b + c + c)(a + b) = 2(b + c)(c + a)$$

$$a^{2} + ab + ab + b^{2} + ac + bc + ac + bc = 2[bc + ab + c^{2} + ac]$$

$$a^2 + b^2 = 2c^2$$

$$\frac{a^2+b^2}{c^2}=2$$

THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

- **15.** If 3 men or 4 women can do a job in 43 days, the number of days the same job is done by 7 men and 5 women is
 - (A) 12
- (B) 10
- (C) 11
- (D) 13

Ans. (A)

Sol.
$$3m = 4w$$

$$1m = \frac{4w}{3}$$

Total = 7m + 5w

$$=7\times\frac{4w}{3}+5w$$

$$=\frac{43w}{3}$$

$$\mathbf{M}_1\mathbf{D}_1 = \mathbf{M}_2\mathbf{D}_2$$

$$M_1 = 4w$$

$$D_1 = 43 \text{ days}$$

$$M_2 = \frac{43w}{3}$$

$$D_2 = ?$$

$$4w \times 43 = \frac{43w}{3} \times D_2$$

$$D_2 = 12 \text{ days}$$

Section B (Fill in the Blanks)

- 16. The expression $49(a + b)^2 46(a b)^2$ is factorized into $(\ell a + mb)(na + pb)$, then the numerical value of $(\ell + m + n + p)$ is ______.
- **Ans.** 28

Sol.
$$[7(a+b)]^2 - (\sqrt{46}(a-b))^2$$

$$\left\lceil 7(a+b) + \sqrt{46}(a-b) \right\rceil \left\lceil 7(a+b) - \sqrt{46}(a-b) \right\rceil$$

$$\left[\left(7+\sqrt{46}\right)a+\left(7-\sqrt{46}\right)b\right]\left[\left(7-\sqrt{46}\right)a+\left(7+\sqrt{46}\right)b\right]$$

$$\ell + m + n + p = 7 + \sqrt{46} + 7 - \sqrt{46} + 7 - \sqrt{46} + 7 + \sqrt{46}$$

$$= 28$$

For Class 6th to 10th, Olympiads & Board

SOLUTION

THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

17. The integer part of the solution of the equation in x,

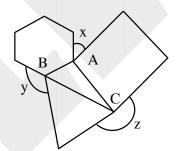
$$\frac{1}{3}(x-3) - \frac{1}{4}(x-8) = \frac{1}{5}(x-5)$$
 is _____.

Ans. 17

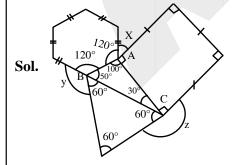
Sol.
$$\frac{x-3}{3} - \frac{x-8}{4} = \frac{x-5}{5}$$

$$\frac{4x-12-3x+24}{12} = \frac{x-5}{5}$$

$$(x + 12) \times 5 = (x - 5) \times 12$$


$$5x + 60 = 12x - 60$$

$$7x = 120$$


$$x = \frac{120}{7} = 17.14$$

Integer part = 17

18. In the adjoining figure, ABC is a triangle in which $\angle BAC = 100^{\circ}$, $\angle ACB = 30^{\circ}$. An equilateral triangle, a square and a regular hexagon are drawn as shown in the figure. The measure (in degrees) of (x + y + z) is ______.

Ans. 360°

THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

According to figure in ΔABC

$$\angle B = 50^{\circ}$$

Each interior angle of equilateral Δ is 60°

Similarity square = 90°

Regular hexagon = 120°

$$120^{\circ} + 100^{\circ} + 90^{\circ} + X = 360^{\circ}$$

$$Y + 60^{\circ} + 50^{\circ} + 120^{\circ} = 360^{\circ}$$

$$60^{\circ} + 30^{\circ} + 90^{\circ} + Z = 360^{\circ}$$

$$\angle X = 50^{\circ}, \angle Y = 130^{\circ}, \angle Z = 180^{\circ}$$

$$X + Y + Z = 360^{\circ}$$

19. The mean of 5 numbers is 105. The first number is $\frac{2}{5}$ times the sum of the other 4 numbers. The

first number is ______.

