# **FINAL JEE-MAIN EXAMINATION - JUNE, 2022**

(Held On Monday 27th June, 2022)

TIME: 9:00 AM to 12:00 PM

## **MATHEMATICS**

#### **SECTION-A**

- 1. The area of the polygon, whose vertices are the non-real roots of the equation  $\overline{z} = iz^2$  is:
  - $(A) \ \frac{3\sqrt{3}}{4}$
- (B)  $\frac{3\sqrt{3}}{2}$
- (C)  $\frac{3}{2}$
- (D)  $\frac{3}{4}$

Official Ans. by NTA (A)

Allen Ans. (A)

- 2. Let the system of linear equations x + 2y + z = 2,  $\alpha x + 3y z = \alpha$ ,  $-\alpha x + y + 2z = -\alpha$  be inconsistent. Then  $\alpha$  is equal to :
  - (A)  $\frac{5}{2}$
- (B)  $-\frac{5}{2}$
- (C)  $\frac{7}{2}$
- (D)  $-\frac{7}{2}$

Official Ans. by NTA (D)

Allen Ans. (D)

3. If  $x = \sum_{n=0}^{\infty} a^n$ ,  $y = \sum_{n=0}^{\infty} b^n$ ,  $z = \sum_{n=0}^{\infty} c^n$ , where a, b, c

are in A.P. and |a| < 1, |b| < 1, |c| < 1,  $abc \ne 0$ , then

- (A) x, y, z are in A.P.
- (B) x, y, z are in G.P.
- (C)  $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$  are in A.P.
- (D)  $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1 (a+b+c)$

Official Ans. by NTA (C)

Allen Ans. (C)

### **TEST PAPER WITH ANSWER**

- 4. Let  $\frac{dy}{dx} = \frac{ax by + a}{bx + cy + a}$ , where a, b, c are constants, represent a circle passing through the point (2, 5). Then the shortest distance of the point (11, 6) from this circle is:
  - (A) 10
- (B) 8

(C) 7

(D) 5

Official Ans. by NTA (B)

Allen Ans. (B)

5. Let a be an integer such that  $\lim_{x \to 7} \frac{18 - [1 - x]}{[x - 3a]}$ 

exists, where [t] is greatest integer  $\leq$  t. Then a is equal to :

- (A) -6
- (B) -2

(C) 2

(D) 6

Official Ans. by NTA (A)

Allen Ans. (A)

- 6. The number of distinct real roots of  $x^4 4x + 1 = 0$  is:
  - (A) 4

(B) 2

(C) 1

(D) 0

Official Ans. by NTA (B)

Allen Ans. (B)

- 7. The lengths of the sides of a triangle are  $10 + x^2$ ,  $10 + x^2$  and  $20 2x^2$ . If for x = k, the area of the triangle is maximum, then  $3k^2$  is equal to:
  - (A) 5

- (B) 8
- (C) 10
- (D) 12

Official Ans. by NTA (C)

Allen Ans. (C)



If  $\cos^{-1}\left(\frac{y}{2}\right) = \log_e\left(\frac{x}{5}\right)^5$ , |y| < 2, then:

(A) 
$$x^2y'' + xy' - 25y = 0$$

(B) 
$$x^2y'' - xy' - 25y = 0$$

(C) 
$$x^2y''-xy'+25y=0$$

(D) 
$$x^2y'' + xy' + 25y = 0$$

Official Ans. by NTA (D)

Allen Ans. (D)

 $\int \frac{(x^2+1)e^x}{(x+1)^2} dx = f(x)e^x + C, \text{ Where C is a}$ 

constant, then  $\frac{d^3 f}{dx^3}$  at x = 1 is equal to :

- (A)  $-\frac{3}{4}$
- (B)  $\frac{3}{4}$
- (C)  $-\frac{3}{2}$

Official Ans. by NTA (B)

Allen Ans. (B)

