CAREER INSTITUTE
KOTA (RAJASTHAN]

-

FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Saturday 27 ${ }^{\text {th }}$ January, 2024)
TIME: 3:00 PM to 6:00 PM

MATHEMATICS

SECTION-A

1. Considering only the principal values of inverse trigonometric functions, the number of positive real values of x satisfying $\tan ^{-1}(x)+\tan ^{-1}(2 x)=\frac{\pi}{4}$ is :
(1) More than 2
(2) 1
(3) 2
(4) 0

Ans. (2)
2. Consider the function $\mathrm{f}:(0,2) \rightarrow \mathrm{R}$ defined by $f(x)=\frac{x}{2}+\frac{2}{x}$ and the function $g(x)$ defined by $\mathrm{g}(\mathrm{x})=\left\{\begin{array}{cc}\min \{\mathrm{f}(\mathrm{t})\}, & 0<\mathrm{t} \leq \mathrm{x} \text { and } 0<\mathrm{x} \leq 1 \\ \frac{3}{2}+\mathrm{x}, & 1<\mathrm{x}<2\end{array}\right.$. Then
(1) g is continuous but not differentiable at $\mathrm{x}=1$
(2) g is not continuous for all $x \in(0,2)$
(3) g is neither continuous nor differentiable at $x=1$
(4) g is continuous and differentiable for all $\mathrm{x} \in(0,2)$

Ans. (1)
3. Let the image of the point $(1,0,7)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ be the point (α, β, γ). Then which one of the following points lies on the line passing through (α, β, γ) and making angles $\frac{2 \pi}{3}$ and $\frac{3 \pi}{4}$ with y-axis and z-axis respectively and an acute angle with x -axis ?
(1) $(1,-2,1+\sqrt{2})$
(2) $(1,2,1-\sqrt{2})$
(3) $(3,4,3-2 \sqrt{2})$
(4) $(3,-4,3+2 \sqrt{2})$

Ans. (3)

TEST PAPER WITH ANSWER

4. Let R be the interior region between the lines $3 x-y+1=0$ and $x+2 y-5=0$ containing the origin. The set of all values of a, for which the points $\left(a^{2}, a+1\right)$ lie in R, is :
(1) $(-3,-1) \cup\left(-\frac{1}{3}, 1\right)$
(2) $(-3,0) \cup\left(\frac{1}{3}, 1\right)$
(3) $(-3,0) \cup\left(\frac{2}{3}, 1\right)$
(4) $(-3,-1) \cup\left(\frac{1}{3}, 1\right)$

Ans. (2)
5. The $20^{\text {th }}$ term from the end of the progression $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots .,-129 \frac{1}{4}$ is :-
(1) -118
(2) -110
(3) -115
(4) -100

Ans. (3)
6. Let $f: R-\left\{\frac{-1}{2}\right\} \rightarrow R$ and $g: R-\left\{\frac{-5}{2}\right\} \rightarrow R \quad$ be defined as $\mathrm{f}(\mathrm{x})=\frac{2 \mathrm{x}+3}{2 \mathrm{x}+1}$ and $\mathrm{g}(\mathrm{x})=\frac{|\mathrm{x}|+1}{2 \mathrm{x}+5}$. Then the domain of the function fog is :
(1) $\mathrm{R}-\left\{-\frac{5}{2}\right\}$
(2) R
(3) $R-\left\{-\frac{7}{4}\right\}$
(4) $\mathrm{R}-\left\{-\frac{5}{2},-\frac{7}{4}\right\}$

Ans. (1)
7. For $0<a<1$, the value of the integral $\int_{0}^{\pi} \frac{d x}{1-2 a \cos x+a^{2}}$ is :
(1) $\frac{\pi^{2}}{\pi+a^{2}}$
(2) $\frac{\pi^{2}}{\pi-a^{2}}$
(3) $\frac{\pi}{1-a^{2}}$
(4) $\frac{\pi}{1+a^{2}}$

Ans. (3)
8. Let $g(x)=3 f\left(\frac{x}{3}\right)+f(3-x)$ and $f^{\prime \prime}(x)>0$ for all $x \in(0,3)$. If g is decreasing in $(0, \alpha)$ and increasing in $(\alpha, 3)$, then 8α is
(1) 24
(2) 0
(3) 18
(4) 20

Ans. (3)
9. If $\lim _{x \rightarrow 0} \frac{3+\alpha \sin x+\beta \cos x+\log _{e}(1-x)}{3 \tan ^{2} x}=\frac{1}{3}$, then $2 \alpha-\beta$ is equal to :
(1) 2
(2) 7
(3) 5
(4) 1

