

FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Tuesday 30th January, 2024)

TEST PAPER WITH ANSWER

MATHEMATICS SECTION-A

- 1. Consider the system of linear equations $x+y+z=5, \ x+2y+\lambda^2z=9,$ $x+3y+\lambda z=\mu, \ \text{where} \ \lambda, \ \mu\in R. \ \text{Then, which of}$ the following statement is NOT correct?
 - (1) System has infinite number of solution if λ = 1 and μ =13
 - (2) System is inconsistent if $\lambda = 1$ and $\mu \neq 13$
 - (3) System is consistent if $\lambda \neq 1$ and $\mu = 13$
 - (4) System has unique solution if $\lambda \neq 1$ and $\mu \neq 13$ Ans. (4)
- 2. For $\alpha, \beta \in \left(0, \frac{\pi}{2}\right)$, let $3\sin(\alpha+\beta)=2\sin(\alpha-\beta)$ and a real number k be such that $\tan \alpha = k \tan \beta$. Then the value of k is equal to :
 - $(1) -\frac{2}{3}$
- (2) -5

(3) $\frac{2}{3}$

(4) 5

Ans. (Bonus)

- 3. Let A(α , 0) and B(0, β) be the points on the line 5x + 7y = 50. Let the point P divide the line segment AB internally in the ratio 7:3. Let 3x 25 = 0 be a directrix of the ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the corresponding focus be S. If from S, the perpendicular on the x-axis passes through P, then the length of the latus rectum of E is equal to
 - $(1) \frac{25}{3}$
- (2) $\frac{32}{9}$
- (3) $\frac{25}{9}$
- $(4) \frac{32}{5}$
- Ans. (4)

- 4. Let $\vec{a} = \hat{i} + \alpha \hat{j} + \beta \hat{k}$, $\alpha, \beta \in R$. Let a vector \vec{b} be such that the angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$ and $\left| \vec{b} \right|^2 = 6$, If $\vec{a} \cdot \vec{b} = 3\sqrt{2}$, then the value of $\left(\alpha^2 + \beta^2 \right) \left| \vec{a} \times \vec{b} \right|^2$ is equal to
 - (1) 90
- (2)75

TIME: 3:00 PM to 6:00 PM

(3)95

(4) 85

Ans. (1)

- 5. Let $f(x)=(x+3)^2(x-2)^3$, $x \in [-4, 4]$. If M and m are the maximum and minimum values of f, respectively in [-4, 4], then the value of M m is:
 - (1) 600
- (2)392
- (3)608
- (4) 108

Ans. (3)

- 6. Let a and b be be two distinct positive real numbers. Let 11th term of a GP, whose first term is a and third term is b, is equal to pth term of another GP, whose first term is a and fifth term is b. Then p is equal to
 - (1)20
- (2) 25
- (3)21
- (4) 24

Ans. (3)

- 7. If $x^2 y^2 + 2hxy + 2gx + 2fy + c = 0$ is the locus of a point, which moves such that it is always equidistant from the lines x + 2y + 7 = 0 and 2x y + 8 = 0, then the value of g + c + h f equals
 - (1) 14
- (2) 6
- (3) 8

(4) 29

Ans. (1)

- **8.** Let \vec{a} and \vec{b} be two vectors such that $|\vec{b}| = 1$ and $|\vec{b} \times \vec{a}| = 2$. Then $|(\vec{b} \times \vec{a}) \vec{b}|^2$ is equal to
 - (1) 3

(2)5

(3) 1

(4) 4

Ans. (2)

Free Crash Courses for Class 10th | NEET | JEE

- 9. Let y = f(x) be a thrice differentiable function in (-5, 5). Let the tangents to the curve y = f(x) at (1, f(1)) and (3, f(3)) make angles $\frac{\pi}{6}$ and $\frac{\pi}{4}$, respectively with positive x-axis. If $27\int_{1}^{3} \left(\left(f'(t) \right)^{2} + 1 \right) f''(t) dt = \alpha + \beta \sqrt{3}$ where α , β are integers, then the value of $\alpha + \beta$ equals
 - (1) -14
- (2) 26
- (3) -16
- (4) 36

Ans. (2)

