CAREER INSTITUTE
KOTA (RANASTHAN)

FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Thursday 01st February, 2024)
TIME : 3: 00 PM to 6: 00 PM

MATHEMATICS

SECTION-A

1. Let $f(x)=\left|2 x^{2}+5\right| x|-3|, x \in R$. If m and n denote the number of points where f is not continuous and not differentiable respectively, then $\mathrm{m}+\mathrm{n}$ is equal to:
(1) 5
(2) 2
(3) 0
(4) 3

Ans. (4)
2. Let α and β be the roots of the equation $\mathrm{px}^{2}+\mathrm{qx}-$ $r=0$, where $p \neq 0$. If p, q and r be the consecutive terms of a non-constant G.P and $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}$, then the value of $(\alpha-\beta)^{2}$ is :
(1) $\frac{80}{9}$
(2) 9
(3) $\frac{20}{3}$
(4) 8

Ans. (1)
3. The number of solutions of the equation $4 \sin ^{2} x-4$ $\cos ^{3} x+9-4 \cos x=0 ; x \in[-2 \pi, 2 \pi]$ is :
(1) 1
(2) 3
(3) 2
(4) 0

Ans. (4)
4. The value of $\int_{0}^{1}\left(2 x^{3}-3 x^{2}-x+1\right)^{\frac{1}{3}} d x$ is equal to:
(1) 0
(2) 1
(3) 2
(4) -1

Ans. (1)
5. Let P be a point on the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$. Let the line passing through P and parallel to y-axis meet the circle $x^{2}+y^{2}=9$ at point Q such that P and Q are on the same side of the x-axis. Then, the eccentricity of the locus of the point R on $P Q$ such that $\mathrm{PR}: \mathrm{RQ}=4: 3$ as P moves on the ellipse, is :
(1) $\frac{11}{19}$
(2) $\frac{13}{21}$
(3) $\frac{\sqrt{139}}{23}$
(4) $\frac{\sqrt{13}}{7}$

Ans. (4)

TEST PAPER WITH ANSWER

6. Let m and n be the coefficients of seventh and thirteenth terms respectively in the expansion of $\left(\frac{1}{3} x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{2}{3}}}\right)^{18}$. Then $\left(\frac{n}{m}\right)^{\frac{1}{3}}$ is :
(1) $\frac{4}{9}$
(2) $\frac{1}{9}$
(3) $\frac{1}{4}$
(4) $\frac{9}{4}$

Ans. (4)
7. Let α be a non-zero real number. Suppose $f: \mathrm{R} \rightarrow$ R is a differentiable function such that $f(0)=2$ and $\lim _{x \rightarrow-\infty} \mathrm{f}(\mathrm{x})=1$. If $f^{\prime}(\mathrm{x})=\alpha f(x)+3$, for all $\mathrm{x} \in \mathrm{R}$, then $f\left(-\log _{\mathrm{e}} 2\right)$ is equal to \qquad $-$
(1) 3
(2) 5
(3) 9
(4) 7

Ans. (Bonus)
8. Let P and Q be the points on the line $\frac{x+3}{8}=\frac{y-4}{2}=\frac{z+1}{2}$ which are at a distance of 6 units from the point $R(1,2,3)$. If the centroid of the triangle PQR is (α, β, γ), then $\alpha^{2}+\beta^{2}+\gamma^{2}$ is:
(1) 26
(2) 36
(3) 18
(4) 24

Ans. (3)
9. Consider a $\triangle \mathrm{ABC}$ where $\mathrm{A}(1,3,2), \mathrm{B}(-2,8,0)$ and $C(3,6,7)$. If the angle bisector of $\angle B A C$ meets the line BC at D , then the length of the projection of the vector $\overrightarrow{A D}$ on the vector $\overrightarrow{A C}$ is:
(1) $\frac{37}{2 \sqrt{38}}$
(2) $\frac{\sqrt{38}}{2}$
(3) $\frac{39}{2 \sqrt{38}}$
(4) $\sqrt{19}$

Ans. (1)
10. Let S_{n} denote the sum of the first n terms of an arithmetic progression. If $\mathrm{S}_{10}=390$ and the ratio of the tenth and the fifth terms is $15: 7$, then $S_{15}-S_{5}$ is equal to:
(1) 800
(2) 890
(3) 790
(4) 690