Ans. (3)
10. If α, β are the roots of the equation, $x^{2}-x-1=0$ and $S_{n}=2023 \alpha^{n}+2024 \beta^{n}$, then
(1) $2 \mathrm{~S}_{12}=\mathrm{S}_{11}+\mathrm{S}_{10}$
(2) $S_{12}=S_{11}+S_{10}$
(3) $2 \mathrm{~S}_{11}=\mathrm{S}_{12}+\mathrm{S}_{10}$
(4) $S_{11}=S_{10}+S_{12}$

Ans. (2)
11. Let A and B be two finite sets with m and n elements respectively. The total number of subsets of the set A is 56 more than the total number of subsets of B. Then the distance of the point $\mathrm{P}(\mathrm{m}, \mathrm{n})$ from the point $\mathrm{Q}(-2,-3)$ is
(1) 10
(2) 6
(3) 4
(4) 8

Ans. (1)
12. The values of α, for which
$\left|\begin{array}{ccc}1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0\end{array}\right|=0$, lie in the interval
(1) $(-2,1)$
(2) $(-3,0)$
(3) $\left(-\frac{3}{2}, \frac{3}{2}\right)$
(4) $(0,3)$

Ans. (2)
13. An urn contains 6 white and 9 black balls. Two successive draws of 4 balls are made without replacement. The probability, that the first draw gives all white balls and the second draw gives all black balls, is :
(1) $\frac{5}{256}$
(2) $\frac{5}{715}$
(3) $\frac{3}{715}$
(4) $\frac{3}{256}$

Ans. (3)
14. The integral

$$
\int \frac{\left(x^{8}-x^{2}\right) d x}{\left(x^{12}+3 x^{6}+1\right) \tan ^{-1}\left(x^{3}+\frac{1}{x^{3}}\right)} \text { is }
$$

equal to :
(1) $\log _{e}\left(\left|\tan ^{-1}\left(x^{3}+\frac{1}{x^{3}}\right)\right|\right)^{1 / 3}+C$
(2) $\log _{e}\left(\left|\tan ^{-1}\left(x^{3}+\frac{1}{x^{3}}\right)\right|\right)^{1 / 2}+C$
(3) $\log _{e}\left(\left|\tan ^{-1}\left(x^{3}+\frac{1}{x^{3}}\right)\right|\right)+C$
(4) $\log _{e}\left(\left|\tan ^{-1}\left(x^{3}+\frac{1}{x^{3}}\right)\right|\right)^{3}+C$

Ans. (1)
15. If $2 \tan ^{2} \theta-5 \sec \theta=1$ has exactly 7 solutions in the interval $\left[0, \frac{n \pi}{2}\right]$, for the least value of $n \in N$ then $\sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{\mathrm{k}}{2^{\mathrm{k}}}$ is equal to :
(1) $\frac{1}{2^{15}}\left(2^{14}-14\right)$
(2) $\frac{1}{2^{14}}\left(2^{15}-15\right)$
(3) $1-\frac{15}{2^{13}}$
(4) $\frac{1}{2^{13}}\left(2^{14}-15\right)$

Ans. (4)

16. The position vectors of the vertices A, B and C of a triangle are $2 \hat{i}-3 \hat{j}+3 \hat{k}, \quad 2 \hat{i}+2 \hat{j}+3 \hat{k}$ and $-\hat{i}+\hat{j}+3 \hat{k}$ respectively. Let l denotes the length of the angle bisector AD of $\angle \mathrm{BAC}$ where D is on the line segment BC , then $2 l^{2}$ equals :
(1) 49
(2) 42
(3) 50
(4) 45

Ans. (4)
17. If $y=y(x)$ is the solution curve of the differential equation $\left(x^{2}-4\right) d y-\left(y^{2}-3 y\right) d x=0$,
$x>2, y(4)=\frac{3}{2}$ and the slope of the curve is never zero, then the value of $y(10)$ equals :
(1) $\frac{3}{1+(8)^{1 / 4}}$
(2) $\frac{3}{1+2 \sqrt{2}}$
(3) $\frac{3}{1-2 \sqrt{2}}$
(4) $\frac{3}{1-(8)^{1 / 4}}$

Ans. (1)
18. Let e_{1} be the eccentricity of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ and e_{2} be the eccentricity of the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1, \mathrm{a}>\mathrm{b}$, which passes through the foci of the hyperbola. If $\mathrm{e}_{1} \mathrm{e}_{2}=1$, then the length of the chord of the ellipse parallel to the x-axis and passing through $(0,2)$ is :
(1) $4 \sqrt{5}$
(2) $\frac{8 \sqrt{5}}{3}$
(3) $\frac{10 \sqrt{5}}{3}$
(4) $3 \sqrt{5}$

Ans. (3)
19. Let $\alpha=\frac{(4!)!}{(4!)^{3!}}$ and $\beta=\frac{(5!)!}{(5!)^{4!}}$. Then :
(1) $\alpha \in \mathrm{N}$ and $\beta \notin \mathrm{N}$
(2) $\alpha \notin \mathrm{N}$ and $\beta \in \mathrm{N}$
(3) $\alpha \in \mathrm{N}$ and $\beta \in \mathrm{N}$
(4) $\alpha \notin \mathrm{N}$ and $\beta \notin \mathrm{N}$

