KOTA (RAJASTHAN)
-

## FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Monday 29th January, 2024)
TIME : 9:00 AM to 12: 00 NOON

## MATHEMATICS

## SECTION-A

1. If in a G.P. of 64 terms, the sum of all the terms is 7 times the sum of the odd terms of the G.P, then the common ratio of the G.P. is equal to
(1) 7
(2) 4
(3) 5
(4) 6

Ans. (4)
2. In an A.P., the sixth terms $a_{6}=2$. If the $a_{1} a_{4} a_{5}$ is the greatest, then the common difference of the A.P., is equal to
(1) $\frac{3}{2}$
(2) $\frac{8}{5}$
(3) $\frac{2}{3}$
(4) $\frac{5}{8}$

Ans. (2)
3. If $f(x)=\left\{\begin{array}{l}2+2 x,-1 \leq x<0 \\ 1-\frac{x}{3}, 0 \leq x \leq 3\end{array} ; g(x)=\left\{\begin{array}{l}-x,-3 \leq x \leq 0 \\ x, 0<x \leq 1\end{array}\right.\right.$, then range of $(\operatorname{fog}(x))$ is
(1) $(0,1]$
(2) $[0,3)$
(3) $[0,1]$
(4) $[0,1)$

Ans. (3)
4. A fair die is thrown until 2 appears. Then the probability, that 2 appears in even number of throws, is
(1) $\frac{5}{6}$
(2) $\frac{1}{6}$
(3) $\frac{5}{11}$
(4) $\frac{6}{11}$

Ans. (3)

## TEST PAPER WITH ANSWER

5. If $z=\frac{1}{2}-2 i$, is such that
$|z+1|=\alpha z+\beta(1+i), i=\sqrt{-1}$ and $\alpha, \beta \in R$, then $\alpha+\beta$ is equal to
(1) -4
(2) 3
(3) 2
(4) -1

Ans. (2)
6. $\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{1}{\left(x-\frac{\pi}{2}\right)^{2}} \int_{x^{3}}^{\left(\frac{\pi}{2}\right)^{3}} \cos \left(\frac{1}{t^{3}}\right) d t\right)$ is equal to
(1) $\frac{3 \pi}{8}$
(2) $\frac{3 \pi^{2}}{4}$
(3) $\frac{3 \pi^{2}}{8}$
(4) $\frac{3 \pi}{4}$

Ans. (3)
7. In a $\triangle A B C$, suppose $y=x$ is the equation of the bisector of the angle B and the equation of the side $A C$ is $2 x-y=2$. If $2 A B=B C$ and the point $A$ and $B$ are respectively $(4,6)$ and $(\alpha, \beta)$, then $\alpha+2 \beta$ is equal to
(1) 42
(2) 39
(3) 48
(4) 45

Ans. (1)
8. Let $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$ be three non-zero vectors such that $\vec{b}$ and $\vec{c}$ are non-collinear if $\vec{a}+5 \vec{b}$ is collinear with $\vec{c}, \vec{b}+6 \vec{c}$ is collinear with $\vec{a}$ and $\vec{a}+\alpha \vec{b}+\beta \vec{c}=\overrightarrow{0}$, then $\alpha+\beta$ is equal to
(1) 35
(2) 30
(3) -30
(4)-25

Ans. (1)
9. Let $\left(5, \frac{\mathrm{a}}{4}\right)$, be the circumcenter of a triangle with vertices $A(a,-2), B(a, 6)$ and $C\left(\frac{a}{4},-2\right)$. Let $\alpha$ denote the circumradius, $\beta$ denote the area and $\gamma$ denote the perimeter of the triangle. Then $\alpha+\beta+\gamma$ is
(1) 60
(2) 53
(3) 62
(4) 30

Ans. (2)
10. For $\mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, if
$y(x)=\int \frac{\operatorname{cosec} x+\sin x}{\operatorname{cosec} x \sec x+\tan x \sin ^{2} x} d x$ and $\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} y(x)=0$ then $y\left(\frac{\pi}{4}\right)$ is equal to
(1) $\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
(2) $\frac{1}{2} \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
(3) $-\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
(4) $\frac{1}{\sqrt{2}} \tan ^{-1}\left(-\frac{1}{2}\right)$

