

FINAL JEE-MAIN EXAMINATION - JULY, 2022

(Held On Thursday 28th July, 2022)

TIME: 9:00 AM to 12:00 NOON

CHEMISTRY

- 1. Identify the incorrect statement from the following.
 - (A) A circular path around the nucleus in which an electron moves is proposed as Bohr's orbit.
 - (B) An orbital is the one electron wave function (Ψ) in an atom.
 - (C) The existence of Bohr's orbits is supported by hydrogen spectrum.
 - (D) Atomic orbital is characterised by the quantum numbers n and *l* only

Official Ans. by NTA (D)

Allen Ans. (D)

- **2.** Which of the following relation is not correct?
 - (A) $\Delta H = \Delta U P\Delta V$
- (B) $\Delta U = q + W$
- (C) $\Delta S_{\text{sys}} + \Delta S_{\text{surr}} \ge 0$
- (D) $\Delta G = \Delta H T\Delta S$

Official Ans. by NTA (A)

Allen Ans. (A)

3. Match List-I with List-II.

		1	
	List-I		List-II
(A)	$Cd(s) + 2Ni(OH)_3(s) \rightarrow$	(I)	Primary
	$CdO(s) + 2Ni(OH)_2(s) +$		battery
	$H_2O(l)$		
(B)	$Zn(Hg) + HgO(s) \rightarrow$	(II)	Discharging of
	ZnO(s) + Hg(l)		secondary
			battery
(C)	$2\text{PbSO}_4(s) + 2\text{H}_2\text{O}(l) \rightarrow$	(III)	Fuel cell
	$Pb(s) + PbO_2(s) +$		
	$2H_2SO_4(aq)$		
(D)	$2H_2(g) + O_2(g) \rightarrow$	(IV)	Charging of
	$2H_2O(l)$		secondary
			battery

Choose the correct answer from the options given below:

$$(A)(A) - (I), (B) - (II), (C) - (III), (D) - (IV)$$

$$\left(B\right)\left(A\right)-\left(IV\right),\left(B\right)-\left(I\right),\left(C\right)-\left(II\right),\left(D\right)-\left(III\right)$$

$$(C)(A) - (II), (B) - (I), (C) - (IV), (D) - (III)$$

$$(D)(A) - (II), (B) - (I), (C) - (III), (D) - (IV)$$

Official Ans. by NTA (C)

Allen Ans. (C)

TEST PAPER WITH ANSWER

4. Match List-I with List-II.

	List-I		List-II
	Reaction		Catalyst
(A)	$4NH_3(g) + 5O_2(g) \rightarrow$	(I)	NO(g)
	$4NO(g) + 6H_2O(g)$		
(B)	$N_2(g) + 3H_2(g) \rightarrow$	(II)	$H_2SO_4(l)$
	2NH ₃ (g)		
(C)	$C_{12}H_{22}O_{11}(aq) + H_2O(l)$	(III)	Pt(s)
	\rightarrow C ₆ H ₁₂ O ₆ (Glucose) +		
	C ₆ H ₁₂ O ₆ (Fructose)		
(D)	$2SO_2(g) + O_2(g) \rightarrow$	(IV)	Fe(s)
	2SO ₃ (g)		

Choose the correct answer from the options given below:

$$(A)(A) - (II), (B) - (III), (C) - (I), (D) - (IV)$$

$$(B)(A) - (III), (B) - (II), (C) - (I), (D) - (IV)$$

$$(C)(A) - (III), (B) - (IV), (C) - (II), (D) - (I)$$

$$(D)(A) - (III), (B) - (II), (C) - (IV), (D) - (I)$$

Official Ans. by NTA (C)

Allen Ans. (C)

- 5. In which of the following pairs, electron gain enthalpies of constituent elements are nearly the same or identical?
 - (A) Rb and Cs
- (B) Na and K
- (C) Ar and Kr
- (D) I and At

Choose the correct answer from the options given below:

- (A) (A) and (B) only
- (B) (B) and (C) only
- (C) (A) and (C) only
- (D) (C) and (D) only

Official Ans. by NTA (C)

Allen Ans. (C)

6. Which of the reaction is suitable for concentrating ore by leaching process ?

(A)
$$2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$$

(B)
$$Fe_3O_4 + CO \rightarrow 3FeO + CO_2$$

(C)
$$Al_2O_3 + 2NaOH + 3H_2O \rightarrow 2Na[Al(OH)_4]$$

(D)
$$Al_2O_3 + 6MgO + 4Al$$

Official Ans. by NTA (C)

Allen Ans. (C)

- 7. The metal salts formed during softening of hardwater using Clark's method are :
 - (A) Ca(OH)₂ and Mg(OH)₂
 - (B) CaCO₃ and Mg(OH)₂
 - (C) Ca(OH)₂ and MgCO₃
 - (D) CaCO₃ and MgCO₃

Official Ans. by NTA (B)

Allen Ans. (B)