Ans. (3)
11. If $\int_{0}^{\frac{\pi}{3}} \cos ^{4} x d x=a \pi+b \sqrt{3}$, where a and b are rational numbers, then $9 a+8 b$ is equal to :
(1) 2
(2) 1
(3) 3
(4) $\frac{3}{2}$

Ans. (1)
12. If z is a complex number such that $|z| \geq 1$, then the minimum value of $\left|\mathrm{z}+\frac{1}{2}(3+4 i)\right|$ is:
(1) $\frac{5}{2}$
(2) 2
(3) 3
(4) $\frac{3}{2}$

Ans. (Bonus)
13. If the domain of the function $f(x)=\frac{\sqrt{x^{2}-25}}{\left(4-x^{2}\right)}$ $+\log _{10}\left(\mathrm{x}^{2}+2 \mathrm{x}-15\right)$ is $(-\infty, \alpha) \mathrm{U}[\beta, \infty)$, then $\alpha^{2}+$ β^{3} is equal to :
(1) 140
(2) 175
(3) 150
(4) 125

Ans. (3)
14. Consider the relations R_{1} and R_{2} defined as $a R_{1} b$ $\Leftrightarrow a^{2}+b^{2}=1$ for all $a, b, \in R$ and $(a, b) R_{2}(c, d)$ $\Leftrightarrow \mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c}$ for all $(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}) \in \mathrm{N} \times \mathrm{N}$. Then
(1) Only R_{1} is an equivalence relation
(2) Only R_{2} is an equivalence relation
(3) R_{1} and R_{2} both are equivalence relations
(4) Neither R_{1} nor R_{2} is an equivalence relation

Ans. (2)
15. If the mirror image of the point $\mathrm{P}(3,4,9)$ in the line $\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-2}{1}$ is (α, β, γ), then $14(\alpha+\beta+\gamma)$ is :
(1) 102
(2) 138
(3) 108
(4) 132

Ans. (3)
16. Let $f(\mathrm{x})=\left\{\begin{array}{c}\mathrm{x}-1, \mathrm{x} \text { is even, } \\ 2 \mathrm{x}, \mathrm{x} \text { is odd, }\end{array} \quad \mathrm{x} \in \mathrm{N}\right.$. If for some
$a \in N, f(f(f(a)))=21$, then $\lim _{x \rightarrow a^{-}}\left\{\frac{|x|^{3}}{a}-\left[\frac{x}{a}\right]\right\}$, where [t] denotes the greatest integer less than or equal to t, is equal to :
(1) 121
(2) 144
(3) 169
(4) 225

Ans. (2)
17. Let the system of equations $x+2 y+3 z=5,2 x+$ $3 y+z=9,4 x+3 y+\lambda z=\mu$ have infinite number of solutions. Then $\lambda+2 \mu$ is equal to :
(1) 28
(2) 17
(3) 22
(4) 15

Ans. (2)
18. Consider 10 observation $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{10}$. such that $\sum_{i=1}^{10}\left(x_{i}-\alpha\right)=2$ and $\sum_{i=1}^{10}\left(x_{i}-\beta\right)^{2}=40$, where α, β are positive integers. Let the mean and the variance of the observations be $\frac{6}{5}$ and $\frac{84}{25}$ respectively. The $\frac{\beta}{\alpha}$ is equal to :
(1) 2
(2) $\frac{3}{2}$
(3) $\frac{5}{2}$
(4) 1

Ans. (1)

CAREER INSTITUTE
19. Let Ajay will not appear in JEE exam with probability $\mathrm{p}=\frac{2}{7}$, while both Ajay and Vijay will appear in the exam with probability $\mathrm{q}=\frac{1}{5}$. Then the probability, that Ajay will appear in the exam and Vijay will not appear is :
(1) $\frac{9}{35}$
(2) $\frac{18}{35}$
(3) $\frac{24}{35}$
(4) $\frac{3}{35}$

Ans. (2)
20. Let the locus of the mid points of the chords of circle $x^{2}+(y-1)^{2}=1$ drawn from the origin intersect the line $x+y=1$ at P and Q. Then, the length of $P Q$ is :
(1) $\frac{1}{\sqrt{2}}$
(2) $\sqrt{2}$
(3) $\frac{1}{2}$
(4) 1

Ans. (1)

