FINAL JEE-MAIN EXAMINATION - JUNE, 2022

(Held On Monday 27 ${ }^{\text {th }}$ June, 2022)
TIME: 9:00 AM to 12:00 PM

MATHEMATICS

SECTION-A

1. The area of the polygon, whose vertices are the non-real roots of the equation $\bar{z}=i z^{2}$ is :
(A) $\frac{3 \sqrt{3}}{4}$
(B) $\frac{3 \sqrt{3}}{2}$
(C) $\frac{3}{2}$
(D) $\frac{3}{4}$

Official Ans. by NTA (A)
Allen Ans. (A)
2. Let the system of linear equations $x+2 y+z=2$, $\alpha x+3 y-z=\alpha,-\alpha x+y+2 z=-\alpha$ be inconsistent. Then α is equal to :
(A) $\frac{5}{2}$
(B) $-\frac{5}{2}$
(C) $\frac{7}{2}$
(D) $-\frac{7}{2}$

Official Ans. by NTA (D)
Allen Ans. (D)
3. If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, z=\sum_{n=0}^{\infty} c^{n}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. and $|\mathrm{a}|<1,|\mathrm{~b}|<1,|\mathrm{c}|<1, a b c \neq 0$, then
(A) x, y, z are in A.P.
(B) $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in G.P.
(C) $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P.
(D) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1-(a+b+c)$

Official Ans. by NTA (C)
Allen Ans. (C)

TEST PAPER WITH ANSWER

4. Let $\frac{d y}{d x}=\frac{a x-b y+a}{b x+c y+a}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are constants, represent a circle passing through the point $(2,5)$. Then the shortest distance of the point $(11,6)$ from this circle is :
(A) 10
(B) 8
(C) 7
(D) 5

Official Ans. by NTA (B)
Allen Ans. (B)
5. Let a be an integer such that $\lim _{x \rightarrow 7} \frac{18-[1-x]}{[x-3 a]}$ exists, where [t] is greatest integer $\leq \mathrm{t}$. Then a is equal to :
(A) -6
(B) -2
(C) 2
(D) 6

Official Ans. by NTA (A)
Allen Ans. (A)
6. The number of distinct real roots of $x^{4}-4 x+1=0$ is :
(A) 4
(B) 2
(C) 1
(D) 0

Official Ans. by NTA (B)
Allen Ans. (B)
7. The lengths of the sides of a triangle are $10+x^{2}$, $10+x^{2}$ and $20-2 x^{2}$. If for $x=k$, the area of the triangle is maximum, then $3 \mathrm{k}^{2}$ is equal to :
(A) 5
(B) 8
(C) 10
(D) 12

Official Ans. by NTA (C)
Allen Ans. (C)
8. If $\cos ^{-1}\left(\frac{y}{2}\right)=\log _{e}\left(\frac{x}{5}\right)^{5},|y|<2$, then :
(A) $x^{2} y^{\prime \prime}+x y^{\prime}-25 y=0$
(B) $x^{2} y^{\prime \prime}-x y^{\prime}-25 y=0$
(C) $x^{2} y^{\prime \prime}-x y^{\prime}+25 y=0$
(D) $x^{2} y^{\prime \prime}+x y^{\prime}+25 y=0$

Official Ans. by NTA (D)
Allen Ans. (D)
9. $\int \frac{\left(x^{2}+1\right) e^{x}}{(x+1)^{2}} d x=f(x) e^{x}+C$, Where C is a constant, then $\frac{d^{3} f}{d x^{3}}$ at $\mathrm{x}=1$ is equal to :
(A) $-\frac{3}{4}$
(B) $\frac{3}{4}$
(C) $-\frac{3}{2}$
(D) $\frac{3}{2}$

Official Ans. by NTA (B)
Allen Ans. (B)
10. The value of the integral $\int_{-2}^{2} \frac{\left|x^{3}+x\right|}{\left(e^{x|x|}+1\right)} d x$ is equal to:
(A) $5 \mathrm{e}^{2}$
(B) $3 \mathrm{e}^{-2}$
(C) 4
(D) 6

Official Ans. by NTA (D)
Allen Ans. (D)
11. If $\frac{d y}{d x}+\frac{2^{x-y}\left(2^{y}-1\right)}{2^{x}-1}=0, x, y>0, y(1)=1$, then $y(2)$ is equal to :
(A) $2+\log _{2} 3$
(B) $2+\log _{2} 2$
(C) $2-\log _{2} 3$
(D) $2-\log _{2} 3$

Official Ans. by NTA (D)
Allen Ans. (D)
12. In an isosceles triangle ABC , the vertex A is $(6,1)$ and the equation of the base $B C$ is $2 x+y=4$. Let the point B lie on the line $x+3 y=7$. If (α, β) is the centroid $\triangle A B C$, then $15(\alpha+\beta)$ is equal to :
(A) 39
(B) 41
(C) 51
(D) 63

Official Ans. by NTA (C)
Allen Ans. (C)
13. Let the eccentricity of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$, be $\frac{1}{4}$. If this ellipse passes through the point $\left(-4 \sqrt{\frac{2}{5}}, 3\right)$, then $\mathrm{a}^{2}+\mathrm{b}^{2}$ is equal to :
(A) 29
(B) 31
(C) 32
(D) 34

Official Ans. by NTA (B)
Allen Ans. (B)
14. If two straight lines whose direction cosines are given by the relations $\mathrm{l}+\mathrm{m}-\mathrm{n}=0,31^{2}+\mathrm{m}^{2}+\mathrm{cnl}=0$ are parallel, then the positive value of c is :
(A) 6
(B) 4
(C) 3
(D) 2

