KOTA (RAJASTHAN)
can to mexas

FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Thursday 01st February, 2024)
TIME:9:00 AM to 12:00 NOON

MATHEMATICS

SECTION-A

1. A bag contains 8 balls, whose colours are either white or black. 4 balls are drawn at random without replacement and it was found that 2 balls are white and other 2 balls are black. The probability that the bag contains equal number of white and black balls is:
(1) $\frac{2}{5}$
(2) $\frac{2}{7}$
(3) $\frac{1}{7}$
(4) $\frac{1}{5}$

Ans. (2)
2. The value of the integral $\int_{0}^{\frac{\pi}{4}} \frac{x d x}{\sin ^{4}(2 x)+\cos ^{4}(2 x)}$ equals:
(1) $\frac{\sqrt{2} \pi^{2}}{8}$
(2) $\frac{\sqrt{2} \pi^{2}}{16}$
(3) $\frac{\sqrt{2} \pi^{2}}{32}$
(4) $\frac{\sqrt{2} \pi^{2}}{64}$

Ans. (3)
3. If $\mathrm{A}=\left[\begin{array}{cc}\sqrt{2} & 1 \\ -1 & \sqrt{2}\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], \mathrm{C}=\mathrm{ABA}^{\mathrm{T}}$ and X
$=A^{T} C^{2} A$, then $\operatorname{det} X$ is equal to :
(1) 243
(2) 729
(3) 27
(4) 891

Ans. (2)

TEST PAPER WITH ANSWER

4. If $\tan \mathrm{A}=\frac{1}{\sqrt{x\left(x^{2}+x+1\right)}}, \tan B=\frac{\sqrt{x}}{\sqrt{x^{2}+x+1}}$
and
$\tan C=\left(x^{-3}+x^{-2}+x^{-1}\right)^{\frac{1}{2}}, 0<A, B, C<\frac{\pi}{2}$, then
$\mathrm{A}+\mathrm{B}$ is equal to :
(1) C
(2) $\pi-C$
(3) $2 \pi-C$
(4) $\frac{\pi}{2}-C$

Ans. (1)
5. If n is the number of ways five different employees can sit into four indistinguishable offices where any office may have any number of persons including zero, then n is equal to:
(1) 47
(2) 53
(3) 51
(4) 43

Ans. (3)
6. Let $S=\{z \in C:|z-1|=1$ and
$(\sqrt{2}-1)(z+\bar{z})-i(z-\bar{z})=2 \sqrt{2}\}$. Let $\mathrm{z}_{1}, \quad \mathrm{z}_{2}$ $\in S$ be such that $\left|z_{1}\right|=\max _{z \in S}|z|$ and $\left|z_{2}\right|=\min _{z \in S}|z|$.

Then $\left|\sqrt{2} z_{1}-z_{2}\right|^{2}$ equals :
(1) 1
(2) 4
(3) 3
(4) 2

Ans. (4)
7. Let the median and the mean deviation about the median of 7 observation $170,125,230,190,210$, a, b be 170 and $\frac{205}{7}$ respectively. Then the mean deviation about the mean of these 7 observations is :
(1) 31
(2) 28
(3) 30
(4) 32

Ans. (3)
8. Let $\vec{a}=-5 \hat{i}+\hat{j}-3 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}-4 \hat{k}$ and $\vec{c}=(((\vec{a} \times \vec{b}) \times \hat{i}) \times \hat{i}) \times \hat{i}$. Then $\vec{c} \cdot(-\hat{i}+\hat{j}+\hat{k})$ is equal to
(1) -12
(2) -10
(3) -13
(4) -15

Ans. (1)
9. Let $S=\left\{x \in R:(\sqrt{3}+\sqrt{2})^{x}+(\sqrt{3}-\sqrt{2})^{x}=10\right\}$. Then the number of elements in S is :
(1) 4
(2) 0
(3) 2
(4) 1

Ans. (3)
10. The area enclosed by the curves $x y+4 y=16$ and $x+y=6$ is equal to :
(1) $28-30 \log _{e} 2$
(2) $30-28 \log _{e} 2$
(3) $30-32 \log _{e} 2$
(4) $32-30 \log _{e} 2$

Ans. (3)
11. Let $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ and $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$ be defined as $f(x)=\left\{\begin{array}{cll}\log _{e} x & , & x>0 \\ e^{-x} & , & x \leq 0\end{array}\right.$ and
$g(x)=\left\{\begin{array}{cl}x & , \\ e^{x} \geq 0 \\ e^{x} & , \quad x<0\end{array}\right.$. Then, gof $: \mathbf{R} \rightarrow \mathbf{R}$ is :
(1) one-one but not onto
(2) neither one-one nor onto
(3) onto but not one-one
(4) both one-one and onto

