FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Wednesday 31st January, 2024)
TIME : 3:00 PM to 6:00 PM

MATHEMATICS

SECTION-A

1. The number of ways in which 21 identical apples can be distributed among three children such that each child gets at least 2 apples, is
(1) 406
(2) 130
(3) 142
(4) 136

Ans. (4)
2. Let $\mathrm{A}(\mathrm{a}, \mathrm{b}), \mathrm{B}(3,4)$ and $(-6,-8)$ respectively denote the centroid, circumcentre and orthocentre of a triangle. Then, the distance of the point $\mathrm{P}(2 \mathrm{a}+$ $3,7 b+5$) from the line $2 x+3 y-4=0$ measured parallel to the line $\mathrm{x}-2 \mathrm{y}-1=0$ is
(1) $\frac{15 \sqrt{5}}{7}$
(2) $\frac{17 \sqrt{5}}{6}$
(3) $\frac{17 \sqrt{5}}{7}$
(4) $\frac{\sqrt{5}}{17}$

Ans. (3)
3. Let z_{1} and z_{2} be two complex number such that z_{1} $+\mathrm{z}_{2}=5$ and $\mathrm{z}_{1}^{3}+\mathrm{z}_{2}^{3}=20+15 \mathrm{i}$. Then $\left|\mathrm{z}_{1}^{4}+\mathrm{z}_{2}^{4}\right|$ equals-
(1) $30 \sqrt{3}$
(2) 75
(3) $15 \sqrt{15}$
(4) $25 \sqrt{3}$

Ans. (2)
4. Let a variable line passing through the centre of the circle $x^{2}+y^{2}-16 x-4 y=0$, meet the positive coordinate axes at the point A and B . Then the minimum value of $\mathrm{OA}+\mathrm{OB}$, where O is the origin, is equal to
(1) 12
(2) 18
(3) 20
(4) 24

Ans. (2)

TEST PAPER WITH ANSWER

5. Let $\mathrm{f}, \mathrm{g}:(0, \infty) \rightarrow \mathrm{R}$ be two functions defined by $f(x)=\int_{-x}^{x}\left(|t|-t^{2}\right) d t$ and $\quad g(x)=\int_{0}^{x^{2}} t^{1 / 2} e^{-t} d t$. Then the value of $\left(f\left(\sqrt{\log _{e} 9}\right)+g\left(\sqrt{\log _{e} 9}\right)\right)$ is equal to
(1) 6
(2) 9
(3) 8
(4) 10

Ans. (3)
6. Let (α, β, γ) be mirror image of the point $(2,3,5)$ in the line $\frac{x-1}{2}-\frac{y-2}{3}-\frac{z-3}{4}$. Then $2 \alpha+3 \beta+4 \gamma$ is equal to
(1) 32
(2) 33
(3) 31
(4) 34

Ans. (2)
7. Let P be a parabola with vertex $(2,3)$ and directrix $2 x+y=6$. Let an ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$ of eccentricity $\frac{1}{\sqrt{2}}$ pass through the focus of the parabola P. Then the square of the length of the latus rectum of E, is
(1) $\frac{385}{8}$
(2) $\frac{347}{8}$
(3) $\frac{512}{25}$
(4) $\frac{656}{25}$

Ans. (4)
8. The temperature $\mathrm{T}(\mathrm{t})$ of a body at time $\mathrm{t}=0$ is 160° F and it decreases continuously as per the differential equation $\frac{\mathrm{dT}}{\mathrm{dt}}=-\mathrm{K}(\mathrm{T}-80)$, where K is positive constant. If $\mathrm{T}(15)=120^{\circ} \mathrm{F}$, then $\mathrm{T}(45)$ is equal to
(1) $85^{\circ} \mathrm{F}$
(2) $95^{\circ} \mathrm{F}$
(3) $90^{\circ} \mathrm{F}$
(4) $80^{\circ} \mathrm{F}$

Ans. (3)
9. Let $2^{\text {nd }}, 8^{\text {th }}, 44^{\text {th }}$, terms of a non-constant A.P. be respectively the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ terms of G.P. If the first term of A.P. is 1 then the sum of first 20 terms terms is equal to-
(1) 980
(2) 960
(3) 990
(4) 970

Ans. (4)
10. Let $\mathrm{f}: \rightarrow \mathrm{R} \rightarrow(0, \infty)$ be strictly increasing function such that $\lim _{x \rightarrow \infty} \frac{f(7 x)}{f(x)}=1$. Then, the value of $\lim _{x \rightarrow \infty}\left[\frac{f(5 x)}{f(x)}-1\right]$ is equal to
(1) 4
(2) 0
(3) $7 / 5$
(4) 1