Ans. (4)
11. If $\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ is the solution of $4 \cos \theta+5 \sin \theta=1$, then the value of $\tan \alpha$ is
(1) $\frac{10-\sqrt{10}}{6}$
(2) $\frac{10-\sqrt{10}}{12}$
(3) $\frac{\sqrt{10}-10}{12}$
(4) $\frac{\sqrt{10}-10}{6}$

Ans. (3)
12. A function $y=f(x)$ satisfies
$f(x) \sin 2 x+\sin x-\left(1+\cos ^{2} x\right) f^{\prime}(x)=0$ with condition $f(0)=0$. Then $f\left(\frac{\pi}{2}\right)$ is equal to
(1) 1
(2) 0
(3) -1
(4) 2

Ans. (1)
13. Let O be the origin and the position vector of A and $B$ be $2 \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+4 \hat{j}+4 \hat{k}$ respectively. If the internal bisector of $\angle A O B$ meets the line $A B$ at C , then the length of OC is
(1) $\frac{2}{3} \sqrt{31}$
(2) $\frac{2}{3} \sqrt{34}$
(3) $\frac{3}{4} \sqrt{34}$
(4) $\frac{3}{2} \sqrt{31}$

Ans. (2)
14. Consider the function $\mathrm{f}:\left[\frac{1}{2}, 1\right] \rightarrow \mathrm{R}$ defined by $f(x)=4 \sqrt{2} x^{3}-3 \sqrt{2} x-1$. Consider the statements
(I) The curve $y=f(x)$ intersects the $x$-axis exactly at one point
(II) The curve $y=f(x)$ intersects the $x$-axis at $\mathrm{x}=\cos \frac{\pi}{12}$

Then
(1) Only (II) is correct
(2) Both (I) and (II) are incorrect
(3) Only (I) is correct
(4) Both (I) and (II) are correct

Ans. (4)
15. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ and $|2 A|^{\beta}=2^{21}$ where $\alpha, \beta \in Z$, Then a value of $\alpha$ is
(1) 3
(2) 5
(3) 17
(4) 9

Ans. (2)
16. Let $P Q R$ be a triangle with $R(-1,4,2)$. Suppose $\mathrm{M}(2,1,2)$ is the mid point of PQ . The distance of the centroid of $\triangle P Q R$ from the point of intersection of the line $\frac{x-2}{0}=\frac{y}{2}=\frac{z+3}{-1}$ and $\frac{x-1}{1}=\frac{y+3}{-3}=\frac{z+1}{1}$ is
(1) 69
(2) 9
(3) $\sqrt{69}$
(4) $\sqrt{99}$

Ans. (3)
17. Let R be a relation on $\mathrm{Z} \times \mathrm{Z}$ defined by
$(a, b) R(c, d)$ if and only if $a d-b c$ is divisible by 5 . Then $R$ is
(1) Reflexive and symmetric but not transitive
(2) Reflexive but neither symmetric not transitive
(3) Reflexive, symmetric and transitive
(4) Reflexive and transitive but not symmetric

## Ans. (1)

18. If the value of the integral

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{x^{2} \cos x}{1+\pi^{\mathrm{x}}}+\frac{1+\sin ^{2} \mathrm{x}}{1+\mathrm{e}^{\sin \mathrm{sin}^{203}}}\right) \mathrm{dx}=\frac{\pi}{4}(\pi+\mathrm{a})-2
$$

then the value of a is
(1) 3
(2) $-\frac{3}{2}$
(3) 2
(4) $\frac{3}{2}$

Ans. (1)
19. Suppose

$$
\mathrm{f}(\mathrm{x})=\frac{\left(2^{\mathrm{x}}+2^{-\mathrm{x}}\right) \tan \mathrm{x} \sqrt{\tan ^{-1}\left(\mathrm{x}^{2}-\mathrm{x}+1\right)}}{\left(7 \mathrm{x}^{2}+3 \mathrm{x}+1\right)^{3}}
$$

Then the value of $f^{\prime}(0)$ is equal to
(1) $\pi$
(2) 0
(3) $\sqrt{\pi}$
(4) $\frac{\pi}{2}$