Ans. (2)
12. If the system of equations
$2 x+3 y-z=5$
$x+\alpha y+3 z=-4$
$3 x-y+\beta z=7$
has infinitely many solutions, then $13 \alpha \beta$ is equal to
(1) 1110
(2) 1120
(3) 1210
(4) 1220

Ans. (2)
13. For $0<\theta<\pi / 2$, if the eccentricity of the hyperbola $x^{2}-y^{2} \operatorname{cosec}^{2} \theta=5$ is $\sqrt{7}$ times eccentricity of the ellipse $x^{2} \operatorname{cosec}^{2} \theta+y^{2}=5$, then the value of θ is :
(1) $\frac{\pi}{6}$
(2) $\frac{5 \pi}{12}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{4}$

Ans. (3)
14. Let $y=y(x)$ be the solution of the differential equation $\frac{d y}{d x}=2 x(x+y)^{3}-x(x+y)-1, y(0)=1$.

Then, $\left(\frac{1}{\sqrt{2}}+y\left(\frac{1}{\sqrt{2}}\right)\right)^{2}$ equals :
(1) $\frac{4}{4+\sqrt{\mathrm{e}}}$
(2) $\frac{3}{3-\sqrt{e}}$
(3) $\frac{2}{1+\sqrt{\mathrm{e}}}$
(4) $\frac{1}{2-\sqrt{\mathrm{e}}}$

Ans. (4)
15. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as $f(x)=\left\{\begin{array}{ccc}\frac{a-b \cos 2 x}{x^{2}} & ; & x<0 \\ x^{2}+c x+2 & ; & 0 \leq x \leq 1 \\ 2 x+1 & ; & x>1\end{array}\right.$

If f is continuous everywhere in \mathbf{R} and m is the number of points where f is NOT differential then $\mathrm{m}+\mathrm{a}+\mathrm{b}+\mathrm{c}$ equals :
(1) 1
(2) 4
(3) 3
(4) 2

Ans. (4)
16. Let $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$ be an ellipse, whose eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is $\sqrt{14}$. Then the square of the eccentricity of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is :
(1) 3
(2) $7 / 2$
(3) $3 / 2$
(4) $5 / 2$

Ans. (3)
17. Let $3, a, b, c$ be in A.P. and $3, a-1, b+1, c+9$ be in G.P. Then, the arithmetic mean of a, b and c is :
(1) -4
(2) -1
(3) 13
(4) 11

Ans. (4)
18. Let $C: x^{2}+y^{2}=4$ and $C^{\prime}: x^{2}+y^{2}-4 \lambda x+9=0$ be two circles. If the set of all values of λ so that the circles C and C^{\prime} intersect at two distinct points, is $\mathbf{R}-[a, b]$, then the point $(8 a+12,16 b-20)$ lies on the curve :
(1) $x^{2}+2 y^{2}-5 x+6 y=3$
(2) $5 x^{2}-y=-11$
(3) $x^{2}-4 y^{2}=7$
(4) $6 x^{2}+y^{2}=42$

Ans. (4)
19. If $5 f(x)+4 f\left(\frac{1}{x}\right)=x^{2}-2, \forall x \neq 0$ and $y=9 x^{2} f(x)$, then y is strictly increasing in :
(1) $\left(0, \frac{1}{\sqrt{5}}\right) \cup\left(\frac{1}{\sqrt{5}}, \infty\right)$
(2) $\left(-\frac{1}{\sqrt{5}}, 0\right) \cup\left(\frac{1}{\sqrt{5}}, \infty\right)$
(3) $\left(-\frac{1}{\sqrt{5}}, 0\right) \cup\left(0, \frac{1}{\sqrt{5}}\right)$
(4) $\left(-\infty, \frac{1}{\sqrt{5}}\right) \cup\left(0, \frac{1}{\sqrt{5}}\right)$

Ans. (2)
20. If the shortest distance between the lines $\frac{\mathrm{x}-\lambda}{-2}=\frac{\mathrm{y}-2}{1}=\frac{\mathrm{z}-1}{1}$ and $\frac{x-\sqrt{3}}{1}=\frac{y-1}{-2}=\frac{z-2}{1}$
is 1 , then the sum of all possible values of λ is :
(1) 0
(2) $2 \sqrt{3}$
(3) $3 \sqrt{3}$
(4) $-2 \sqrt{3}$

Ans. (2)

SECTION-B

21. If $x=x(t)$ is the solution of the differential equation $(t+1) d x=\left(2 x+(t+1)^{4}\right) d t, x(0)=2$, then, $x(1)$ equals \qquad .