- **8.** Which of the following statement is incorrect?
 - (A) Low solubility of LiF in water is due to its small hydration enthalpy.
 - (B) KO₂ is paramagnetic.
 - (C) Solution of sodium in liquid ammonia is conducting in nature.
 - (D) Sodium metal has higher density than potassium metal

Official Ans. by NTA (A)

Allen Ans. (A)

9. Match List-I with List-II, match the gas evolved during each reaction.

	List-I		List-II
(A)	$(NH_4)_2Cr_2O_7 \xrightarrow{\Delta}$	(I)	H ₂
(B)	$\text{KMnO}_4 + \text{HCl} \rightarrow$	(II)	N_2
(C)	$Al + NaOH + H_2O \rightarrow$	(III)	O_2
(D)	$NaNO_3 \xrightarrow{\Delta}$	(IV)	Cl ₂

Choose the correct answer from the options given below:

$$(A)(A) - (II), (B) - (III), (C) - (I), (D) - (IV)$$

$$(B)(A) - (III), (B) - (I), (C) - (IV), (D) - (II)$$

$$(C)(A) - (II), (B) - (IV), (C) - (I), (D) - (III)$$

$$(D)(A) - (III), (B) - (IV), (C) - (I), (D) - (II)$$

Official Ans. by NTA (C)

Allen Ans. (C)

- **10.** Which of the following has least tendency to liberate H₂ from mineral acids ?
 - (A) Cu

(B) Mn

(C) Ni

(D) Zn

Official Ans. by NTA (A)

Allen Ans. (A)

11. Given below are two statements :

Statement I : In polluted water values of both dissolved oxygen and BOD are very low.

Statement II: Eutrophication results in decrease in the amount of dissolved oxygen.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (A) Both Statement I and Statement II are true
- (B) Both Statement I and Statement II are false
- (C) Statement I is true but Statement II is false
- (D) Statement I is false but Statement II is true

Official Ans. by NTA (D)

Allen Ans. (D)

12. Match List-I with List-II.

	List-I		List-II
(A)		(I)	Spiro compound
(B)	\rightarrow	(II)	Aromatic compound
(C)	X	(III)	Non-planar Heterocyclic compound
(D)		(IV)	Bicyclo compound

Choose the correct answer from the options given below:

$$(A)(A) - (II), (B) - (I), (C) - (IV), (D) - (III)$$

$$(B)(A) - (IV), (B) - (III), (C) - (I), (D) - (II)$$

$$(C)(A) - (III), (B) - (IV), (C) - (I), (D) - (II)$$

$$(D)(A) - (IV), (B) - (III), (C) - (II), (D) - (I)$$

Official Ans. by NTA (C)

Allen Ans. (C)

13. Choose the correct option for the following reactions.

$$B \xleftarrow{\text{(BH_3)}_2}_{\text{H}_2\text{O}_2/\text{OH}^\Theta} \text{H}_3\text{C} - \overset{\text{CH}_3}{\text{C}} - \overset{\text{Hg(OAc)}_2, \text{H}_2\text{O}}{\text{NaBH}_4} \rightarrow \text{A}$$

$$\overset{\text{CH}_3}{\text{CH}_3}$$

- (A) 'A' and 'B' are both Markovnikov addition products.
- (B) 'A' is Markovnikov product and 'B' is anti-Markovnikov product.
- (C) 'A' and 'B' are both anti-Markovnikov products.
- (D) 'B' is Markovnikov and 'A' is anti-Markovnikov product.

Official Ans. by NTA (B)

Allen Ans. (B)

14. Among the following marked proton of which compound shows lowest pK_a value?

$$(A) \ H_2C-COOH \qquad (B) \ H_2C-C-CH_3$$

$$(C) \ CH_3 \qquad (D) \ OH$$

Official Ans. by NTA (C)

Allen Ans. (C)

15. Identify the major product A and B for the below given reaction sequence.

Official Ans. by NTA (B) Allen Ans. (B)

16. Identify the correct statement for the below given transformation.

$$CH_3 - CH_2 - CH_2 - CH - CH_3 \xrightarrow{C_2H_5ONa} A + B \\ \oplus N(CH_3)_3 \xrightarrow{C_2H_5OH (Major)} A + B$$

(A) A -
$$CH_3CH_2CH = CH-CH_3$$
,
B - $CH_3CH_2CH_2CH = CH_2$,
Saytzeff products

(B) A -
$$CH_3CH_2CH = CH-CH_3$$
,
B - $CH_3CH_2CH_2CH = CH_2$,
Hafmann products

(C) A -
$$CH_3CH_2CH_2CH = CH_2$$
,
B - $CH_3CH_2CH = CHCH_3$,
Hofmann products

(D) A -
$$CH_3CH_2CH_2CH = CH_2$$
,
B - $CH_3CH_2CH = CHCH_3$,
Saytzeff products

Official Ans. by NTA (C)

Allen Ans. (C)

