FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Saturday 27 ${ }^{\text {th }}$ January, 2024)
TIME:9:00 AM to 12:00 NOON

MATHEMATICS

SECTION-A

1. ${ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}}=\left(\mathrm{k}^{2}-8\right){ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+1}$ if and only if :
(1) $2 \sqrt{2}<\mathrm{k} \leq 3$
(2) $2 \sqrt{3}<\mathrm{k} \leq 3 \sqrt{2}$
(3) $2 \sqrt{3}<\mathrm{k}<3 \sqrt{3}$
(4) $2 \sqrt{2}<\mathrm{k}<2 \sqrt{3}$

Ans. (1)
2. The distance, of the point $(7,-2,11)$ from the line $\frac{x-6}{1}=\frac{y-4}{0}=\frac{z-8}{3}$ along the line $\frac{x-5}{2}=\frac{y-1}{-3}=\frac{z-5}{6}$, is :
(1) 12
(2) 14
(3) 18
(4) 21

Ans. (2)
3. Let $x=x(t)$ and $y=y(t)$ be solutions of the differential equations $\frac{\mathrm{dx}}{\mathrm{dt}}+\mathrm{ax}=0 \quad$ and $\frac{d y}{d t}+b y=0$ respectively, $a, b \in R$. Given that $x(0)=2 ; y(0)=1$ and $3 y(1)=2 x(1)$, the value of t, for which $\mathrm{x}(\mathrm{t})=\mathrm{y}(\mathrm{t})$, is :
(1) $\log _{\frac{2}{3}} 2$
(2) $\log _{4} 3$
(3) $\log _{3} 4$
(4) $\log _{4} 2$

Ans. (4)
4. If (a, b) be the orthocentre of the triangle whose vertices are $(1,2),(2,3)$ and $(3,1)$, and $I_{1}=\int_{a}^{b} x \sin \left(4 x-x^{2}\right) d x, I_{2}=\int_{a}^{b} \sin \left(4 x-x^{2}\right) d x$, then $36 \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}$ is equal to :
(1) 72
(2) 88
(3) 80
(4) 66

Ans. (1)

TEST PAPER WITH ANSWER

5. If A denotes the sum of all the coefficients in the expansion of $\left(1-3 x+10 x^{2}\right)^{n}$ and B denotes the sum of all the coefficients in the expansion of $\left(1+x^{2}\right)^{n}$, then :
(1) $A=B^{3}$
(2) $3 A=B$
(3) $B=A^{3}$
(4) $\mathrm{A}=3 \mathrm{~B}$

Ans. (1)
6. The number of common terms in the progressions $4,9,14,19, \ldots \ldots$. , up to $25^{\text {th }}$ term and $3,6,9,12$,, up to $37^{\text {th }}$ term is :
(1) 9
(2) 5
(3) 7
(4) 8

Ans. (3)
7. If the shortest distance of the parabola $y^{2}=4 x$ from the centre of the circle $x^{2}+y^{2}-4 x-16 y+64=0$ is d , then d^{2} is equal to :
(1) 16
(2) 24
(3) 20
(4) 36

Ans. (3)
8. If the shortest distance between the lines $\frac{x-4}{1}=\frac{y+1}{2}=\frac{z}{-3}$ and $\frac{x-\lambda}{2}=\frac{y+1}{4}=\frac{z-2}{-5}$ is $\frac{6}{\sqrt{5}}$, then the sum of all possible values of λ is :
(1) 5
(2) 8
(3) 7
(4) 10

Ans. (2)
9. If $\int_{0}^{1} \frac{1}{\sqrt{3+x}+\sqrt{1+x}} d x=a+b \sqrt{2}+c \sqrt{3}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are rational numbers, then $2 \mathrm{a}+3 \mathrm{~b}-4 \mathrm{c}$ is equal to :
(1) 4
(2) 10
(3) 7
(4) 8

Ans. (4)
10. Let $S=\{1,2,3, \ldots, 10\}$. Suppose M is the set of all the subsets of S, then the relation
$\mathrm{R}=\{(\mathrm{A}, \mathrm{B}): \mathrm{A} \cap \mathrm{B} \neq \phi ; \mathrm{A}, \mathrm{B} \in \mathrm{M}\}$ is :
(1) symmetric and reflexive only
(2) reflexive only
(3) symmetric and transitive only
(4) symmetric only

