

# FINAL JEE-MAIN EXAMINATION - JUNE, 2022

(Held On Sunday 26th June, 2022)

# **TEST PAPER WITH ANSWER**

TIME: 9:00 AM to 12:00 PM

#### **MATHEMATICS**

#### **SECTION-A**

Let  $f(x) = \frac{x-1}{x+1}$ ,  $x \in \mathbb{R} - \{0, -1, 1\}$ . 1.

If  $f^{n+1}(x) = f(f^{n}(x))$  for all  $n \in N$ ,

then  $f^6(6) + f^7(7)$  is equal to:

- (A)  $\frac{7}{6}$  (B)  $-\frac{3}{2}$  (C)  $\frac{7}{12}$  (D)  $-\frac{11}{12}$

#### Official Ans. by NTA (B)

Allen Ans. (B)

- Let  $A = \left\{ z \in \mathbb{C} : \left| \frac{z+1}{z-1} < 1 \right| \right\}$ 
  - and  $B = \left\{ z \in C : arg\left(\frac{z-1}{z+1}\right) = \frac{2\pi}{3} \right\}$ .

Then  $A \cap B$  is :

(A) a portion of a circle centred at  $\left(0, -\frac{1}{\sqrt{3}}\right)$  that

lies in the second and third quadrants only

(B) a portion of a circle centred at  $\left(0, -\frac{1}{\sqrt{2}}\right)$  that

lies in the second quadrant only

- (C) an empty set
- (D) a portion of a circle of radius  $\frac{2}{\sqrt{3}}$  that lies in

the third quadrant only

Official Ans. by NTA (B)

Allen Ans. (B)

- Let A be a  $3 \times 3$  invertible matrix. If |adj(24A)| =3. adj(3adj(2A)), then  $|A|^2$  is equal to :
  - $(A) 6^6$
- (B)  $2^{12}$  (C)  $2^6$
- (D) 1

Official Ans. by NTA (C)

Allen Ans. (C)

4. The ordered pair (a, b), for which the system of linear equations

3x - 2y + z = b

5x - 8y + 9z = 3

2x + y + az = -1

has no solution, is:

(A)  $\left(3, \frac{1}{3}\right)$  (B)  $\left(-3, \frac{1}{3}\right)$ 

(C)  $\left(-3, -\frac{1}{3}\right)$  (D)  $\left(3, -\frac{1}{3}\right)$ 

Official Ans. by NTA (C)

Allen Ans. (C)

The remainder when  $(2021)^{2023}$  is divided by 7 is: 5.

- (B) 2
- (C) 5
- (D) 6

Official Ans. by NTA (C)

Allen Ans. (C)

 $\lim_{x \to \frac{1}{5}} \frac{\sin(\cos^{-1} x) - x}{1 - \tan(\cos^{-1} x)}$  is equal to:

- (A)  $\sqrt{2}$  (B)  $-\sqrt{2}$  (C)  $\frac{1}{\sqrt{2}}$  (D)  $-\frac{1}{\sqrt{2}}$

Official Ans. by NTA (D)

Allen Ans. (D)

7. Let f,  $g: R \to R$  be two real valued functions

defined as  $f(x) = \begin{cases} -|x+3| & , & x < 0 \\ e^x & , & x \ge 0 \end{cases}$  and

 $g(x) = \begin{cases} x^2 + k_1 x &, & x < 0 \\ 4x + k_2 &, & x \ge 0 \end{cases}$ , where  $k_1$  and  $k_2$  are

real constants. If (gof) is differentiable at x = 0, then (gof)(-4) + (gof)(4) is equal to:

(A)  $4(e^4 + 1)$ 

(B)  $2(2e^4 +$ 

1)

(C)  $4e^4$ 

(D)  $2(2e^4 - 1)$ 

Official Ans. by NTA (D)



#### Allen Ans. (D)

- 8. The sum of the absolute minimum and the absolute maximum values of the function  $f(x) = |3x - x^2 + 2| - x$ in the interval [-1, 2] is:
  - (A)  $\frac{\sqrt{17+3}}{2}$
- (B)  $\frac{\sqrt{17}+5}{2}$
- (C) 5

(D)  $\frac{9-\sqrt{17}}{2}$ 

# Official Ans. by NTA (A)

#### Allen Ans. (A)

- 9. Let S be the set of all the natural numbers, for which the line  $\frac{x}{a} + \frac{y}{b} = 2$  is a tangent to the curve
  - $\left(\frac{x}{a}\right)^{n} + \left(\frac{y}{b}\right)^{n} = 2$  at the point (a, b), ab  $\neq 0$ . Then:
  - (A)  $S = \phi$
- (B) n(S) = 1
- (C)  $S = \{2k : k \in N\}$ 
  - (D) S = N

