CAREER INSTITUTE
KOTA (RASASTHAN)]

MATHEMATICS

SECTION-A

1. Consider the system of linear equations
$x+y+z=5, x+2 y+\lambda^{2} z=9$,
$x+3 y+\lambda z=\mu$, where $\lambda, \mu \in R$. Then, which of the following statement is NOT correct?
(1) System has infinite number of solution if $\lambda=1$ and $\mu=13$
(2) System is inconsistent if $\lambda=1$ and $\mu \neq 13$
(3) System is consistent if $\lambda \neq 1$ and $\mu=13$
(4) System has unique solution if $\lambda \neq 1$ and $\mu \neq 13$

Ans. (4)
2. For $\alpha, \beta \in\left(0, \frac{\pi}{2}\right)$, let $3 \sin (\alpha+\beta)=2 \sin (\alpha-\beta)$ and a real number k be such that $\tan \alpha=k \tan \beta$. Then the value of k is equal to :
(1) $-\frac{2}{3}$
(2) -5
(3) $\frac{2}{3}$
(4) 5

Ans. (Bonus)

3. Let $A(\alpha, 0)$ and $B(0, \beta)$ be the points on the line $5 x+7 y=50$. Let the point P divide the line segment AB internally in the ratio $7: 3$. Let $3 \mathrm{x}-$ $25=0$ be a directrix of the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the corresponding focus be S . If from S , the perpendicular on the x -axis passes through P , then the length of the latus rectum of E is equal to
(1) $\frac{25}{3}$
(2) $\frac{32}{9}$
(3) $\frac{25}{9}$
(4) $\frac{32}{5}$

Ans. (4)

TEST PAPER WITH ANSWER

4. Let $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+\alpha \hat{\mathrm{j}}+\beta \hat{\mathrm{k}}, \alpha, \beta \in \mathrm{R}$. Let a vector $\overrightarrow{\mathrm{b}}$ be such that the angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$ and $|\vec{b}|^{2}=6$, If $\vec{a} \cdot \vec{b}=3 \sqrt{2}$, then the value of $\left(\alpha^{2}+\beta^{2}\right)|\vec{a} \times \vec{b}|^{2}$ is equal to
(1) 90
(2) 75
(3) 95
(4) 85

Ans. (1)
5. Let $f(x)=(x+3)^{2}(x-2)^{3}, x \in[-4,4]$. If M and m are the maximum and minimum values of f, respectively in $[-4,4]$, then the value of $\mathrm{M}-\mathrm{m}$ is :
(1) 600
(2) 392
(3) 608
(4) 108

Ans. (3)
6. Let a and b be be two distinct positive real numbers. Let $11^{\text {th }}$ term of a GP, whose first term is a and third term is b, is equal to $p^{\text {th }}$ term of another GP, whose first term is a and fifth term is b. Then p is equal to
(1) 20
(2) 25
(3) 21
(4) 24

Ans. (3)
7. If $x^{2}-y^{2}+2 h x y+2 g x+2 f y+c=0$ is the locus of a point, which moves such that it is always equidistant from the lines $x+2 y+7=0$ and $2 x-y$ $+8=0$, then the value of $g+\mathrm{c}+\mathrm{h}-\mathrm{f}$ equals
(1) 14
(2) 6
(3) 8
(4) 29

Ans. (1)
8. Let \vec{a} and \vec{b} be two vectors such that $|\vec{b}|=1$ and $|\vec{b} \times \vec{a}|=2$. Then $|(\vec{b} \times \vec{a})-\vec{b}|^{2}$ is equal to
(1) 3
(2) 5
(3) 1
(4) 4

Ans. (2)
9. Let $y=f(x)$ be a thrice differentiable function in $(-5,5)$. Let the tangents to the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at $(1, \mathrm{f}(1))$ and $(3, \mathrm{f}(3))$ make angles $\frac{\pi}{6}$ and $\frac{\pi}{4}$, respectively with positive x-axis. If $27 \int_{1}^{3}\left(\left(f^{\prime}(t)\right)^{2}+1\right) f^{\prime \prime}(t) d t=\alpha+\beta \sqrt{3} \quad$ where $\quad \alpha, \quad \beta$ are integers, then the value of $\alpha+\beta$ equals
(1) -14
(2) 26
(3) -16
(4) 36

Ans. (2)
10. Let P be a point on the hyperbola $\mathrm{H}: \frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{4}=1$, in the first quadrant such that the area of triangle formed by P and the two foci of H is $2 \sqrt{13}$. Then, the square of the distance of P from the origin is
(1) 18
(2) 26
(3) 22
(4) 20