Ans. (4)
11. If $S=\{z \in C:|z-i|=|z+i|=|z-1|\}$, then, $n(S)$ is:
(1) 1
(2) 0
(3) 3
(4) 2

Ans. (1)
12. Four distinct points $(2 \mathrm{k}, 3 \mathrm{k}),(1,0),(0,1)$ and $(0,0)$ lie on a circle for k equal to :
(1) $\frac{2}{13}$
(2) $\frac{3}{13}$
(3) $\frac{5}{13}$
(4) $\frac{1}{13}$

Ans. (3)
13. Consider the function.

$$
f(x)=\left\{\begin{array}{cc}
\frac{a\left(7 x-12-x^{2}\right)}{b\left|x^{2}-7 x+12\right|} & , \quad x<3 \\
2^{\frac{\sin (x-3)}{x-[x]}} & , \quad x>3 \\
b & , \quad x=3
\end{array}\right.
$$

解 x denotes the greatest integer less than or equal to x. If S denotes the set of all ordered pairs (a, b) such that $f(x)$ is continuous at $x=3$, then the number of elements in S is :
(1) 2
(2) Infinitely many
(3) 4
(4) 1

Ans. (4)
14. Let $a_{1}, a_{2}, \ldots . . a_{10}$ be 10 observations such that $\sum_{k=1}^{10} a_{k}=50$ and $\sum_{\forall k<j} a_{k} \cdot a_{j}=1100$. Then the standard deviation of $a_{1}, a_{2}, . ., a_{10}$ is equal to :
(1) 5
(2) $\sqrt{5}$
(3) 10
(4) $\sqrt{115}$

Ans. (2)
15. The length of the chord of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$, whose mid point is $\left(1, \frac{2}{5}\right)$, is equal to :
(1) $\frac{\sqrt{1691}}{5}$
(2) $\frac{\sqrt{2009}}{5}$
(3) $\frac{\sqrt{1741}}{5}$
(4) $\frac{\sqrt{1541}}{5}$

Ans. (1)
16. The portion of the line $4 x+5 y=20$ in the first quadrant is trisected by the lines L_{1} and L_{2} passing through the origin. The tangent of an angle between the lines L_{1} and L_{2} is :
(1) $\frac{8}{5}$
(2) $\frac{25}{41}$
(3) $\frac{2}{5}$
(4) $\frac{30}{41}$

Ans. (4)
17. Let $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\mathrm{k}, \overrightarrow{\mathrm{b}}=3(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\mathrm{k})$. Let $\overrightarrow{\mathrm{c}}$ be the vector such that $\vec{a} \times \vec{c}=\vec{b}$ and $\vec{a} \cdot \vec{c}=3$. Then $\overrightarrow{\mathrm{a}} \cdot((\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}})-\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{c}})$ is equal to :
(1) 32
(2) 24
(3) 20
(4) 36

Ans. (2)
18. If $\mathrm{a}=\lim _{\mathrm{x} \rightarrow 0} \frac{\sqrt{1+\sqrt{1+\mathrm{x}^{4}}}-\sqrt{2}}{\mathrm{x}^{4}}$ and $b=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{\sqrt{2}-\sqrt{1+\cos x}}$, then the value of $a b^{3}$ is :
(1) 36
(2) 32
(3) 25
(4) 30

Ans. (2)
19. Consider the matrix $f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$.

Given below are two statements :
Statement I: $f(-x)$ is the inverse of the matrix $f(x)$.
Statement II: $f(x) f(y)=f(x+y)$.
In the light of the above statements, choose the correct answer from the options given below
(1) Statement I is false but Statement II is true
(2) Both Statement I and Statement II are false
(3) Statement I is true but Statement II is false
(4) Both Statement I and Statement II are true

Ans. (4)
20. The function $\mathrm{f}: \mathrm{N}-\{1\} \rightarrow \mathrm{N}$; defined by $\mathrm{f}(\mathrm{n})=$ the highest prime factor of n, is :
(1) both one-one and onto
(2) one-one only
(3) onto only
(4) neither one-one nor onto

Ans. (4)

SECTION-B

21. The least positive integral value of α, for which the angle between the vectors $\alpha \hat{i}-2 \hat{j}+2 k$ and $\alpha \hat{i}+2 \alpha \hat{j}-2 k$ is acute, is \qquad .