# Official Ans. by NTA (D)

#### Allen Ans. (D)

- The area bounded by the curve  $y = |x^2 9|$  and the 10. line y = 3 is:
  - (A)  $4(2\sqrt{3} + \sqrt{6} 4)$  (B)  $4(4\sqrt{3} + \sqrt{6} 4)$
  - (C)  $8(4\sqrt{3}+3\sqrt{6}-9)$  (D)  $8(4\sqrt{3}+\sqrt{6}-9)$

### Official Ans. by NTA (DROP)

#### Allen Ans. (Bonus)

- 11. Let R be the point (3, 7) and let P and Q be two points on the line x + y = 5 such that PQR is an equilateral triangle. Then the area of  $\triangle PQR$  is :
- (A)  $\frac{25}{4\sqrt{3}}$  (B)  $\frac{25\sqrt{3}}{2}$  (C)  $\frac{25}{\sqrt{3}}$  (D)  $\frac{25}{2\sqrt{3}}$

### Official Ans. by NTA (D)

#### Allen Ans. (D)

- Let C be a circle passing through the points 12. A(2, -1) and B(3, 4). The line segment AB is not a diameter of C. If r is the radius of C and its centre lies on the circle  $(x - 5)^2 + (y - 1)^2 = \frac{13}{2}$ , then  $r^2$  is equal to:
  - (B)  $\frac{65}{2}$  (C)  $\frac{61}{2}$ (A) 32(D) 30

#### Official Ans. by NTA (B)

### Allen Ans. (B)

- 13. Let the normal at the point P on the parabola  $y^2 = 6x$  pass through the point (5, -8). If the tangent at P to the parabola intersects its directrix at the point Q, then the ordinate of the point Q is:
  - (A) -3 (B)  $-\frac{9}{4}$  (C)  $-\frac{5}{2}$  (D) -2

#### Official Ans. by NTA (B)

#### Allen Ans. (B)

If the two lines  $l_1: \frac{x-2}{2} = \frac{y+1}{2}$ , z = 2 and 14.

$$l_2: \frac{x-1}{1} = \frac{2y+3}{\alpha} = \frac{z+5}{2}$$
 perpendicular, then

angle between the lines and an

$$l_3: \frac{1-x}{3} = \frac{2y-1}{-4} = \frac{z}{4}$$
 is:

- (A)  $\cos^{-1}\left(\frac{29}{4}\right)$  (B)  $\sec^{-1}\left(\frac{29}{4}\right)$
- (C)  $\cos^{-1}\left(\frac{2}{29}\right)$  (D)  $\cos^{-1}\left(\frac{2}{\sqrt{29}}\right)$

#### Official Ans. by NTA (B)



#### Allen Ans. (B)

15. Let the plane 2x + 3y + z + 20 = 0 be rotated through a right angle about its line of intersection with the plane x - 3y + 5z = 8. If the mirror image of the point  $\left(2,-\frac{1}{2},2\right)$  in the rotated plane is

B(a, b, c), then:

(A) 
$$\frac{a}{8} = \frac{b}{5} = \frac{c}{-4}$$
 (B)  $\frac{a}{4} = \frac{b}{5} = \frac{c}{-2}$ 

(B) 
$$\frac{a}{4} = \frac{b}{5} = \frac{c}{-2}$$

(C) 
$$\frac{a}{8} = \frac{b}{-5} = \frac{c}{4}$$
 (D)  $\frac{a}{4} = \frac{b}{5} = \frac{c}{2}$ 

(D) 
$$\frac{a}{4} = \frac{b}{5} = \frac{c}{2}$$

# Official Ans. by NTA (A)

Allen Ans. (A)

- If  $\vec{a} \cdot \vec{b} = 1$ ,  $\vec{b} \cdot \vec{c} = 2$  and  $\vec{c} \cdot \vec{a} = 3$ , then the value **16.** of  $[\vec{a} \times (\vec{b} \times \vec{c}), \vec{b} \times (\vec{c} \times \vec{a}), \vec{c} \times (\vec{b} \times \vec{a})]$  is:
  - (A) 0
- (B)  $-6\vec{a} \cdot (\vec{b} \times \vec{c})$
- (C)  $12\vec{c} \cdot (\vec{a} \times \vec{b})$  (D)  $-12\vec{b} \cdot (\vec{c} \times \vec{a})$

# Official Ans. by NTA (A)

Allen Ans. (A)

- Let a biased coin be tossed 5 times. If the 17. probability of getting 4 heads is equal to the probability of getting 5 heads, then the probability of getting atmost two heads is:
  - (A)  $\frac{275}{6^5}$  (B)  $\frac{36}{5^4}$  (C)  $\frac{181}{5^5}$  (D)  $\frac{46}{6^4}$

#### Official Ans. by NTA (D)

Allen Ans. (D)