Ans. (2)
11. The area of the region enclosed by the parabola $y=$ $4 x-x^{2}$ and $3 y=(x-4)^{2}$ is equal to
(1) $\frac{32}{9}$
(2) 4
(3) 6
(4) $\frac{14}{3}$

Ans. (3)
12. Let the mean and the variance of 6 observation a, b, 68, 44, 48, 60 be 55 and 194, respectively if a $>$ b, then $a+3 b$ is
(1) 200
(2) 190
(3) 180
(4) 210

Ans. (3)
13. If the function $\mathrm{f}:(-\infty,-1] \rightarrow(\mathrm{a}, \mathrm{b}]$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}^{3}-3 \mathrm{x}+1}$ is one-one and onto, then the distance of the point $\mathrm{P}(2 \mathrm{~b}+4, \mathrm{a}+2)$ from the line $x+e^{-3} y=4$ is :
(1) $2 \sqrt{1+e^{6}}$
(2) $4 \sqrt{1+e^{6}}$
(3) $3 \sqrt{1+e^{6}}$
(4) $\sqrt{1+\mathrm{e}^{6}}$

Ans. (1)
14. Consider the function $f:(0, \infty) \rightarrow R$ defined by $f(x)=e^{-\left|\log _{e} x\right|}$. If m and n be respectively the number of points at which f is not continuous and f is not differentiable, then $m+n$ is
(1) 0
(2) 3
(3) 1
(4) 2

Ans. (3)
15. The number of solutions, of the equation $\mathrm{e}^{\sin \mathrm{x}}-2 \mathrm{e}^{-\sin \mathrm{x}}=2$ is
(1) 2
(2) more than 2
(3) 1
(4) 0

Ans. (4)
16. If $\mathrm{a}=\sin ^{-1}(\sin (5))$ and $\mathrm{b}=\cos ^{-1}(\cos (5))$, then $\mathrm{a}^{2}+\mathrm{b}^{2}$ is equal to
(1) $4 \pi^{2}+25$
(2) $8 \pi^{2}-40 \pi+50$
(3) $4 \pi^{2}-20 \pi+50$
(4) 25

Ans. (2)
17. If for some $\mathrm{m}, \mathrm{n} ;{ }^{6} \mathrm{C}_{\mathrm{m}}+2\left({ }^{6} \mathrm{C}_{\mathrm{m}+1}\right)+{ }^{6} \mathrm{C}_{\mathrm{m}+2}>{ }^{8} \mathrm{C}_{3}$ and ${ }^{n-1} P_{3}:{ }^{n} P_{4}=1: 8$, then ${ }^{n} P_{m+1}+{ }^{n+1} C_{m}$ is equal to
(1) 380
(2) 376
(3) 384
(4) 372

Ans. (4)
18. A coin is based so that a head is twice as likely to occur as a tail. If the coin is tossed 3 times, then the probability of getting two tails and one head is-
(1) $\frac{2}{9}$
(2) $\frac{1}{9}$
(3) $\frac{2}{27}$
(4) $\frac{1}{27}$

Ans. (1)
19. Let A be a 3×3 real matrix such that
$\mathrm{A}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=2\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \mathrm{A}\left(\begin{array}{l}-1 \\ 0 \\ 1\end{array}\right)=4\left(\begin{array}{l}-1 \\ 0 \\ 1\end{array}\right), \mathrm{A}\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=2\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.
Then, the system $(A-3 I)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ has
(1) unique solution
(2) exactly two solutions
(3) no solution
(4) infinitely many solutions

Ans. (1)
20. The shortest distance between lines L_{1} and L_{2}, where $L_{1} \frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+4}{2}$ and L_{2} is the line passing through the points $A(-4,4,3) \cdot B(-1,6,3)$ and perpendicular to the line $\frac{x-3}{-2}=\frac{y}{3}=\frac{z-1}{1}$, is
(1) $\frac{121}{\sqrt{221}}$
(2) $\frac{24}{\sqrt{117}}$
(3) $\frac{141}{\sqrt{221}}$
(4) $\frac{42}{\sqrt{117}}$

Ans. (3)

SECTION-B

21. $\left|\frac{120}{\pi^{3}} \int_{0}^{\pi} \frac{x^{2} \sin \mathrm{x} \cos \mathrm{x}}{\sin ^{4} \mathrm{x}+\cos ^{4} \mathrm{x}} \mathrm{dx}\right|$ is equal to \qquad .