Ans. (5)
22. Let for a differentiable function $f:(0, \infty) \rightarrow R$, $f(x)-f(y) \geq \log _{e}\left(\frac{x}{y}\right)+x-y, \forall x, y \in(0, \infty)$. Then $\sum_{\mathrm{n}=1}^{20} \mathrm{f}^{\prime}\left(\frac{1}{\mathrm{n}^{2}}\right)$ is equal to \qquad .

Ans. (2890)
23. If the solution of the differential equation
$(2 x+3 y-2) d x+(4 x+6 y-7) d y=0, y(0)=3$, is $\alpha x+\beta y+3 \log _{e}|2 x+3 y-\gamma|=6$, then $\alpha+2 \beta+3 \gamma$ is equal to \qquad .

Ans. (29)
24. Let the area of the region $\{(x, y): x-2 y+4 \geq 0$, $\left.x+2 y^{2} \geq 0, x+4 y^{2} \leq 8, y \geq 0\right\}$ be $\frac{m}{n}$, where m and n are coprime numbers. Then $\mathrm{m}+\mathrm{n}$ is equal to
\qquad .

Ans. (119)
25. If
$8=3+\frac{1}{4}(3+p)+\frac{1}{4^{2}}(3+2 p)+\frac{1}{4^{3}}(3+3 p)+\ldots \infty$, then the value of p is \qquad .

Ans. (9)
26. A fair die is tossed repeatedly until a six is obtained. Let X denote the number of tosses required and let $\mathrm{a}=\mathrm{P}(\mathrm{X}=3), \mathrm{b}=\mathrm{P}(\mathrm{X} \geq 3)$ and $\mathrm{c}=$ $P(X \geq 6 \mid X>3)$. Then $\frac{b+c}{a}$ is equal to \qquad $-$

Ans. (12)
27. Let the set of all $a \in R$ such that the equation $\cos 2 x+a \sin x=2 a-7$ has a solution be $[p, q]$ and $r=\tan 9^{\circ}-\tan 27^{\circ}-\frac{1}{\cot 63^{\circ}}+\tan 81^{\circ}$, then pqr is equal to \qquad .

Ans. (48)
28. Let $f(x)=x^{3}+x^{2} f^{\prime}(1)+x f "(2)+f^{\prime \prime \prime}(3), x \in R$. Then $\mathrm{f}^{\prime}(10)$ is equal to \qquad .

Ans. (202)
29. Let $\mathrm{A}=\left\lfloor\begin{array}{lll}2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right\rfloor, \mathrm{B}=\left[\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}\right]$, where B_{1},
$\mathrm{B}_{2}, \mathrm{~B}_{3}$ are column matrices, and $\mathrm{AB}_{1}=\left\lfloor\begin{array}{l}1 \\ 0 \\ 0\end{array}\right\rfloor$,
$\mathrm{AB}_{2}=\left\lfloor\begin{array}{l}2 \\ 3 \\ 0\end{array}\right\rfloor, \mathrm{AB}_{3}=\left\lfloor\begin{array}{l}3 \\ 2 \\ 1\end{array}\right\rfloor$
If $\alpha=|\mathrm{B}|$ and β is the sum of all the diagonal elements of B, then $\alpha^{3}+\beta^{3}$ is equal to \qquad .

Ans. (28)
30. If α satisfies the equation $x^{2}+x+1=0$ and $(1+\alpha)^{7}=\mathrm{A}+\mathrm{B} \alpha+\mathrm{C} \alpha^{2}, \mathrm{~A}, \mathrm{~B}, \mathrm{C} \geq 0$, then $5(3 \mathrm{~A}-2 \mathrm{~B}-\mathrm{C})$ is equal to \qquad .

Ans. (5)

AIIEX AI POWERED APP

Free Crash Courses for Class 10 ${ }^{\text {th }}$ | NEET | JEE

SCALE UP YOUR SCORE!

 with ALLIN SCORE TEST PAPERS
唯等
 Total 10 Full syllabus papers

Paper Analysis of JEE Advanced 2023

QBy ALLEM Subject Experts

(f) Answer key

 with Solutions
Scan QR to Buy

ALLEX:
 SCORE
 TEST PAPERS with SOLUTIONS

Key Features:
, Full Syllabus Papers
Including Answer key
JEE (Adv.) 2023 Paper Analysis
Prepared by ALLEN Expert Faculties