- The value of the integral  $\int_{-2}^{2} \frac{\left|x^3 + x\right|}{\left(e^{x|x|} + 1\right)} dx$  is equal to: 10.
  - (A)  $5e^{2}$
- (B)  $3e^{-2}$

(C) 4

(D) 6

Official Ans. by NTA (D)

Allen Ans. (D)

If  $\frac{dy}{dx} + \frac{2^{x-y}(2^y-1)}{2^x-1} = 0, x, y > 0, y(1) = 1$ , then 11.

y(2) is equal to:

- $(A) 2 + \log_2 3$
- (B)  $2 + \log_2 2$
- (C)  $2 \log_2 3$
- (D)  $2 \log_{2} 3$

Official Ans. by NTA (D)

Allen Ans. (D)

- In an isosceles triangle ABC, the vertex A is (6, 1) **12.** and the equation of the base BC is 2x + y = 4. Let the point B lie on the line x + 3y = 7. If  $(\alpha, \beta)$  is the centroid  $\triangle ABC$ , then  $15(\alpha + \beta)$  is equal to :
  - (A) 39
- (B) 41
- (C) 51
- (D) 63

Official Ans. by NTA (C)

Allen Ans. (C)

- **13.** the eccentricity ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ , a > b, be  $\frac{1}{4}$ . If this ellipse passes through the point  $\left(-4\sqrt{\frac{2}{5}},3\right)$ , then  $a^2 + b^2$  is equal to:
  - (A) 29
- (B) 31
- (C) 32
- (D) 34

Official Ans. by NTA (B)

Allen Ans. (B)

- 14. If two straight lines whose direction cosines are given the relations 1 + m - n = 0,  $31^2 + m^2 + cnl = 0$  are parallel, then the positive value of c is:
  - (A) 6
- (B)4
- (C) 3
- (D) 2

Official Ans. by NTA (A)

Allen Ans. (A)

- Let  $\vec{a} = \hat{i} + \hat{j} \hat{k}$  and  $\vec{c} = 2\hat{i} 3\hat{j} + 2\hat{k}$ . Then the **15.** number of vectors  $\vec{b}$  such that  $\vec{b} \times \vec{c} = \vec{a}$  and  $|\vec{b}| \in \{1, 2, \dots, 10\}$  is:
  - (A) 0

(B) 1

(C) 2

(D) 3

Official Ans. by NTA (A)

Allen Ans. (A)

# Final JEE-Main Exam June 2022/27-06-2022/Morning Session

- **16.** Five numbers  $x_1$ ,  $x_2$ ,  $x_3$ ,  $x_4$ ,  $x_5$  are randomly selected from the numbers 1, 2, 3,....., 18 and are arranged in the increasing order  $(x_1 < x_2 < x_3 < x_4 < x_5)$ . The probability that  $x_2 = 7$  and  $x_4 = 11$  is:
  - (A)  $\frac{1}{136}$
- (B)  $\frac{1}{72}$
- (C)  $\frac{1}{68}$
- (D)  $\frac{1}{24}$

Official Ans. by NTA (C)

Allen Ans. (C)

- **17.** Let X be a random variable having binomial distribution B(7, p). If P(X = 3) = 5P(X = 4), then the sum of the mean and the variance of X is:
  - (A)  $\frac{105}{16}$
- (B)  $\frac{7}{16}$
- (C)  $\frac{77}{36}$

Official Ans. by NTA (C)

Allen Ans. (C)

- The value of  $\cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)$ 18. is equal to:
  - (A) -1
- (B)  $-\frac{1}{2}$
- (C)  $-\frac{1}{2}$
- (D)  $-\frac{1}{4}$

Official Ans. by NTA (B)

Allen Ans. (B)

- $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) + \cos^{-1}\left(\cos\frac{7\pi}{6}\right) + \tan^{-1}\left(\tan\frac{3\pi}{4}\right)$ 19. equal to:
  - $(A) \frac{11\pi}{12}$
- (B)  $\frac{17\pi}{12}$
- (C)  $\frac{31\pi}{12}$
- (D)  $-\frac{3\pi}{4}$

