FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Tuesday 30th January, 2024)

TIME: 9:00 AM to 12:00 NOON

MATHEMATICS

SECTION-A

- 1. A line passing through the point A(9, 0) makes an angle of 30° with the positive direction of x-axis. If this line is rotated about A through an angle of 15° in the clockwise direction, then its equation in the new position is

 - (1) $\frac{y}{\sqrt{3}-2} + x = 9$ (2) $\frac{x}{\sqrt{3}-2} + y = 9$
 - (3) $\frac{x}{\sqrt{3}+2} + y = 9$ (4) $\frac{y}{\sqrt{3}+2} + x = 9$

Ans. (1)

- 2. Let S_a denote the sum of first n terms an arithmetic progression. If $S_{20} = 790$ and $S_{10} = 145$, then S_{15} – S_5 is:
 - (1)395
- (2)390
- (3)405
- (4)410

Ans. (1)

- If z = x + iy, $xy \ne 0$, satisfies the equation 3. $z^2 + i \overline{z} = 0$, then $|z^2|$ is equal to:
 - (1)9

(3)4

 $(4) \frac{1}{4}$

Ans. (2)

- Let $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ be 4. two vectors such that $|\vec{a}| = 1$; $\vec{a} \cdot \vec{b} = 2$ and $|\vec{b}| = 4$. If $\vec{c} = 2(\vec{a} \times \vec{b}) - 3\vec{b}$, then the angle between \vec{b} and \vec{c} is equal to:
 - $(1) \cos^{-1}\left(\frac{2}{\sqrt{3}}\right)$
 - (2) $\cos^{-1}\left(-\frac{1}{\sqrt{3}}\right)$
 - (3) $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
 - (4) $\cos^{-1}\left(\frac{2}{3}\right)$

Ans. (3)

TEST PAPER WITH ANSWER

- 5. The maximum area of a triangle whose one vertex is at (0, 0) and the other two vertices lie on the curve $y = -2x^2 + 54$ at points (x, y) and (-x, y)where y > 0 is:
 - (1)88
 - (2)122
 - (3)92
 - (4) 108

Ans. (4)

- The value of $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{n^3}{(n^2+k^2)(n^2+3k^2)}$ is: 6.
 - $(1) \frac{\left(2\sqrt{3}+3\right)\pi}{24}$
 - (2) $\frac{13\pi}{8(4\sqrt{3}+3)}$
 - (3) $\frac{13(2\sqrt{3}-3)\pi}{9}$
 - (4) $\frac{\pi}{8(2\sqrt{3}+3)}$

Ans. (2)

- Let $g : R \rightarrow R$ be a non constant twice 7. differentiable such that $g'\left(\frac{1}{2}\right) = g'\left(\frac{3}{2}\right)$. If a real defined function valued f is $f(x) = \frac{1}{2} [g(x) + g(2-x)]$, then
 - (1) f''(x) = 0 for at least two x in (0, 2)
 - (2) f''(x) = 0 for exactly one x in (0, 1)
 - (3) f''(x) = 0 for no x in (0, 1)
 - (4) $f'(\frac{3}{2}) + f'(\frac{1}{2}) = 1$

Ans. (1)

ALLEN AI POWERED APP

Free Crash Courses for Class 10th | NEET | JEE

- The area (in square units) of the region bounded by 8. the parabola $y^2 = 4(x - 2)$ and the line y = 2x - 8
 - (1)8
 - (2)9
 - (3)6
 - (4)7

Ans. (2)

- 9. Let y = y(x) be the solution of the differential equation sec x dy + $\{2(1-x) \tan x + x(2-x)\}$ dx = 0 such that y(0) = 2. Then y(2) is equal to :
 - (1) 2
 - $(2) 2\{1 \sin(2)\}$
 - $(3) 2\{\sin(2) + 1\}$
 - (4) 1

Ans. (1)

- Let (α, β, γ) be the foot of perpendicular from the 10. point (1, 2, 3) on the line $\frac{x+3}{5} = \frac{y-1}{2} = \frac{z+4}{3}$. then $19(\alpha + \beta + \gamma)$ is equal to:
 - (1) 102
 - (2) 101
 - (3)99
 - (4) 100

Ans. (2)

- Two integers x and y are chosen with replacement 11. from the set $\{0, 1, 2, 3, \dots, 10\}$. Then the probability that |x-y| > 5 is:
 - $(1) \frac{30}{121}$
 - (2) $\frac{62}{121}$
 - $(3) \frac{60}{121}$
 - $(4) \frac{31}{121}$