Ans. (15)
22. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the length of three sides of a triangle satisfying the condition $\left(a^{2}+b^{2}\right) x^{2}-2 b(a+c) \cdot x+$ $\left(b^{2}+c^{2}\right)=0$. If the set of all possible values of x is the interval (α, β), then $12\left(\alpha^{2}+\beta^{2}\right)$ is equal to
\qquad .

Ans. (36)
23. Let $\mathrm{A}(-2,-1), \mathrm{B}(1,0), \mathrm{C}(\alpha, \beta)$ and $\mathrm{D}(\gamma, \delta)$ be the vertices of a parallelogram $A B C D$. If the point C lies on $2 x-y=5$ and the point D lies on $3 x-2 y$ $=6$, then the value of $|\alpha+\beta+\gamma+\delta|$ is equal to
\qquad .

Ans. (32)
24. Let the coefficient of x^{r} in the expansion of

$$
\begin{aligned}
& (x+3)^{n-1}+(x+3)^{n-2}(x+2)+ \\
& (x+3)^{n-3}(x+2)^{2}+\ldots \ldots .+(x+2)^{n-1}
\end{aligned}
$$

be α_{r}. If $\sum_{\mathrm{r}=0}^{\mathrm{n}} \alpha_{\mathrm{r}}=\beta^{\mathrm{n}}-\gamma^{\mathrm{n}}, \beta, \gamma \in \mathrm{N}$, then the value of $\beta^{2}+\gamma^{2}$ equals \qquad .

Ans. (25)
25. Let A be a 3×3 matrix and $\operatorname{det}(A)=2$. If

Then the remainder when n is divided by 9 is equal to \qquad .

Ans. (7)
26. Let $\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}+2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\overrightarrow{\mathrm{c}}$ be a vector such that $(\vec{a}+\vec{b}) \times \vec{c}=2(\vec{a} \times \vec{b})+24 \hat{j}-6 \hat{k}$ and $(\vec{a}-\vec{b}+\hat{i})(\vec{a}-\vec{b}+\hat{i}) \cdot \vec{c}=-3$. Then $|\vec{c}|^{2}$ is equal to \qquad .

Ans. (38)
27. If $\lim _{x \rightarrow 0} \frac{a x^{2} e^{x}-b \log _{e}(1+x)+c x e^{-x}}{x^{2} \sin x}$, then $16\left(a^{2}+\right.$ $b^{2}+c^{2}$) is equal to \qquad .

Ans. (81)
28. A line passes through $\mathrm{A}(4,-6,-2)$ and $\mathrm{B}(16,-2,4)$. The point $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non-negative integers, on the line $A B$ lies at a distance of 21 units, from the point A . The distance between the points $P(a, b, c)$ and $Q(4,-12,3)$ is equal to
\qquad .

Ans. (22)
29. Let $y=y(x)$ be the solution of the differential equation

$$
\begin{aligned}
& \sec ^{2} x d x+\left(e^{2 y} \tan ^{2} x+\tan x\right) d y=0 \\
& 0<x<\frac{\pi}{2}, y\left(\frac{\pi}{4}\right)=0 . \text { If } y\left(\frac{\pi}{6}\right)=\alpha,
\end{aligned}
$$

Then $\mathrm{e}^{8 \alpha}$ is equal to \qquad .

Ans. (9)
30. Let $\mathrm{A}=\{1,2,3, \ldots \ldots \ldots 100\}$. Let R be a relation on A defined by $(x, y) \in R$ if and only if $2 x=3 y$. Let R_{1} be a symmetric relation on A such that $\mathrm{R} \subset \mathrm{R}_{1}$ and the number of elements in R_{1} is n . Then, the minimum value of n is \qquad .

Ans. (66)

ALIEX AIPOWERED APP

SCALE UP YOUR SCORE!

 with ALLIN SCORE TEST PAPERS

Total 10 Full syllabus papers

Paper Analysis of JEE Advanced 2023

2By ALLEX Subject Experts

(1)
 Answer key

 with Solutions
Scan QR to Buy

ALLEX:
 SCORE
 TEST PAPERS with SOLUTIONS

Key Features:
Full Syllabus Papers
Including Answer key
JEE (Adv.) 2023 Paper Analysis
Prepared by ALLEN Expert Faculties