Official Ans. by NTA (A)

Allen Ans. (A)

- The Boolean expression 20. equivalent to:
  - (A)  $q \rightarrow (p \land q)$  (B)  $p \rightarrow q$
  - (C)  $p \to (p \to q)$  (D)  $p \to (p \lor q)$

Official Ans. by NTA (D)

Allen Ans. (D)

## **SECTION-B**

Let  $f: R \to R$  be a function defined  $f(x) = \frac{2e^{2x}}{e^{2x} + e}$ . 1.

Then  $f\left(\frac{1}{100}\right) + f\left(\frac{2}{100}\right) + f\left(\frac{3}{100}\right) + \dots + f\left(\frac{99}{100}\right)$  is equal

Official Ans. by NTA (99)

Allen Ans. (99)

If the sum of all the roots of the equation 2.  $e^{2x} - 11e^x - 45e^{-x} + \frac{81}{2} = 0$  is  $\log_e P$ , then p is equal to \_\_\_\_\_.

Official Ans. by NTA (45)

Allen Ans. (45)

**3.** The positive value of the determinant of the matrix

A, whose  $Adj(Adj(A)) = \begin{pmatrix} 14 & 28 & -14 \\ -14 & 14 & 28 \\ 28 & -14 & 14 \end{pmatrix}$ ,

Official Ans. by NTA (14)

Allen Ans. (14)

4. The number of ways, 16 identical cubes, of which 11 are blue and rest are red, can be placed in a row so that between any two red cubes there should be at least 2 blue cubes, is \_\_\_\_\_.

Official Ans. by NTA (56)

Allen Ans. (56)

5. If the coefficient of  $x^{10}$  in the binomial expansion

of 
$$\left(\frac{\sqrt{x}}{\frac{1}{5^{\frac{1}{4}}}} + \frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}$$
 is  $5^{k}l$ , where  $l, k \in \mathbb{N}$  and  $l$  is co-

prime to 5, then k is equal to \_\_\_\_\_.

Official Ans. by NTA (5)

Allen Ans. (5)

**6.** Let

$$A_1 = \{(x, y) : |x| \le y^2, |x| + 2y \le 8\}$$
 and

$$A_2 = \{(x, y) : |x| + |y| \le k\}$$
. If 27 (Area  $A_1$ ) = 5

(Area  $A_2$ ), then k is equal to:

Official Ans. by NTA (6)

Allen Ans. (6)

7. If the sum of the first ten terms of the series

$$\frac{1}{5} + \frac{2}{65} + \frac{3}{325} + \frac{4}{1025} + \frac{5}{2501} + \dots$$
 is  $\frac{m}{n}$ , where

m and n are co-prime numbers, then m + n is equal

Official Ans. by NTA (276)

**Allen Ans. (276)** 

8. A rectangle R with end points of the one of its dies as (1, 2) and (3, 6) is inscribed in a circle. If the equation of a diameter of the circle is 2x - y + 4 = 0, then the area of R is \_\_\_\_\_.

Official Ans. by NTA (16)

Allen Ans. (16)

9. A rectangle R with end points of one of its sides as (1, 2) and (3, 6) is inscribed in a circle. If the equation of a diameter of the circle is 2x - y + 4 = 0, then the area of R is \_\_\_\_\_.

Official Ans. by NTA (63)

Allen Ans. (63)

10. A circle of radius 2 unit passes through the vertex and the focus of the parabola  $y^2 = 2x$  and touches the parabola  $y = \left(x - \frac{1}{4}\right)^2 + \alpha$ , where  $\alpha > 0$ .

Then  $(4\alpha - 8)^2$  is equal to \_\_\_\_\_.

Official Ans. by NTA (137)

Allen Ans. (137)