Ans. (1)

domain 12. function $f(x) = \cos^{-1}\left(\frac{2-|x|}{4}\right) + \left(\log_e(3-x)\right)^{-1}$

 $[-\alpha,\beta)-\{y\}$, then $\alpha+\beta+\gamma$ is equal to :

- (1) 12
- (2)9
- (3) 11
- (4) 8

Ans. (3)

- Consider the system of linear equation x + y + z =13. 4μ , $x + 2y + 2\lambda z = 10\mu$, $x + 3y + 4\lambda^2 z = \mu^2 + 15$, where λ , $\mu \in \mathbb{R}$. Which one of the following statements is NOT correct?
 - (1) The system has unique solution if $\lambda \neq \frac{1}{2}$ and $\mu \neq 1, 15$
 - (2) The system is inconsistent if $\lambda = \frac{1}{2}$ and $\mu \neq 1$
 - (3) The system has infinite number of solutions if $\lambda = \frac{1}{2}$ and $\mu = 15$
 - (4) The system is consistent if $\lambda \neq \frac{1}{2}$

Ans. (2)

- the circles $(x+1)^2 + (y+2)^2 = r^2$ 14. If $x^2 + y^2 - 4x - 4y + 4 = 0$ intersect at exactly two distinct points, then
 - (1) 5 < r < 9
 - (2) 0 < r < 7
 - (3) 3 < r < 7
 - $(4) \frac{1}{2} < r < 7$

Ans. (3)

- If the length of the minor axis of ellipse is equal to 15. half of the distance between the foci, then the eccentricity of the ellipse is:

 - (3) $\frac{1}{\sqrt{3}}$
 - $(4) \frac{2}{\sqrt{5}}$

Ans. (4)

16. Let M denote the median of the following frequency distribution.

Class	0-4	4-8	8-12	12-16	16-20
Frequency	3	9	10	8	6

Then 20 M is equal to:

- (1)416
- (2) 104
- (3)52
- (4)208

Ans. (4)

2

Final JEE-Main Exam January, 2024/30-01-2024/Morning Session

17. If
$$f(x) = \begin{vmatrix} 2\cos^4 x & 2\sin^4 x & 3+\sin^2 2x \\ 3+2\cos^4 x & 2\sin^4 x & \sin^2 2x \\ 2\cos^4 x & 3+2\sin^4 x & \sin^2 2x \end{vmatrix}$$
 then

 $\frac{1}{5}f'(0)$ is equal to _____

(1) 0

- (2) 1
- (3) 2
- (4) 6

Ans. (1)

- 18. Let A (2, 3, 5) and C(-3, 4, -2) be opposite vertices of a parallelogram ABCD if the diagonal $\overrightarrow{BD} = \hat{i} + 2\hat{j} + 3\hat{k}$ then the area of the parallelogram is equal to
 - $(1) \frac{1}{2} \sqrt{410}$
- (2) $\frac{1}{2}\sqrt{474}$
- $(3) \frac{1}{2} \sqrt{586}$
- $(4) \frac{1}{2} \sqrt{306}$

Ans. (2)

- 19. If $2\sin^3 x + \sin 2x \cos x + 4\sin x 4 = 0$ has exactly 3 solutions in the interval $\left[0, \frac{n\pi}{2}\right]$, $n \in \mathbb{N}$, then the roots of the equation $x^2 + nx + (n-3) = 0$ belong to:
 - $(1) (0,\infty)$
 - $(2) (-\infty, 0)$
 - $(3)\left(-\frac{\sqrt{17}}{2},\frac{\sqrt{17}}{2}\right)$
 - (4)Z

Ans. (2)

20. Let $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to R$ be a differentiable function

such that $f(0) = \frac{1}{2}$, If the $\lim_{x \to 0} \frac{x \int_0^x f(t) dt}{e^{x^2} - 1} = \alpha$,

then $8\alpha^2$ is equal to :

- (1) 16
- (2) 2
- (3) 1
- (4) 4
- Ans. (2)

SECTION-B

21. A group of 40 students appeared in an examination of 3 subjects – Mathematics, Physics & Chemistry. It was found that all students passed in at least one of the subjects, 20 students passed in Mathematics, 25 students passed in Physics, 16 students passed in Chemistry, at most 11 students passed in both Mathematics and Physics, at most 15 students passed in both Physics and Chemistry, at most 15 students passed in both Mathematics and Chemistry. The maximum number of students passed in all the three subjects is ______.