SECTION-B

21. If three successive terms of a G.P. with common ratio $\mathrm{r}(\mathrm{r}>1)$ are the lengths of the sides of a triangle and $[\mathrm{r}]$ denotes the greatest integer less than or equal to r, then $3[r]+[-r]$ is equal to :
Ans. (1)
22. Let $A=I_{2}-2 M^{T}$, where M is real matrix of order 2×1 such that the relation $M^{T} M=I_{1}$ holds. If λ is a real number such that the relation $\mathrm{AX}=\lambda \mathrm{X}$ holds for some non-zero real matrix X of order 2×1, then the sum of squares of all possible values of λ is equal to :

Ans. (2)
23. Let $f:(0, \infty) \rightarrow R$ and $F(x)=\int_{0}^{x} t f(t) d t$. If $F\left(x^{2}\right)=$ $x^{4}+x^{5}$, then $\sum_{r=1}^{12} f\left(r^{2}\right)$ is equal to :

Ans. (219)
24. If $\mathrm{y}=\frac{(\sqrt{\mathrm{x}}+1)\left(\mathrm{x}^{2}-\sqrt{\mathrm{x}}\right)}{\mathrm{x} \sqrt{\mathrm{x}}+\mathrm{x}+\sqrt{\mathrm{x}}}+\frac{1}{15}\left(3 \cos ^{2} \mathrm{x}-5\right) \cos ^{3} \mathrm{x}$, then $96 y^{\prime}\left(\frac{\pi}{6}\right)$ is equal to :

Ans. (105)
25. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \quad \vec{b}=-\hat{i}-8 \hat{j}+2 \hat{k} \quad$ and $\overrightarrow{\mathrm{c}}=4 \hat{\mathrm{i}}+\mathrm{c}_{2} \hat{\mathrm{j}}+\mathrm{c}_{3} \hat{\mathrm{k}}$ be three vectors such that $\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}$. If the angle between the vector $\overrightarrow{\mathrm{c}}$ and the vector $3 \hat{i}+4 \hat{j}+\hat{k}$ is θ, then the greatest integer less than or equal to $\tan ^{2} \theta$ is :

Ans. (38)
26. The lines $L_{1}, L_{2}, \ldots, L_{20}$ are distinct. For $n=1$, $2,3, \ldots, 10$ all the lines $L_{2 n-1}$ are parallel to each other and all the lines $L_{2 n}$ pass through a given point P. The maximum number of points of intersection of pairs of lines from the set $\left\{\mathrm{L}_{1}, \mathrm{~L}_{2}, \ldots, \mathrm{~L}_{20}\right\}$ is equal to :

Ans. (101)
27. Three points $\mathrm{O}(0,0), \mathrm{P}\left(\mathrm{a}, \mathrm{a}^{2}\right), \mathrm{Q}\left(-\mathrm{b}, \mathrm{b}^{2}\right), \mathrm{a}>0, \mathrm{~b}>0$, are on the parabola $y=x^{2}$. Let S_{1} be the area of the region bounded by the line PQ and the parabola, and S_{2} be the area of the triangle $O P Q$. If the minimum value of $\frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}$ is $\frac{\mathrm{m}}{\mathrm{n}}, \operatorname{gcd}(m, n)=1$, then $\mathrm{m}+\mathrm{n}$ is equal to :

Ans. (7)
28. The sum of squares of all possible values of k, for which area of the region bounded by the parabolas $2 y^{2}=k x$ and $k y^{2}=2(y-x)$ is maximum, is equal to :

Ans. (8)
29. If $\frac{d x}{d y}=\frac{1+x-y^{2}}{y}, x(1)=1$, then $5 x(2)$ is equal to :

Ans. (5)
30. Let $A B C$ be an isosceles triangle in which A is at $(-1,0), \angle \mathrm{A}=\frac{2 \pi}{3}, \mathrm{AB}=\mathrm{AC}$ and B is on the positive x-axis. If $B C=4 \sqrt{3}$ and the line $B C$ intersects the line $y=x+3$ at (α, β), then $\frac{\beta^{4}}{\alpha^{2}}$ is :

Ans. (36)

SCALE UP YOUR SCORE!

 with ALLEN SCORE TEST PAPERS
管筌
 Total 10 Full syllabus papers

Paper Analysis of JEE Advanced 2023

8By A놎N Subject Experts
(1) Answer key with Solutions

Scan QR to Buy

ALLEX:
 SCORE
 TEST PAPERS with SOLUTIONS

Key Features:
P Full Syllabus Papers
Including Answer key
JEE (Adv.) 2023 Paper Analysis
Prepared by ALLEN Expert Faculties