Ans. (3)
11. Bag A contains 3 white, 7 red balls and bag B contains 3 white, 2 red balls. One bag is selected at random and a ball is drawn from it. The probability of drawing the ball from the bag A, if the ball drawn in white, is :
(1) $\frac{1}{4}$
(2) $\frac{1}{9}$
(3) $\frac{1}{3}$
(4) $\frac{3}{10}$

Ans. (3)
12. Let $f: R \rightarrow R$ be defined $f(x)=a e^{2 x}+b e^{x}+c x$. If $f(0)=-1, f^{\prime}\left(\log _{e} 2\right)=21$ and
$\int_{0}^{\log _{5} 4}(f(x)-c x) d x=\frac{39}{2}$, then the value of $|a+b+c|$ equals :
(1) 16
(2) 10
(3) 12
(4) 8

Ans. (4)
13. Let $L_{1}: \vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\lambda(\hat{i}-\hat{j}+2 \hat{k}), \lambda \in R$
$L_{2}: \overrightarrow{\mathrm{r}}=(\hat{\mathrm{j}}-\hat{\mathrm{k}})+\mu(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\mathrm{p} \hat{\mathrm{k}}), \mu \in \mathrm{R}$ and $\mathrm{L}_{3}: \overrightarrow{\mathrm{r}}=\delta(\ell \hat{\mathrm{i}}+\mathrm{m} \hat{\mathrm{j}}+\mathrm{nk}) \delta \in \mathrm{R}$

Be three lines such that L_{1} is perpendicular to L_{2} and L_{3} is perpendicular to both L_{1} and L_{2}. Then the point which lies on L_{3} is
(1)) $(-1,7,4)$
(2) $(-1,-7,4)$
(3) $(1,7,-4)$
(4) $(1,-7,4)$

Ans. (1)
14. Let a and b be real constants such that the function f defined by $f(x)=\left\{\begin{array}{cc}x^{2}+3 x+a, & x \leq 1 \\ b x+2 & , x>1\end{array}\right.$ be differentiable on R. Then, the value of $\int_{-2}^{2} f(x) d x$ equals
(1) $\frac{15}{6}$
(2) $\frac{19}{6}$
(3) 21
(4) 17

Ans. (4)
15. Let $\mathrm{f}: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$ be a function satisfying $f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}$ for all $x, y, f(y) \neq 0$. If $f^{\prime}(1)=2024$, then
(1) $\mathrm{xf}^{\prime}(\mathrm{x})-2024 \mathrm{f}(\mathrm{x})=0$
(2) $x f^{\prime}(x)+2024 f(x)=0$
(3) $x f^{\prime}(x)+f(x)=2024$
(4) $x f^{\prime}(x)-2023 f(x)=0$

Ans. (1)
16. If z is a complex number, then the number of common roots of the equation $z^{1985}+z^{100}+1=0$ and $z^{3}+2 z^{2}+2 z+1=0$, is equal to :
(1) 1
(2) 2
(3) 0
(4) 3

Ans. (2)
17. Suppose $2-p, p, 2-\alpha, \alpha$ are the coefficient of four consecutive terms in the expansion of $(1+x)^{n}$. Then the value of $\mathrm{p}^{2}-\alpha^{2}+6 \alpha+2 \mathrm{p}$ equals
(1) 4
(2) 10
(3) 8
(4) 6

Ans. (Bonus)
18. If the domain of the function $f(x)=\log _{e}$ $\left(\frac{2 x+3}{4 x^{2}+x-3}\right)+\cos ^{-1}\left(\frac{2 x-1}{x+2}\right)$ is $(\alpha, \beta]$, then the value of $5 \beta-4 \alpha$ is equal to
(1) 10
(2) 12
(3) 11
(4) 9

Ans. (2)
19. Let $f: R \rightarrow R$ be a function defined $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{\left(1+\mathrm{x}^{4}\right)^{1 / 4}} \quad$ and $\quad \mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{x}))))$) then $18 \int_{0}^{\sqrt{2 \sqrt{5}}} x^{2} g(x) d x$
(1) 33
(2) 36
(3) 42
(4) 39

Ans. (4)
20. Let $\mathrm{R}=\left(\begin{array}{lll}\mathrm{x} & 0 & 0 \\ 0 & \mathrm{y} & 0 \\ 0 & 0 & \mathrm{z}\end{array}\right)$ be a non-zero 3×3 matrix, where $\mathrm{x} \sin \theta=\mathrm{y} \sin \left(\theta+\frac{2 \pi}{3}\right)=\mathrm{z} \sin \left(\theta+\frac{4 \pi}{3}\right)$ $\neq 0, \theta \in(0,2 \pi)$. For a square matrix M, let trace (M) denote the sum of all the diagonal entries of M. Then, among the statements:
(I) Trace (R) $=0$
(II) If trace $(\operatorname{adj}(\operatorname{adj}(R))=0$, then R has exactly one non-zero entry.
(1) Both (I) and (II) are true
(2) Neither (I) nor (II) is true
(3) Only (II) is true
(4) Only (I) is true