18. The mean of the numbers a, b, 8, 5, 10 is 6 and their variance is 6.8. If M is the mean deviation of the numbers about the mean, then 25 M is equal to: (A) 60 (B) 55(C) 50(D) 45

### Official Ans. by NTA (A)

Allen Ans. (A)

- Let  $f(x) = 2\cos^{-1}x + 4\cot^{-1}x 3x^2 2x + 10$ ,  $x \in$ 19. [-1, 1]. If [a, b] is the range of the function then 4a - b is equal to:
  - (A) 11
- (B)  $11 \pi$  (C)  $11 + \pi$  (D)  $15 \pi$

# Official Ans. by NTA (B)

Allen Ans. (B)

- Let  $\Delta$ ,  $\nabla \in \{\land,\lor\}$  be such 20.  $p \nabla q \Rightarrow ((p \Delta q) \nabla r)$  is a tautology. Then  $(p \nabla q) \Delta r$  is logically equivalent to:
  - (A)  $(p \Delta r) \vee q$
- (B)  $(p \Delta r) \wedge q$
- (C)  $(p \wedge r) \Delta q$
- (D)  $(p\nabla r) \wedge q$

# Official Ans. by NTA (A) Allen Ans. (A)

#### **SECTION-B**

The sum of the cubes of all the roots of the 1. equation  $x^4 - 3x^3 - 2x^2 + 3x + 1 = 10$  is .

# Official Ans. by NTA (36)

Allen Ans. (36)

There are ten boys B<sub>1</sub>, B<sub>2</sub>, ...., B<sub>10</sub> and five girls 2.  $G_1$ ,  $G_2$ , ....,  $G_5$  in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B<sub>1</sub> and B<sub>2</sub> together should not be the members of a group, is\_\_\_\_

# Official Ans. by NTA (1120)

Allen Ans. (1120)

Let the common tangents to the curves  $4(x^2 + y^2) =$ 3. 9 and  $y^2 = 4x$  intersect at the point Q. Let an ellipse, centered at the origin O, has lengths of semi-minor and semi-major axes equal to OQ and 6, respectively. If e and l respectively denote the eccentricity and the length of the latus rectum of this ellipse, then  $\frac{l}{a^2}$  is equal to\_\_\_\_\_.

#### Official Ans. by NTA (4)

Allen Ans. (4)

Let  $f(x) = \max\{|x + 1|, |x + 2|, ..., |x + 5|\}$ . Then 4.  $\int f(x)dx \text{ is equal to } \underline{\hspace{1cm}}.$ 

#### Official Ans. by NTA (21)

Allen Ans. (21)

5. Let the solution curve y = y(x) of the differential equation  $(4 + x^2)dy - 2x(x^2 + 3y + 4)dx = 0$  pass through the origin. Then y(2) is equal to\_\_\_\_\_.

#### Official Ans. by NTA (12)

Allen Ans. (12)

If  $\sin^2(10^\circ)\sin(20^\circ)\sin(40^\circ)\sin(50^\circ)\sin(70^\circ) = \alpha$ 6.  $\frac{1}{16}\sin(10^{\circ})$ , then  $16 + \alpha^{-1}$  is equal to \_\_\_\_\_.



### Official Ans. by NTA (80)

Allen Ans. (80)

7. Let  $A = \{n \in N : H.C.F. (n, 45) = 1\}$  and

Let  $B = \{2k : k \in \{1, 2, ..., 100\}\}$ . Then the sum of

all the elements of  $A \cap B$  is \_\_\_\_\_.

Official Ans. by NTA (5264)

Allen Ans. (5264)

**8.** The value of the integral

$$\frac{48}{\pi^4} \int_0^{\pi} \left( \frac{3\pi x^2}{2} - x^3 \right) \frac{\sin x}{1 + \cos^2 x} dx \quad \text{is equal to}$$

Official Ans. by NTA (6)

Allen Ans. (6)

9. Let  $A = \sum_{i=1}^{10} \sum_{j=1}^{10} \min\{i, j\}$  and

$$B = \sum_{i=1}^{10} \sum_{j=1}^{10} max\{i, j\}$$
. Then A + B is equal to

Official Ans. by NTA (1100)

Allen Ans. (1100)

10. Let  $S = (0, 2\pi) - \left\{ \frac{\pi}{2}, \frac{3\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4} \right\}$ . Let y = y(x),

 $x \in S$ , be the solution curve of the differential

equation 
$$\frac{dy}{dx} = \frac{1}{1 + \sin 2x}$$
,  $y\left(\frac{\pi}{4}\right) = \frac{1}{2}$ . if the sum

of abscissas of all the points of intersection of the

curve 
$$y = y(x)$$
 with the curve  $y = \sqrt{2} \sin x$  is  $\frac{k\pi}{12}$ ,

then k is equal to \_\_\_\_\_.

Official Ans. by NTA (42)

Allen Ans. (42)