Ans. 150

Sol. Let number are x_1 , x_2 , x_3 , x_4 , x_5

$$x_1 + x_2 + x_3 + x_4 + x_5 = 5 \times 105 = 525$$

$$X_1 = \frac{2}{5}[X_2 + X_3 + X_4 + X_5]$$

$$5x_1 = 2(x_2 + x_3 + x_4 + x_5)$$

$$5x_1 = 2[525 - x_1]$$

$$5x_1 = 1050 - 2x_1$$

$$x_1 = 150$$

20. PQRS is a square. The sides PQ and RS are increased by 30% each and the sides QR and PS are increased by 20% each. The area of the quadrilateral thus obtained exceeds the area of the square by ______%.

Sol.
$$PQ = QR = RS = PS = a(side)$$

Area =
$$a^2$$

New sides are

$$PQ = \frac{13a}{10}$$
, $RS = \frac{13a}{10}$

$$QR = \frac{6a}{5}, PS = \frac{6a}{5}$$

For Class 6th to 10th, Olympiads & Board

SOLUTION

THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

New area =
$$\frac{13a}{10} \times \frac{6a}{5} = \frac{39a^2}{25}$$

% area increased =
$$\frac{\frac{39a^2}{25} - a^2}{a^2} \times 100$$

21. If
$$x^2 + (2 + \sqrt{3})x - 1 = 0$$
 and $x^2 + \frac{1}{x^2} = a + b\sqrt{c}$, then $(a + b + c)$ is _____.

Ans. 16

Sol.
$$x^2 + (2 + \sqrt{3})x - 1 = 0$$

$$x^2 - 1 = -(2 + \sqrt{3})x$$

$$\frac{x^2 - 1}{x} = -(2 + \sqrt{3})$$

$$x - \frac{1}{x} = -(2 + \sqrt{3})$$

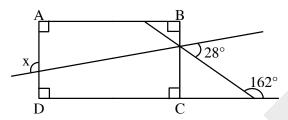
$$\left(x - \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} - 2$$

$$(-(2+\sqrt{3}))^2 + 2 = x^2 + \frac{1}{x^2}$$

$$4 + 3 + 4\sqrt{3} + 2 = x^2 + \frac{1}{x^2}$$

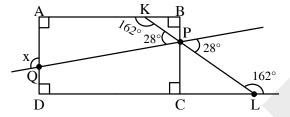
$$9 + 4\sqrt{3} = x^2 + \frac{1}{x^2}$$

$$x^2 + \frac{1}{x^2} = a + b\sqrt{c}$$


By comparing

$$a = 9, b = 4, c = 3$$

$$a + b + c = 9 + 4 + 3 = 16$$


THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

22. In the given figure, ABCD is a rectangle. The measure of angle x is ______ degrees.

Ans. 100°

Sol.

AB||DC

$$\angle$$
AKL = 162

(Alternate interior angles)

$$\angle$$
KPQ = 28

(Vertically opposite angle)

In
$$\square AQPK$$

$$\angle A = 90^{\circ}$$

$$\angle AQP = 180^{\circ} - x$$
 (Linear pair)

$$\angle$$
KPQ = 28

$$\angle$$
AKL = 162

So,
$$90^{\circ} + 180^{\circ} - x + 28 + 162 = 360^{\circ}$$

$$-x = 360 - 460$$

$$-x = -100$$
 $x = 100^{\circ}$

23. The sum of all positive integers m, n which satisfy $m^2 + 2mn + n = 44$ is ______.

Ans. 18

Sol.
$$2mn + n = 44 - m^2$$

$$n[2m + 1] = 44 - m^2$$

$$n = \frac{44 - m^2}{2m + 1}$$

Put m = 1 then n =
$$\frac{43}{3}$$
 (not a integer)

THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

$$m = 2$$
, $n = \frac{40}{5} = 8$ $(m = 2 \text{ and } n = 8)$

$$m = 3$$
, $n = \frac{35}{7} = 5$ $(m = 3 \text{ and } n = 5)$

$$m = 4$$
, $n = \frac{28}{9}$ (not a integer)

$$m = 5$$
, $n = \frac{19}{11}$ (not integer)

$$m = 6$$
, $n = \frac{8}{13}$ (not integer)

So, m = 2 and n = 8 and m = 3, n = 5 are the two pairs of solution of m and n

So, sum of all positive integers m, n is 2 + 8 + 3 + 5 = 18

24. Given a = 2025, b = 2024, the numerical value of

$$\left(a+b-\frac{4ab}{a+b}\right)\div\left(\frac{a}{a+b}-\frac{b}{b-a}+\frac{2ab}{b^2-a^2}\right)$$
 is ______.