Ans. (3)

SECTION-B

21. Let $\mathrm{Y}=\mathrm{Y}(\mathrm{X})$ be a curve lying in the first quadrant such that the area enclosed by the line $Y-y=Y^{\prime}(x)(X-x)$ and the co-ordinate axes, where (x, y) is any point on the curve, is always $\frac{-y^{2}}{2 \mathrm{Y}^{\prime}(\mathrm{x})}+1, \mathrm{Y}^{\prime}(\mathrm{x}) \neq 0$. If $\mathrm{Y}(1)=1$, then $12 \mathrm{Y}(2)$ equals \qquad .

Ans. (20)
22. Let a line passing through the point $(-1,2,3)$ intersect the lines $L_{1}: \frac{x-1}{3}=\frac{y-2}{2}=\frac{z+1}{-2}$ at $M(\alpha, \beta, \gamma) \quad$ and $\quad L_{2}: \frac{x+2}{-3}=\frac{y-2}{-2}=\frac{z-1}{4} \quad$ at $N(a, b, c)$. Then the value of $\frac{(\alpha+\beta+\gamma)^{2}}{(a+b+c)^{2}}$ equals
\qquad .

Ans. (196)

23. Consider two circles $\mathrm{C}_{1}: \mathrm{x}^{2}+\mathrm{y}^{2}=25$ and $\mathrm{C}_{2}:(\mathrm{x}-$ $\alpha)^{2}+y^{2}=16$, where $\alpha \in(5,9)$. Let the angle between the two radii (one to each circle) drawn from one of the intersection points of C_{1} and C_{2} be $\sin ^{-1}\left(\frac{\sqrt{63}}{8}\right)$. If the length of common chord of C_{1} and C_{2} is β, then the value of $(\alpha \beta)^{2}$ equals \qquad .

Ans. (1575)

24. Let $\alpha=\sum_{\mathrm{k}=0}^{\mathrm{n}}\left(\frac{\left({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}}\right)^{2}}{\mathrm{k}+1}\right)$ and $\beta=\sum_{\mathrm{k}=0}^{\mathrm{n}-1}\left(\frac{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}+1}}{\mathrm{k}+2}\right)$.

If $5 \alpha=6 \beta$, then n equals \qquad .
Ans. (10)
25. Let S_{n} be the sum to n-terms of an arithmetic progression 3, 7, 11, If $40<\left(\frac{6}{\mathrm{n}(\mathrm{n}+1)} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{S}_{\mathrm{k}}\right)<42$, then n equals \qquad -.
Ans. (9)
26. In an examination of Mathematics paper, there are 20 questions of equal marks and the question paper is divided into three sections: A, B and C. A student is required to attempt total 15 questions taking at least 4 questions from each section. If section A has 8 questions, section B has 6 questions and section C has 6 questions, then the total number of ways a student can select 15 questions is \qquad .
Ans. (11376)
27. The number of symmetric relations defined on the set $\{1,2,3,4\}$ which are not reflexive is \qquad .
Ans. (960)
28. The number of real solutions of the equation
$x\left(x^{2}+3|x|+5|x-1|+6|x-2|\right)=0$ is \qquad .

Ans. (1)
29. The area of the region enclosed by the parabola $(y-2)^{2}=x-1$, the line $x-2 y+4=0$ and the positive coordinate axes is \qquad .
Ans. (5)
30. The variance σ^{2} of the data

x_{i}	0	1	5	6	10	12	17
f_{i}	3	2	3	2	6	3	3

Is \qquad .

Ans. (29)

Free Crash Courses for Class 10 ${ }^{\text {H }}$ | NEET | JEE

SCALE UP YOUR SCORE!

 with ALLEN SCORE TEST PAPERS
管筌
 Total 10 Full syllabus papers

Paper Analysis of JEE Advanced 2023

8By A놎N Subject Experts
(1) Answer key with Solutions

Scan QR to Buy

ALLEX:
 SCORE
 TEST PAPERS with SOLUTIONS

Key Features:
P Full Syllabus Papers
Including Answer key
JEE (Adv.) 2023 Paper Analysis
Prepared by ALLEN Expert Faculties