Ans. (3)
20. Let the position vectors of the vertices A, B and C of a triangle be $2 \hat{i}+2 \hat{j}+\hat{k}, \quad \hat{i}+2 \hat{j}+2 \hat{k}$ and $2 \hat{i}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$ respectively. Let l_{1}, l_{2} and l_{3} be the lengths of perpendiculars drawn from the ortho center of the triangle on the sides AB, BC and CA respectively, then $l_{1}^{2}+l_{2}^{2}+l_{3}^{2}$ equals :
(1) $\frac{1}{5}$
(2) $\frac{1}{2}$
(3) $\frac{1}{4}$
(4) $\frac{1}{3}$

Ans. (2)

SECTION-B

21. The mean and standard deviation of 15 observations were found to be 12 and 3 respectively. On rechecking it was found that an observation was read as 10 in place of 12 . If μ and σ^{2} denote the mean and variance of the correct observations respectively, then $15\left(\mu+\mu^{2}+\sigma^{2}\right)$ is equal to \qquad
Ans. (2521)
22. If the area of the region $\left\{(x, y): 0 \leq y \leq \min \left\{2 x, 6 x-x^{2}\right\}\right\}$ is A, then $12 A$ is equal to \qquad
Ans. (304)
23. Let A be a 2×2 real matrix and I be the identity matrix of order 2. If the roots of the equation $|A-x I|=0$ be -1 and 3 , then the sum of the diagonal elements of the matrix A^{2} is \qquad
Ans. (10)
24. If the sum of squares of all real values of α, for which the lines $2 x-y+3=0,6 x+3 y+1=0$ and $\alpha x+2 y-2=0$ do not form a triangle is p, then the greatest integer less than or equal to p is \qquad
Ans. (32)
25. The coefficient of x^{2012} in the expansion of $(1-x)^{2008}\left(1+x+x^{2}\right)^{2007}$ is equal to

Ans. (0)
26. If the solution curve, of the differential equation $\frac{d y}{d x}=\frac{x+y-2}{x-y}$ passing through the point $(2,1)$ is $\tan ^{-1}\left(\frac{y-1}{x-1}\right)-\frac{1}{\beta} \log _{e}\left(\alpha+\left(\frac{y-1}{x-1}\right)^{2}\right)=\log _{e}|x-1|$, then $5 \beta+\alpha$ is equal to

Ans. (11)
27. Let $f(x)=\int_{0}^{x} g(t) \log _{e}\left(\frac{1-t}{1+t}\right) d t$, where g is a continuous odd function. If $\int_{-\pi / 2}^{\pi / 2}\left(f(x)+\frac{x^{2} \cos x}{1+e^{x}}\right) d x=\left(\frac{\pi}{\alpha}\right)^{2}-\alpha$, then α is equal to. \qquad
Ans. (2)
28. Consider a circle $(x-\alpha)^{2}+(y-\beta)^{2}=50$, where $\alpha, \beta>0$. If the circle touches the line $y+x=0$ at the point P, whose distance from the origin is $4 \sqrt{2}$, then $(\alpha+\beta)^{2}$ is equal to \qquad

Ans. (100) for Class 10 ${ }^{\text {th }}$ | NEET | JEE
29. The lines $\frac{x-2}{2}=\frac{y}{-2}=\frac{z-7}{16}$ and
$\frac{x+3}{4}=\frac{y+2}{3}=\frac{z+2}{1}$ intersect at the point P. If the distance of P from the line $\frac{\mathrm{x}+1}{2}=\frac{\mathrm{y}-1}{3}=\frac{\mathrm{z}-1}{1}$ is l, then $14 l^{2}$ is equal to \qquad
Ans. (108)
30. Let the complex numbers α and $\frac{1}{\bar{\alpha}}$ lie on the circles $\left|\mathrm{z}-\mathrm{z}_{0}\right|^{2}=4$ and $\left|\mathrm{z}-\mathrm{z}_{0}\right|^{2}=16$ respectively, where $\mathrm{z}_{0}=1+\mathrm{i}$. Then, the value of $100|\alpha|^{2}$ is. \qquad
Ans. (20)

ALIEX AIPOWERED APP

\square

SCALE UP YOUR SCORE!

 with ALLEN SCORE TEST PAPERS
管筌
 Total 10 Full syllabus papers

Paper Analysis of JEE Advanced 2023

8By A놎N Subject Experts
(1) Answer key with Solutions

Scan QR to Buy

ALLEX:
 SCORE
 TEST PAPERS with SOLUTIONS

Key Features:
P Full Syllabus Papers
Including Answer key
JEE (Adv.) 2023 Paper Analysis
Prepared by ALLEN Expert Faculties