Ans. 1

Sol.
$$\left(\frac{(a+b)^2-4ab}{(a+b)}\right) \div \left(\frac{a(b-a)-b(a+b)}{(b+a)(b-a)} + \frac{2ab}{b^2-a^2}\right)$$

$$\left(\frac{a^2 + b^2 + 2ab - 4ab}{a + b}\right) \div \left(\frac{ab - a^2 - ab - b^2}{b^2 - a^2} + \frac{2ab}{b^2 - a^2}\right)$$

$$\left(\frac{a^2+b^2-2ab}{a+b}\right)$$
 $\div \left(-\frac{(a^2+b^2)}{b^2-a^2} + \frac{2ab}{b^2-a^2}\right)$

$$\frac{(a-b)^2}{(a+b)} \div \left(-\frac{(a^2+b^2-2ab)}{b^2-a^2} \right)$$

$$\frac{(a-b)^2}{(a+b)} \times \frac{(b^2-a^2)}{-(a-b)^2}$$

$$\frac{(b+a)(b-a)}{-(a+b)} = -(b-a) = (a-b) = 2025 - 2024 = 1$$

THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST **SUB-JUNIOR LEVEL - VII & VIII GRADES**

25. In the sequence 0, 7, 26, 63, 124, the 6th term is

Ans. 215

$$0 = 1^{3} - 1$$
 (1st term)
 $7 = 2^{3} - 1$ (2nd term)

$$7 = 2^3 -$$

$$26 = 3^3 - 1$$
$$63 = 4^3 - 1$$

(3rd term) (4th term)

$$63 = 4^3 - 1$$

$$124 = 5^3 - 1$$
 (5th term)

$$6^{\text{th}} \text{ term} = 6^3 - 1 = 215$$

26. If
$$A = \sqrt{281 + \sqrt{53 + \sqrt{112 + \sqrt{81}}}}$$
, $B = \sqrt{92 + \sqrt{55 + \sqrt{75 + \sqrt{36}}}}$, then $A - B$ is _____.

Ans. 7

Sol.
$$A = \sqrt{281 + \sqrt{53 + \sqrt{112 + \sqrt{81}}}}$$

$$A = \sqrt{281 + \sqrt{53 + \sqrt{112 + 9}}}$$

$$A = \sqrt{281 + \sqrt{53 + \sqrt{121}}}$$

$$A = \sqrt{281 + \sqrt{53 + 11}}$$

$$A = \sqrt{281 + \sqrt{64}}$$

$$A = \sqrt{281 + 8}$$

$$A = \sqrt{289} = 17$$

$$B = \sqrt{92 + \sqrt{55 + \sqrt{75 + \sqrt{36}}}}$$

$$B = \sqrt{92 + \sqrt{55 + \sqrt{75 + 6}}}$$

$$B = \sqrt{92 + \sqrt{55 + \sqrt{81}}}$$

$$B = \sqrt{92 + \sqrt{55 + 9}}$$

$$B = \sqrt{92 + \sqrt{64}}$$

$$B = \sqrt{92 + 8}$$

$$B = \sqrt{100}$$

$$B = 10$$

$$A - B = 17 - 10 = 7$$

THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

27. The average of the numbers a, b, c, d is (b + 4). The average of pairs (a, b), (b, c) and (c, a) are respectively 16, 26 and 25. Then the average of d and 67 is ______.

.....(1)

.....(2)

....(3)

(from (3))

Ans. 42

Sol.
$$\frac{a+b+c+d}{4} = b+4$$

$$\frac{a+b}{2} = 16$$

$$a + b = 32$$

$$\frac{b+c}{2} = 26$$

$$b + c = 52$$

$$\frac{a+c}{2} = 25$$

$$a + c = 50$$

$$2(a + b + c) = 134$$

$$a + b + c = 67$$

$$a + b + c = 67$$

$$a + c = 50$$

$$a + c + b = 67$$

$$50 + b = 67$$

$$b = 67 - 50$$

$$b = 17$$

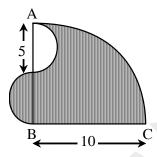
Now,
$$\frac{a+b+c+d}{4} = b+4$$

$$\begin{cases}
a + b + c = 67, \\
b = 17
\end{cases}$$

$$\Rightarrow$$
 from (5)

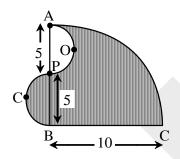
$$\frac{67+d}{4} = b+4$$

$$67 + d = 4(b + 4) = 4(17 + 4)$$


$$67 + d = 84$$

Now, average of 67 and d

$$\frac{67+d}{2} = \frac{84}{2} = 42$$


THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

28. ABC is a quadrant of a circle of radius 10 cm. Two semicircles are drawn as in the figure. The area of the shaded portion is $k\pi$, where k is a positive integer. The value of k is _____.