- **17.** Terylene polymer is obtained by condensation of :
 - (A) Ethane-1, 2-diol and Benzene-1, 3 dicarboxylic acid
 - (B) Propane-1, 2-diol and Benzene-1, 4 dicarboxylic acid
 - (C) Ethane-1, 2-diol and Benzene-1, 4 dicarboxylic acid
 - (D) Ethane-1, 2-diol and Benzene-1, 2 dicarboxylic acid

Official Ans. by NTA (C)

Allen Ans. (C)

18. For the below given cyclic hemiacetal (X), the correct pyranose structure is :

Official Ans. by NTA (D) Allen Ans. (D)

- **19.** Statements about Enzyme Inhibitor Drugs are given below:
 - (A) There are Competitive and Non-competitive inhibitor drugs.
 - (B) These can bind at the active sites and allosteric sites.
 - (C) Competitive Drugs are allosteric site blocking drugs.
 - (D) Non-competitive Drugs are active site blocking drugs.

Choose the correct answer from the options given below:

- (A)(A), (D) only
- (B) (A), (C) only
- (C)(A),(B) only
- (D) (A), (B), (C) only

Official Ans. by NTA (C)

Allen Ans. (C)

Final JEE-Main Exam July 2022/28-07-2022/Morning Session

- 20. For kinetic study of the reaction of iodide ion with H_2O_2 at room temperature :
 - (A) Always use freshly prepared starch solution.
 - (B) Always keep the concentration of sodium thiosulphate solution less than that of KI solution.
 - (C) Record the time immediately after the appearance of blue colour.
 - (D) Record the time immediately before the appearance of blue colour.
 - (E) Always keep the concentration of sodium thiosulphate solution more than that of KI solution.

Choose the correct answer from the options given below:

- (A)(A), (B), (C) only
- (B)(A),(D),(E) only
- (C)(D), (E) only
- (D)(A), (B), (E) only

Official Ans. by NTA (A)

Allen Ans. (A)

SECTION-B

1. In the given reaction,

$$X + Y + 3Z \rightleftharpoons XYZ_3$$

if one mole of each of X and Y with 0.05 mol of Z gives compound XYZ₃. (Given : Atomic masses of X, Y and Z are 10, 20 and 30 amu, respectively). The yield of XYZ_3 is _____ g.

(Nearest integer)

Official Ans. by NTA (2)

Allen Ans. (2)

2. An element M crystallises in a body centred cubic unit cell with a cell edge of 300 pm. The density of the element is 6.0 g cm⁻³. The number of atoms present in 180 g of the element is $__ \times 10^{23}$. (Nearest integer)

Official Ans. by NTA (22)

Allen Ans. (22)

The number of paramagnetic species among the 3. following is _____.

 B_2 , Li_2 , C_2 , C_2^- , O_2^{2-} , O_2^+ and He_2^+

Official Ans. by NTA (4)

Allen Ans. (4)

150 g of acetic acid was contaminated with 10.2 g 4. ascorbic acid (C₆H₈O₆) to lower down its freezing point by $(x \times 10^{-1})^{\circ}$ C. The value of x is . (Nearest integer) [Given $K_f = 3.9 \text{ K kg mol}^{-1}$;

Molar mass of ascorbic acid = 176 g mol^{-1}]

Official Ans. by NTA (15)

Allen Ans. (15)

 K_a for butyric acid (C₃H₇COOH) is 2×10^{-5} . The 5. pH of 0.2 M solution of butyric acid is $__ \times 10^{-1}$. (Nearest integer) [Given log 2 = 0.30]

Official Ans. by NTA (27)

Allen Ans. (27)

For the given first order reaction 6.

 $A \rightarrow B$

the half life of the reaction is 0.3010 min. The ratio of the initial concentration of reactant to the concentration of reactant at time 2.0 min will be equal to . (Nearest integer)

Official Ans. by NTA (100)

Allen Ans. (100)

Final JEE-Main Exam July 2022/28-07-2022/Morning Session

7. The number of interhalogens from the following having square pyramidal structure is:

ClF₃, IF₇, BrF₅, BrF₃, I₂Cl₆, IF₅, ClF, ClF₅

Official Ans. by NTA (3)

Allen Ans. (3)

8. The disproportionation of $MnO_4^{2^-}$ in acidic medium resulted in the formation of two manganese compounds A and B. If the oxidation state of Mn in B is smaller than that of A, then the spin-only magnetic moment (μ) value of B in BM is ______. (Nearest integer)

Official Ans. by NTA (4)

Allen Ans. (4)

9. Total number of relatively more stable isomer(s) possible for octahedral complex [Cu(en)₂(SCN)₂] will be ______.
Official Ans. by NTA (3)

Allen Ans. (3)

10. On complete combustion of 0.492 g of an organic compound containing C, H and O, 0.7938 g of CO_2 and 0.4428 g of H_2O was produced. The % composition of oxygen in the compound is _____.

Official Ans. by NTA (46)

Allen Ans. (46)