Ans. (10)

22. If d_1 is the shortest distance between the lines x + 1 = 2y = -12z, x = y + 2 = 6z - 6 and d_2 is the shortest distance between the lines $\frac{x - 1}{2} = \frac{y + 8}{-7} = \frac{z - 4}{5}, \frac{x - 1}{2} = \frac{y - 2}{1} = \frac{z - 6}{-3}$, then the value of $\frac{32\sqrt{3}d_1}{d_2}$ is:

Ans. (16)

23. Let the latus rectum of the hyperbola $\frac{x^2}{9} - \frac{y^2}{b^2} = 1$ subtend an angle of $\frac{\pi}{3}$ at the centre of the hyperbola. If b^2 is equal to $\frac{l}{m}(1+\sqrt{n})$, where l and m are co-prime numbers, then $l^2 + m^2 + n^2$ is equal to _____

Ans. (182)

24. Let $A = \{1, 2, 3, 7\}$ and let P(1) denote the power set of A. If the number of functions $f: A \rightarrow P(A)$ such that $a \in f(a), \forall a \in A$ is m^n , m and $n \in N$ and m is least, then m + n is equal to

Ans. (44)

25. The value $9 \int_{0}^{9} \left[\sqrt{\frac{10x}{x+1}} \right] dx$, where [t] denotes the greatest integer less than or equal to t, is _____.

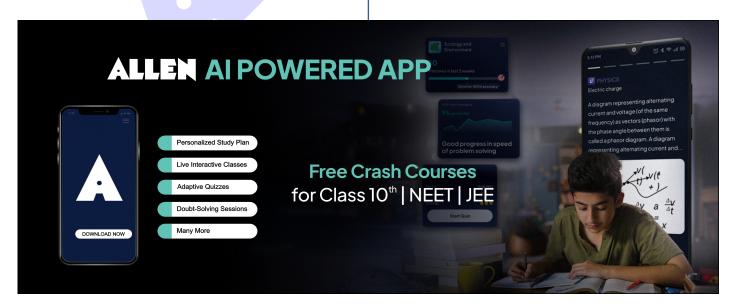
Ans. (155)

3

Number of integral terms in the expansion of $\left\{ 7^{\left(\frac{1}{2}\right)} + 11^{\left(\frac{1}{6}\right)} \right\}^{824}$ is equal to _____.

Ans. (138)

- 27. Let y = y(x) be the solution of the differential equation $(1 x^2)$ dy = $\left[xy + \left(x^3 + 2\right)\sqrt{3\left(1 x^2\right)}\right]dx$, -1 < x < 1, y(0) = 0. If $y\left(\frac{1}{2}\right) = \frac{m}{n}$, m and n are coprime numbers, then m + n is equal to _______.
- **28.** Let $\alpha, \beta \in \mathbb{N}$ be roots of equation $x^2 70x + \lambda = 0$, where $\frac{\lambda}{2}, \frac{\lambda}{3} \notin \mathbb{N}$. If λ assumes the minimum possible value, then $\frac{\left(\sqrt{\alpha 1} + \sqrt{\beta 1}\right)(\lambda + 35)}{|\alpha \beta|}$ is equal to :


Ans. (60)

29. If the function $f(x) = \begin{cases} \frac{1}{|x|}, & |x| \ge 2 \\ ax^2 + 2b, & |x| < 2 \end{cases}$ differentiable on R, then 48 (a + b) is equal to _____.

Ans. (15)

30. Let $\alpha = 1^2 + 4^2 + 8^2 + 13^2 + 19^2 + 26^2 + \dots$ upto $10 \text{ terms and } \beta = \sum_{n=1}^{10} n^4 \text{ . If } 4\alpha - \beta = 55k + 40 \text{ ,}$ then k is equal to ______.

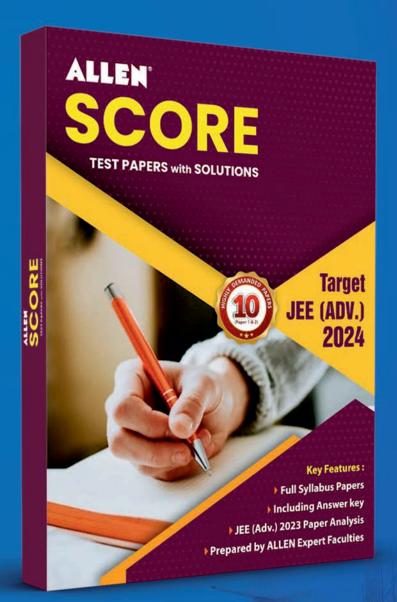
Ans. (353)

SCALE UP YOUR SCORE! with ALLEN SCORE TEST PAPERS

Total 10 Full syllabus papers

Paper Analysis of JEE Advanced 2023

By **ALLEN**Subject Experts



Answer key with Solutions

Scan QR to Buy

