FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Monday 29th January, 2024)

TIME: 9:00 AM to 12:00 NOON

MATHEMATICS

SECTION-A

- 1. If in a G.P. of 64 terms, the sum of all the terms is 7 times the sum of the odd terms of the G.P, then the common ratio of the G.P. is equal to
 - (1)7

(2)4

(3) 5

(4)6

Ans. (4)

- 2. In an A.P., the sixth terms $a_6 = 2$. If the $a_1a_4a_5$ is the greatest, then the common difference of the A.P., is equal to
 - $(1)\frac{3}{2}$

 $(2)\frac{8}{5}$

 $(3)\frac{2}{3}$

 $(4)\frac{5}{8}$

Ans. (2)

3. If $f(x) = \begin{cases} 2+2x, -1 \le x < 0 \\ 1-\frac{x}{3}, \ 0 \le x \le 3 \end{cases}$; $g(x) = \begin{cases} -x, -3 \le x \le 0 \\ x, \ 0 < x \le 1 \end{cases}$,

then range of (fog(x)) is

- (1)(0,1]
- (2)[0,3)
- (3)[0,1]
- (4)[0,1)

Ans. (3)

- 4. A fair die is thrown until 2 appears. Then the probability, that 2 appears in even number of throws, is
 - $(1)\frac{5}{6}$

- $(2)\frac{1}{6}$
- $(3)\frac{5}{11}$
- $(4)\frac{6}{11}$

Ans. (3)

TEST PAPER WITH ANSWER

- 5. If $z = \frac{1}{2} 2i$, is such that $|z+1| = \alpha z + \beta (1+i), i = \sqrt{-1} \text{ and } \alpha, \beta \in \mathbb{R} \text{, then } \alpha + \beta$ is equal to
 - (1)-4
- (2) 3

(3) 2

(4) -1

Ans. (2)

- 6. $\lim_{x \to \frac{\pi}{2}} \left(\frac{1}{\left(x \frac{\pi}{2}\right)^2} \int_{x^3}^{\left(\frac{\pi}{2}\right)^3} \cos\left(\frac{1}{t^3}\right) dt \right) \text{ is equal to}$
 - $(1)\frac{3\pi}{8}$
- $(2)\frac{3\pi^2}{4}$

- $(3)\frac{3\pi^2}{8}$
- $(4)\frac{3\pi}{4}$

Ans. (3)

- 7. In a $\triangle ABC$, suppose y = x is the equation of the bisector of the angle B and the equation of the side AC is 2x y = 2. If 2AB = BC and the point A and B are respectively (4, 6) and (α, β) , then $\alpha + 2\beta$ is equal to
 - (1)42
- (2)39
- (3)48
- (4)45

Ans. (1)

- 8. Let \vec{a} , \vec{b} and \vec{c} be three non-zero vectors such that \vec{b} and \vec{c} are non-collinear .if \vec{a} + 5 \vec{b} is collinear with \vec{c} , \vec{b} + 6 \vec{c} is collinear with \vec{a} and \vec{a} + $\alpha \vec{b}$ + $\beta \vec{c}$ = $\vec{0}$, then α + β is equal to
 - (1)35
- (2) 30
- (3) 30
- (4)-25

Ans. (1)

ALLEN
AI POWERED APP

Free Crash Courses for Class 10th | NEET | JEE

- Let $\left(5, \frac{a}{4}\right)$, be the circumcenter of a triangle with vertices A(a,-2), B(a, 6) and $C(\frac{a}{4},-2)$. Let α denote the circumradius, β denote the area and γ denote the perimeter of the triangle. Then $\alpha + \beta + \gamma$ is
 - (1)60
- (2)53
- (3)62
- (4) 30

Ans. (2)

For $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, if 10.

$$y(x) = \int \frac{\cos c x + \sin x}{\csc x \sec x + \tan x \sin^2 x} dx$$
 and