- 10. Let P be a point on the hyperbola $H: \frac{x^2}{9} \frac{y^2}{4} = 1$, in the first quadrant such that the area of triangle formed by P and the two foci of H is $2\sqrt{13}$. Then, the square of the distance of P from the origin is
 - (1) 18
- (2)26
- (3) 22
- (4) 20

Ans. (3)

- 11. Bag A contains 3 white, 7 red balls and bag B contains 3 white, 2 red balls. One bag is selected at random and a ball is drawn from it. The probability of drawing the ball from the bag A, if the ball drawn in white, is:
 - $(1) \frac{1}{4}$

- (2) $\frac{1}{9}$
- $(3) \frac{1}{3}$
- $(4) \frac{3}{10}$

Ans. (3)

- 12. Let $f: R \rightarrow R$ be defined $f(x)=ae^{2x}+be^{x}+cx$. If f(0)=-1, $f'(\log_e 2)=21$ and
 - $\int_{0}^{\log_{2} 4} (f(x) cx) dx = \frac{39}{2}, \text{ then the value of } |a+b+c|$

equals : (1) 16

- $(2)\ 10$
- (3) 12
- (4) 8

Ans. (4)

13. Let $L_1 : \vec{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \lambda(\hat{i} - \hat{j} + 2\hat{k}), \ \lambda \in \mathbb{R}$ $L_2 : \vec{r} = (\hat{j} - \hat{k}) + \mu(3\hat{i} + \hat{j} + p\hat{k}), \ \mu \in \mathbb{R}$ and $L_3 : \vec{r} = \delta(\ell \hat{i} + m\hat{j} + n\hat{k}) \delta \in \mathbb{R}$

Be three lines such that L_1 is perpendicular to L_2 and L_3 is perpendicular to both L_1 and L_2 . Then the point which lies on L_3 is

- (1))(-1,7,4)
- (2)(-1,-7,4)
- (3)(1, 7, -4)
- (4)(1,-7,4)

Ans. (1)

14. Let a and b be real constants such that the function

f defined by $f(x) = \begin{cases} x^2 + 3x + a, x \le 1 \\ bx + 2, x > 1 \end{cases}$ be

differentiable on R. Then, the value of $\int_{-2}^{2} f(x) dx$ equals

- (1) $\frac{15}{6}$
- (2) $\frac{19}{6}$
- (3)21
- (4) 17

Ans. (4)

- 15. Let $f: \mathbb{R} \{0\} \to \mathbb{R}$ be a function satisfying $f\left(\frac{x}{y}\right) = \frac{f(x)}{f(y)}$ for all x, y, $f(y) \neq 0$. If f'(1) = 2024, then
 - (1) xf'(x) 2024 f(x) = 0
 - (2) xf'(x) + 2024f(x) = 0
 - (3) xf'(x) + f(x) = 2024
 - (4) xf'(x) -2023f(x) = 0

Ans. (1)

- 16. If z is a complex number, then the number of common roots of the equation $z^{1985} + z^{100} + 1 = 0$ and $z^3 + 2z^2 + 2z + 1 = 0$, is equal to:
 - (1) 1
- (2) 2
- (3) 0
- (4) 3

Ans. (2)

- 17. Suppose 2 p, p, 2α , α are the coefficient of four consecutive terms in the expansion of $(1+x)^n$. Then the value of $p^2 \alpha^2 + 6\alpha + 2p$ equals
 - (1)4

(2) 10

(3)8

(4) 6

Ans. (Bonus)

2

Final JEE-Main Exam January, 2024/30-01-2024/Evening Session

18. If the domain of the function $f(x) = \log_e$

$$\left(\frac{2x+3}{4x^2+x-3}\right) + \cos^{-1}\left(\frac{2x-1}{x+2}\right)$$
 is $(\alpha,\beta]$, then the

value of $5\beta - 4\alpha$ is equal to

- (1) 10
- (2) 12

- (3) 11
- (4) 9

Ans. (2)

19. Let $f : R \to R$ be a function defined $f(x) = \frac{x}{(1+x^4)^{1/4}}$ and g(x) = f(f(f(x))) then

$$18\int\limits_{0}^{\sqrt{2\sqrt{5}}}x^{2}g(x)dx$$

(1) 33

(2)36

(3)42

(4) 39

Ans. (4)