Official Ans. by NTA (A)
Allen Ans. (A)
15. Let $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{c}=2 \hat{i}-3 \hat{j}+2 \hat{k}$. Then the number of vectors \vec{b} such that $\vec{b} \times \vec{c}=\vec{a}$ and $|\vec{b}| \in\{1,2, \ldots \ldots, 10\}$ is :
(A) 0
(B) 1
(C) 2
(D) 3

Official Ans. by NTA (A)
Allen Ans. (A)
16. Five numbers $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}$ are randomly selected from the numbers $1,2,3, \ldots \ldots, 18$ and are arranged in the increasing order ($\mathrm{x}_{1}<\mathrm{x}_{2}<\mathrm{x}_{3}<\mathrm{x}_{4}<\mathrm{x}_{5}$). The probability that $x_{2}=7$ and $x_{4}=11$ is:
(A) $\frac{1}{136}$
(B) $\frac{1}{72}$
(C) $\frac{1}{68}$
(D) $\frac{1}{34}$

Official Ans. by NTA (C)
Allen Ans. (C)
17. Let X be a random variable having binomial distribution $B(7, p)$. If $P(X=3)=5 P(X=4)$, then the sum of the mean and the variance of X is :
(A) $\frac{105}{16}$
(B) $\frac{7}{16}$
(C) $\frac{77}{36}$
(D) $\frac{49}{16}$

Official Ans. by NTA (C)
Allen Ans. (C)
18. The value of $\cos \left(\frac{2 \pi}{7}\right)+\cos \left(\frac{4 \pi}{7}\right)+\cos \left(\frac{6 \pi}{7}\right)$ is equal to :
(A) -1
(B) $-\frac{1}{2}$
(C) $-\frac{1}{3}$
(D) $-\frac{1}{4}$

Official Ans. by NTA (B)
Allen Ans. (B)
19. $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)+\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)+\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right) \quad$ is equal to :
(A) $\frac{11 \pi}{12}$
(B) $\frac{17 \pi}{12}$
(C) $\frac{31 \pi}{12}$
(D) $-\frac{3 \pi}{4}$

Official Ans. by NTA (A)
Allen Ans. (A)
20. The Boolean expression $\left(\sim\left(p^{\wedge} q\right)\right) \vee q$ is equivalent to :
(A) $q \rightarrow\left(p^{\wedge} q\right)$
(B) $p \rightarrow q$
(C) $p \rightarrow(p \rightarrow q)$
(D) $p \rightarrow(p \vee q)$

Official Ans. by NTA (D)
Allen Ans. (D)

SECTION-B

1. Let $f: R \rightarrow R$ be a function defined $f(x)=\frac{2 e^{2 x}}{e^{2 x}+e}$. Then $f\left(\frac{1}{100}\right)+f\left(\frac{2}{100}\right)+f\left(\frac{3}{100}\right)+\ldots .+f\left(\frac{99}{100}\right)$ is equal to \qquad .

Official Ans. by NTA (99)
Allen Ans. (99)
2. If the sum of all the roots of the equation $e^{2 x}-11 e^{x}-45 e^{-x}+\frac{81}{2}=0$ is $\log _{e} \mathrm{P}$, then p is equal to \qquad .

Official Ans. by NTA (45)

Allen Ans. (45)
3. The positive value of the determinant of the matrix A, whose $\operatorname{Adj}(\operatorname{Adj}(A))=\left(\begin{array}{ccc}14 & 28 & -14 \\ -14 & 14 & 28 \\ 28 & -14 & 14\end{array}\right)$, is \qquad .
Official Ans. by NTA (14)
Allen Ans. (14)
4. The number of ways, 16 identical cubes, of which 11 are blue and rest are red, can be placed in a row so that between any two red cubes there should be at least 2 blue cubes, is \qquad .

Official Ans. by NTA (56)
Allen Ans. (56)
$]^{\circledR}$
5. If the coefficient of x^{10} in the binomial expansion of $\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}}+\frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}$ is $5^{\mathrm{k}} l$, where $l, \mathrm{k} \in \mathrm{N}$ and l is coprime to 5 , then k is equal to \qquad .

Official Ans. by NTA (5)
Allen Ans. (5)
6. Let
$A_{1}=\left\{(x, y):|x| \leq y^{2},|x|+2 y \leq 8\right\}$ and
$A_{2}=\{(x, y):|x|+|y| \leq k\}$. If $27\left(\right.$ Area $\left.A_{1}\right)=5$
(Area A_{2}), then k is equal to :
Official Ans. by NTA (6)
Allen Ans. (6)
7. If the sum of the first ten terms of the series
$\frac{1}{5}+\frac{2}{65}+\frac{3}{325}+\frac{4}{1025}+\frac{5}{2501}+\ldots$. is $\frac{m}{n}$, where m and n are co-prime numbers, then $\mathrm{m}+\mathrm{n}$ is equal to \qquad .

Official Ans. by NTA (276)
Allen Ans. (276)
8. A rectangle R with end points of the one of its dies as $(1,2)$ and $(3,6)$ is inscribed in a circle. If the equation of a diameter of the circle is $2 x-y+4=0$, then the area of R is \qquad .

Official Ans. by NTA (16)
Allen Ans. (16)
9. A rectangle R with end points of one of its sides as $(1,2)$ and $(3,6)$ is inscribed in a circle. If the equation of a diameter of the circle is $2 x-y+4=0$, then the area of R is \qquad .

Official Ans. by NTA (63)
Allen Ans. (63)
10. A circle of radius 2 unit passes through the vertex and the focus of the parabola $y^{2}=2 x$ and touches the parabola $y=\left(x-\frac{1}{4}\right)^{2}+\alpha$, where $\alpha>0$. Then $(4 \alpha-8)^{2}$ is equal to \qquad .

Official Ans. by NTA (137)
Allen Ans. (137)