 $\lim_{x \to \left[\frac{\pi}{2}\right]^{-}} y(x) = 0 \text{ then } y\left(\frac{\pi}{4}\right) \text{ is equal to}$

- (1) $\tan^{-1} \left(\frac{1}{\sqrt{2}} \right)$ (2) $\frac{1}{2} \tan^{-1} \left(\frac{1}{\sqrt{2}} \right)$
- $(3) \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{1}{\sqrt{2}} \right)$ $(4) \frac{1}{\sqrt{2}} \tan^{-1} \left(-\frac{1}{2} \right)$

Ans. (4)

- If α , $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$ is the solution of $4\cos\theta + 5\sin\theta = 1$, then the value of $\tan \alpha$ is
 - $(1)\frac{10-\sqrt{10}}{6}$
- $(2)\frac{10-\sqrt{10}}{12}$
- $(3)\frac{\sqrt{10}-10}{12}$
- $(4)\frac{\sqrt{10}-10}{6}$

Ans. (3)

- A function y = f(x) satisfies 12. $f(x)\sin 2x + \sin x - (1+\cos^2 x)f'(x) = 0$ with condition f(0) = 0. Then $f\left(\frac{\pi}{2}\right)$ is equal to
 - (1) 1

- (2)0
- (3) -1
- (4)2

Ans. (1)

- Let O be the origin and the position vector of A 13. and B be $2\hat{i} + 2\hat{j} + \hat{k}$ and $2\hat{i} + 4\hat{j} + 4\hat{k}$ respectively. If the internal bisector of ∠AOB meets the line AB at C, then the length of OC is
 - $(1)\frac{2}{3}\sqrt{31}$ $(2)\frac{2}{3}\sqrt{34}$ $(3)\frac{3}{4}\sqrt{34}$ $(4)\frac{3}{2}\sqrt{31}$

Ans. (2)

- **14.** Consider the function $f: \left[\frac{1}{2}, 1\right] \to R$ defined by $f(x) = 4\sqrt{2}x^3 - 3\sqrt{2}x - 1$. Consider the statements
 - (I) The curve y = f(x) intersects the x-axis exactly at one point
 - (II) The curve y = f(x) intersects the x-axis at $x = \cos \frac{\pi}{12}$

Then

- (1) Only (II) is correct
- (2) Both (I) and (II) are incorrect
- (3) Only (I) is correct
- (4) Both (I) and (II) are correct

Ans. (4)

15. Let $A = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{vmatrix}$ and $|2A|^3 = 2^{21}$ where $\alpha, \beta \in \mathbb{Z}$,

Then a value of α is

(1) 3

- (2)5
- (3) 17
- (4)9

Ans. (2)

- Let PQR be a triangle with R(-1,4,2). Suppose **16.** M(2, 1, 2) is the mid point of PQ. The distance of the centroid of ΔPQR from the point of intersection line
 - $\frac{x-2}{0} = \frac{y}{2} = \frac{z+3}{-1}$ and $\frac{x-1}{1} = \frac{y+3}{-3} = \frac{z+1}{1}$ is
 - (1)69
- (2)9
- $(3)\sqrt{69}$
- $(4)\sqrt{99}$

Ans. (3)

2

- 17. Let R be a relation on $Z \times Z$ defined by
 - (a, b)R(c, d) if and only if ad bc is divisible by 5. Then R is
 - (1) Reflexive and symmetric but not transitive
 - (2) Reflexive but neither symmetric not transitive
 - (3) Reflexive, symmetric and transitive
 - (4) Reflexive and transitive but not symmetric

Ans. (1)

18. If the value of the integral

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{x^2 \cos x}{1 + \pi^x} + \frac{1 + \sin^2 x}{1 + e^{\sin x^{2023}}} \right) dx = \frac{\pi}{4} (\pi + a) - 2,$$

then the value of a is

(1) 3

 $(2)-\frac{3}{2}$

(3) 2

 $(4)\frac{3}{2}$

Ans. (1)