20. Let $R = \begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{pmatrix}$ be a non-zero 3×3 matrix,

where $x \sin \theta = y \sin \left(\theta + \frac{2\pi}{3}\right) = z \sin \left(\theta + \frac{4\pi}{3}\right)$

 $\neq 0, \theta \in (0,2\pi)$. For a square matrix M, let trace (M) denote the sum of all the diagonal entries of

- M. Then, among the statements:
- (I) Trace (R) = 0
- (II) If trace (adj(adj(R)) = 0, then R has exactly one non-zero entry.
- (1) Both (I) and (II) are true
- (2) Neither (I) nor (II) is true
- (3) Only (II) is true
- (4) Only (I) is true

Ans. (3)

SECTION-B

21. Let Y = Y(X) be a curve lying in the first quadrant such that the area enclosed by the line Y - y = Y'(x) (X - x) and the co-ordinate axes, where (x, y) is any point on the curve, is always $\frac{-y^2}{2Y'(x)} + 1, \ Y'(x) \neq 0.$ If Y(1) = 1, then 12Y(2)

equals _____.

Ans. (20)

22. Let a line passing through the point (-1, 2, 3) intersect the lines $L_1: \frac{x-1}{3} = \frac{y-2}{2} = \frac{z+1}{-2}$ at

 $M(\alpha,\beta,\gamma)$ and $L_2: \frac{x+2}{-3} = \frac{y-2}{-2} = \frac{z-1}{4}$ at

N(a, b, c). Then the value of $\frac{\left(\alpha+\beta+\gamma\right)^2}{\left(a+b+c\right)^2}$ equals

Ans. (196)

23. Consider two circles $C_1: x^2 + y^2 = 25$ and $C_2: (x - \alpha)^2 + y^2 = 16$, where $\alpha \in (5, 9)$. Let the angle between the two radii (one to each circle) drawn from one of the intersection points of C_1 and C_2 be $\sin^{-1}\left(\frac{\sqrt{63}}{8}\right)$. If the length of common chord of C_1

and C_2 is $\beta,$ then the value of $(\alpha\beta)^2$ equals ____ .

Ans. (1575)

24. Let $\alpha = \sum_{k=0}^{n} \left(\frac{\binom{n}{C_k}^2}{k+1} \right)$ and $\beta = \sum_{k=0}^{n-1} \left(\frac{\binom{n}{C_k} \binom{n}{C_{k+1}}}{k+2} \right)$.

If $5\alpha = 6\beta$, then n equals _____.

Ans. (10)

25. Let S_n be the sum to n-terms of an arithmetic progression 3, 7, 11, If $40 < \left(\frac{6}{n(n+1)} \sum_{k=1}^{n} S_k\right) < 42$, then n equals _____.

Ans. (9)

26. In an examination of Mathematics paper, there are 20 questions of equal marks and the question paper is divided into three sections: A, B and C. A student is required to attempt total 15 questions taking at least 4 questions from each section. If section A has 8 questions, section B has 6 questions and section C has 6 questions, then the total number of ways a student can select 15 questions is _____.

Ans. (11376)

ALLEN
AI POWERED APP

Free Crash Courses for Class 10th | NEET | JEE

- 27. The number of symmetric relations defined on the set {1, 2, 3, 4} which are not reflexive is _____.

 Ans. (960)
- 28. The number of real solutions of the equation $x(x^2+3|x|+5|x-1|+6|x-2|)=0 \text{ is } \underline{\hspace{1cm}}.$ Ans. (1)
- 29. The area of the region enclosed by the parabola $(y-2)^2 = x-1$, the line x-2y+4=0 and the positive coordinate axes is _____.
 - Ans. (5)
- **30.** The variance σ^2 of the data

Xi	0	1	5	6	10	12	17
f_i	3	2	3	2	6	3	3

Īs .

Ans. (29)

SCALE UP YOUR SCORE! with ALLEN SCORE TEST PAPERS

Total 10 Full syllabus papers

Paper Analysis of JEE Advanced 2023

By **ALLEN**Subject Experts

Answer key with Solutions

Scan QR to Buy