Ans. (14)
22. The number of elements in the set
$S=\{(x, y, z): x, y, z \in \mathbf{Z}, x+2 y+3 z=42, x, y, z$ $\geq 0\}$ equals \qquad .
Ans. (169)
23. If the Coefficient of x^{30} in the expansion of $\left(1+\frac{1}{x}\right)^{6}\left(1+x^{2}\right)^{7}\left(1-x^{3}\right)^{8} ; x \neq 0$ is α, then $|\alpha|$ equals \qquad .

Ans. (678)
24. Let $3,7,11,15, \ldots ., 403$ and $2,5,8,11, \ldots, 404$ be two arithmetic progressions. Then the sum, of the common terms in them, is equal to \qquad .

Ans. (6699)
25. Let $\{x\}$ denote the fractional part of x and $f(x)=\frac{\cos ^{-1}\left(1-\{x\}^{2}\right) \sin ^{-1}(1-\{x\})}{\{x\}-\{x\}^{3}}, x \neq 0$. If L and R respectively denotes the left hand limit and the right hand limit of $f(x)$ at $x=0$, then $\frac{32}{\pi^{2}}\left(L^{2}+R^{2}\right)$ is equal to \qquad .
Ans. (18)
26. Let the line $\mathrm{L}: \sqrt{2} \mathrm{x}+\mathrm{y}=\alpha$ pass through the point of the intersection P (in the first quadrant) of the circle $x^{2}+y^{2}=3$ and the parabola $x^{2}=2 y$. Let the line L touch two circles C_{1} and C_{2} of equal radius $2 \sqrt{3}$. If the centres Q_{1} and Q_{2} of the circles C_{1} and C_{2} lie on the y-axis, then the square of the area of the triangle $\mathrm{PQ}_{1} \mathrm{Q}_{2}$ is equal to \qquad .

Ans. (72)
27. Let $P=\{z \in \mathbb{C}:|z+2-3 i| \leq 1\}$ and $\mathrm{Q}=\{\mathrm{z} \in \mathbb{C}: \mathrm{z}(1+\mathrm{i})+\overline{\mathrm{z}}(1-\mathrm{i}) \leq-8\}$. Let in $\mathrm{P} \cap \mathrm{Q},|\mathrm{z}-3+2 \mathrm{i}|$ be maximum and minimum at z_{1} and z_{2} respectively. If $\left|z_{1}\right|^{2}+2|z|^{2}=\alpha+\beta \sqrt{2}$, where α, β are integers, then $\alpha+\beta$ equals
\qquad -.
Ans. (36)
28. If $\int_{-\pi / 2}^{\pi / 2} \frac{8 \sqrt{2} \cos x d x}{\left(1+e^{\sin x}\right)\left(1+\sin ^{4} x\right)}=\alpha \pi+\beta \log _{e}(3+2$ $\sqrt{2}$), where α, β are integers, then $\alpha^{2}+\beta^{2}$ equals
\qquad -.

Ans. (8)

29. Let the line of the shortest distance between the lines
$L_{1}: \overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$ and
$L_{2}: \overrightarrow{\mathrm{r}}=(4 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})+\mu(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$
intersect L_{1} and L_{2} at P and Q respectively. If (α, β, γ) is the mid point of the line segment PQ , then $2(\alpha+\beta+\gamma)$ is equal to \qquad .
Ans. (21)
30. Let $A=\{1,2,3, \ldots 20\}$. Let R_{1} and R_{2} two relation on A such that
$R_{1}=\{(a, b): b$ is divisible by $a\}$
$R_{2}=\{(a, b): a$ is an integral multiple of $b\}$.
Then, number of elements in $R_{1}-R_{2}$ is equal to \qquad .
Ans. (46)

ALIEN AIPOWERED APP

Free Crash Courses for Class 10Th NEET | JEE

SCALE UP YOUR SCORE!

 with ALLEN SCORE TEST PAPERS
管筌
 Total 10 Full syllabus papers

Paper Analysis of JEE Advanced 2023

8By A놎N Subject Experts
(1) Answer key with Solutions

Scan QR to Buy

ALLEX:
 SCORE
 TEST PAPERS with SOLUTIONS

Key Features:
P Full Syllabus Papers
Including Answer key
JEE (Adv.) 2023 Paper Analysis
Prepared by ALLEN Expert Faculties