Ans. 25

Sol.

Area semicircle (PCB) = area of semicircle (AOP)

So, area of shaded is equivalent to area of quadrant ABC

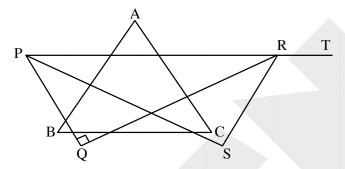
So, area of quadrant =
$$\frac{\pi r^2}{4}$$

$$=\frac{\pi(10)^2}{4}$$

$$=\frac{\pi \times 100}{4}$$

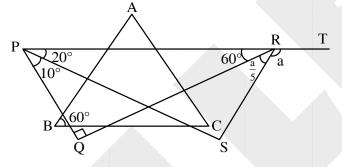
$$=25\pi$$

Comparing with $k\pi$


$$k = 25$$

For Class 6th to 10th, Olympiads & Board

SOLUTION


THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

29. In the figure, ABC and PQR are two triangles such that $\angle A : \angle B : \angle C = 5 : 6 : 7$ and $\angle PRQ = \angle B$. PS makes an angle $\frac{\angle P}{3}$ with PQ and RS makes an angle $\frac{\angle SRT}{5}$ with RQ. Then the measure of $\angle S$ is ______.

Ans. 80°

Sol.

$$\angle A = 5x$$

$$\angle B = 6x$$

$$\angle C = 7x$$

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$11x + 7x = 180^{\circ}$$

$$18x = 180^{\circ}$$

$$x = 10$$

$$\angle A = 5 \times 10 = 50^{\circ}$$

$$\angle B = 6 \times 60^{\circ}$$

$$\angle C = 7 \times 10 = 70^{\circ}$$

$$\angle PRQ = \angle B$$

$$\angle PRQ = 60^{\circ}$$
(1)

In ΔPRQ

THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

$$\angle P + \angle Q + \angle R = 180^{\circ}$$

$$\angle P + 90 + 60 = 180^{\circ}$$

$$\angle P = 180 - 150$$

$$\angle P = 30$$

PS makes angle
$$\frac{\angle P}{3}$$
 with PQ

So,
$$\angle QPS = \frac{\angle P}{3} = \frac{30}{3} = 10$$

$$\angle$$
SRT = a

$$\angle QRS = \frac{a}{5}$$

In ΔPQR

$$\angle PRQ = \angle B = 60^{\circ}$$
 (given)

So,
$$\angle PRQ + \angle QRS + \angle SRT = 180^{\circ}$$

$$a + \frac{a}{5} + 60 = 180$$

$$\frac{6a}{5} + 60 = 180$$

$$\frac{6a}{5} = 120$$

$$a = \frac{120 \times 5}{6}$$

$$a = 100$$

In ΔPSR

Exterior angle SRT

$$Ext(\angle SRT) = 20 + \angle S$$

$$a = 20 + \angle S$$

use
$$a = 100$$

$$100 = 20 + \angle S$$

$$\angle S = 100 - 20$$

$$\angle S = 80^{\circ}$$

For Class 6th to 10th, Olympiads & Board

SOLUTION

THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA 57th NMTC - SCREENING TEST - KAPREKAR CONTEST SUB-JUNIOR LEVEL - VII & VIII GRADES

30. In a two-digit positive integer, the units digit is one less than the tens digit. The product of one less than the units digit and one more than the tens digit is 40. The number of such two-digit integers is ______.

Ans. 1

Sol. Let suppose two digit number = 10x + y

$$y = x - 1 \qquad \dots (1)$$

$$(y-1)(x+1) = 40$$
(2)

$$(y-1)(y+2) = 40$$

$$y^2 + 2y - y - 2 = 40$$

$$y^2 + y - 42 = 0$$

$$y^2 + y - 42 = 0$$

$$y^2 + 7y - 6y - 42 = 0$$

$$y(y + 7) - 6(y + 7) = 0$$

$$y = 6, y = -7$$

$$x = 7$$

Number is = $10 \times 7 + 6 = 76$

Number of such 2 digit integers = 1