19. Suppose

$$f(x) = \frac{(2^{x} + 2^{-x})\tan x \sqrt{\tan^{-1}(x^{2} - x + 1)}}{(7x^{2} + 3x + 1)^{3}},$$

Then the value of f'(0) is equal to

 $(1)\pi$

- (2) 0
- $(3)\sqrt{\pi}$
- $(4)\frac{\pi}{2}$

Ans. (3)

20. Let A be a square matrix such that $AA^{T} = I$. Then

$$\frac{1}{2}A\left[\left(A+A^{T}\right)^{2}+\left(A-A^{T}\right)^{2}\right] \text{ is equal to}$$

- $(1) A^2 + I$
- $(2) A^3 + I$
- $(3) A^2 + A^T$
- $(4) A^3 + A^T$

Ans. (4)

SECTION-B

21. Equation of two diameters of a circle are 2x-3y=5 and 3x-4y=7. The line joining the points $\left(-\frac{22}{7},-4\right)$ and $\left(-\frac{1}{7},3\right)$ intersects the circle at only one point $P(\alpha,\beta)$. Then $17\beta-\alpha$ is equal to

Ans. (2)

22. All the letters of the word "GTWENTY" are written in all possible ways with or without meaning and these words are written as in a dictionary. The serial number of the word "GTWENTY" IS

Ans. (553)

23. Let α, β be the roots of the equation $x^2 - x + 2 = 0$ with $Im(\alpha) > Im(\beta)$. Then $\alpha^6 + \alpha^4 + \beta^4 - 5\alpha^2$ is equal to

Ans. (13)

24. Let $f(x)=2^x-x^2, x \in \mathbb{R}$. If m and n are respectively the number of points at which the curves y = f(x) and y = f'(x) intersects the x-axis, then the value of m + n is

Ans. (5)

25. If the points of intersection of two distinct conics $x^2 + y^2 = 4b$ and $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ lie on the curve $y^2 = 3x^2$, then $3\sqrt{3}$ times the area of the rectangle formed by the intersection points is ___

Ans. (432)

ALLEN AI POWERED APP

Free Crash Courses for Class 10th | NEET | JEE

26. If the solution curve y = y(x) of the differential equation $(1+y^2)(1+\log_e x)dx + x dy = 0$, x > 0 passes through the point (1, 1) and $y(e) = \frac{\alpha - \tan\left(\frac{3}{2}\right)}{\beta + \tan\left(\frac{3}{2}\right)}, \text{ then } \alpha + 2\beta \text{ is}$

Ans. (3)

27. If the mean and variance of the data 65, 68, 58, 44, 48, 45, 60, α , β ,60 where α > β are 56 and 66.2 respectively, then $\alpha^2 + \beta^2$ is equal to

Ans. (6344)

28. The area (in sq. units) of the part of circle $x^2 + y^2 = 169$ which is below the line 5x - y = 13 is $\frac{\pi\alpha}{2\beta} - \frac{65}{2} + \frac{\alpha}{\beta} \sin^{-1} \left(\frac{12}{13}\right)$ where α, β are coprime numbers. Then $\alpha + \beta$ is equal to

Ans. (171)

29. If $\frac{{}^{11}C_1}{2} + \frac{{}^{11}C_2}{3} + \dots + \frac{{}^{11}C_9}{10} = \frac{n}{m}$ with gcd(n, m) = 1, then n + m is equal to

Ans. (2041)

30. A line with direction ratios 2, 1, 2 meets the lines x = y + 2 = z and x + 2 = 2y = 2z respectively at the point P and Q. if the length of the perpendicular from the point (1, 2, 12) to the line PQ is l, then l^2 is

Ans. (65)

SCALE UP YOUR SCORE! with ALLEN SCORE TEST PAPERS

Total 10 Full syllabus papers

Paper Analysis of JEE Advanced 2023

By **ALLEN**Subject Experts

Answer key with Solutions

Scan QR to Buy