Ans. (3)
20. Let $A$ be a square matrix such that $A A^{T}=I$. Then $\frac{1}{2} \mathrm{~A}\left[\left(\mathrm{~A}+\mathrm{A}^{\mathrm{T}}\right)^{2}+\left(\mathrm{A}-\mathrm{A}^{\mathrm{T}}\right)^{2}\right]$ is equal to
(1) $A^{2}+I$
(2) $A^{3}+I$
(3) $A^{2}+A^{T}$
(4) $A^{3}+A^{T}$

Ans. (4)

## SECTION-B

21. Equation of two diameters of a circle are $2 x-3 y=5$ and $3 x-4 y=7$. The line joining the points $\left(-\frac{22}{7},-4\right)$ and $\left(-\frac{1}{7}, 3\right)$ intersects the circle at only one point $\mathrm{P}(\alpha, \beta)$. Then $17 \beta-\alpha$ is equal to

## Ans. (2)

22. All the letters of the word "GTWENTY" are written in all possible ways with or without meaning and these words are written as in a dictionary. The serial number of the word

## "GTWENTY" IS

Ans. (553)
23. Let $\alpha, \beta$ be the roots of the equation $x^{2}-x+2=0$ with $\operatorname{Im}(\alpha)>\operatorname{Im}(\beta)$. Then $\alpha^{6}+\alpha^{4}+\beta^{4}-5 \alpha^{2}$ is equal to

Ans. (13)
24. Let $f(x)=2^{x}-x^{2}, x \in R$. If $m$ and $n$ are respectively the number of points at which the curves $y=f(x)$ and $y=f^{\prime}(x)$ intersects the $x$-axis, then the value of $m+n$ is

Ans. (5)
25. If the points of intersection of two distinct conics $x^{2}+y^{2}=4 b$ and $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1 \quad$ lie on the curve $y^{2}=3 x^{2}$, then $3 \sqrt{3}$ times the area of the rectangle formed by the intersection points is $\qquad$
Ans. (432) for Class $10^{\text {th }}$ | NEET | JEE
26. If the solution curve $y=y(x)$ of the differential equation $\left(1+y^{2}\right)\left(1+\log _{e} x\right) d x+x d y=0, x>0$ passes through the point $(1,1)$ and $y(e)=\frac{\alpha-\tan \left(\frac{3}{2}\right)}{\beta+\tan \left(\frac{3}{2}\right)}$, then $\alpha+2 \beta$ is

Ans. (3)
27. If the mean and variance of the data $65,68,58,44$, $48,45,60, \alpha, \beta, 60$ where $\alpha>\beta$ are 56 and 66.2 respectively, then $\alpha^{2}+\beta^{2}$ is equal to

Ans. (6344)
28. The area (in sq. units) of the part of circle $x^{2}+y^{2}=169$ which is below the line $5 x-y=13$ is $\frac{\pi \alpha}{2 \beta}-\frac{65}{2}+\frac{\alpha}{\beta} \sin ^{-1}\left(\frac{12}{13}\right) \quad$ where $\quad \alpha, \beta$ are coprime numbers. Then $\alpha+\beta$ is equal to

Ans. (171)
29. If $\frac{{ }^{11} \mathrm{C}_{1}}{2}+\frac{{ }^{11} \mathrm{C}_{2}}{3}+\ldots . .+\frac{{ }^{11} \mathrm{C}_{9}}{10}=\frac{\mathrm{n}}{\mathrm{m}}$ with $\operatorname{gcd}(\mathrm{n}, \mathrm{m})=1$, then $n+m$ is equal to

Ans. (2041)
30. A line with direction ratios $2,1,2$ meets the lines $\mathrm{x}=\mathrm{y}+2=\mathrm{z}$ and $\mathrm{x}+2=2 \mathrm{y}=2 \mathrm{z}$ respectively at the point P and Q . if the length of the perpendicular from the point $(1,2,12)$ to the line PQ is $l$, then $l^{2}$ is

Ans. (65)

## SCALE UP YOUR SCORE!

 with ALLEN SCORE TEST PAPERS
## 哭星 <br> Total 10 Full syllabus papers



Paper Analysis of JEE Advanced 2023

QBy ALLEM Subject Experts

## (5) Answer key

 with Solutions
## Scan QR to Buy

## ALLEX: <br> SCORE <br> TEST PAPERS with SOLUTIONS

Key Features:
, Full Syllabus Papers
Including Answer key
JEE (Adv.) 2023 Paper Analysis
Prepared by ALLEN Expert Faculties


