

FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Thursday 01st February, 2024)

TIME: 3:00 PM to 6:00 PM

MATHEMATICS

SECTION-A

- 1. Let $f(x) = |2x^2+5|x|-3|$, $x \in \mathbb{R}$. If m and n denote the number of points where f is not continuous and not differentiable respectively, then m + n is equal to:
 - (1)5

(2) 2

(3)0

(4) 3

Ans. (4)

- 2. Let α and β be the roots of the equation $px^2 + qx r = 0$, where $p \neq 0$. If p, q and r be the consecutive terms of a non-constant G.P and $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{3}{4}$, then the value of $(\alpha \beta)^2$ is:
 - (1) $\frac{80}{9}$
- (2) 9
- (3) $\frac{20}{3}$
- (4) 8

Ans. (1)

- 3. The number of solutions of the equation $4 \sin^2 x 4 \cos^3 x + 9 4 \cos x = 0$; $x \in [-2\pi, 2\pi]$ is:
 - (1) 1
- (2) 3

(3) 2

(4) 0

Ans. (4)

- 4. The value of $\int_0^1 (2x^3 3x^2 x + 1)^{\frac{1}{3}} dx$ is equal to:
 - (1) 0

(2) 1

(3)2

(4) -1

Ans. (1)

5. Let P be a point on the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$. Let the

line passing through P and parallel to y-axis meet the circle $x^2 + y^2 = 9$ at point Q such that P and Q are on the same side of the x-axis. Then, the eccentricity of the locus of the point R on PQ such that PR: RQ = 4: 3 as P moves on the ellipse, is:

- $(1) \frac{11}{19}$
- $(2) \frac{13}{21}$
- (3) $\frac{\sqrt{139}}{23}$
- (4) $\frac{\sqrt{13}}{7}$

Ans. (4)

TEST PAPER WITH ANSWER

6. Let m and n be the coefficients of seventh and thirteenth terms respectively in the expansion of

$$\left(\frac{1}{3}x^{\frac{1}{3}} + \frac{1}{2x^{\frac{2}{3}}}\right)^{18} \cdot Then \left(\frac{n}{m}\right)^{\frac{1}{3}} is:$$

- $(1)\frac{4}{9}$
- (2) $\frac{1}{9}$

(3) $\frac{1}{4}$

 $(4) \frac{9}{4}$

Ans. (4)

- 7. Let α be a non-zero real number. Suppose $f: R \to R$ is a differentiable function such that f(0) = 2 and $\lim_{x \to -\infty} f(x) = 1$. If $f'(x) = \alpha f(x) + 3$, for all $x \in R$, then $f(-\log_e 2)$ is equal to____.
 - (1) 3
- (2) 5
- (3)9
- (4) 7

Ans. (Bonus)

- 8. Let P and Q be the points on the line $\frac{x+3}{8} = \frac{y-4}{2} = \frac{z+1}{2}$ which are at a distance of 6 units from the point R (1,2,3). If the centroid of the triangle PQR is (α, β, γ) , then $\alpha^2 + \beta^2 + \gamma^2$ is:
 - (1)26
- (2) 36
- (3)18
- (4) 24

Ans. (3)

- 9. Consider a \triangle ABC where A(1,3,2), B(-2,8,0) and C(3,6,7). If the angle bisector of \angle BAC meets the line BC at D, then the length of the projection of the vector \overrightarrow{AD} on the vector \overrightarrow{AC} is:
 - (1) $\frac{37}{2\sqrt{38}}$
- (2) $\frac{\sqrt{38}}{2}$
- (3) $\frac{39}{2\sqrt{38}}$
- $(4) \sqrt{19}$

Ans. (1)

ALLEN
AI POWERED APP

Free Crash Courses for Class 10th | NEET | JEE

- 10. Let S_n denote the sum of the first n terms of an arithmetic progression. If S_{10} = 390 and the ratio of the tenth and the fifth terms is 15 : 7, then S_{15} – S_5 is equal to:
 - (1) 800
- (2)890
- (3) 790
- (4)690

Ans. (3)

- 11. If $\int_{0}^{\frac{\pi}{3}} \cos^4 x \, dx = a\pi + b\sqrt{3}$, where a and b are rational numbers, then 9a + 8b is equal to:
 - (1)2

(2) 1

(3) 3

 $(4) \frac{3}{2}$

Ans. (1)

- 12. If z is a complex number such that $|z| \ge 1$, then the minimum value of $\left|z + \frac{1}{2}(3 + 4i)\right|$ is:
 - $(1) \frac{5}{2}$
- (2) 2

(3) 3

 $(4) \frac{3}{2}$

Ans. (Bonus)

- 13. If the domain of the function $f(x) = \frac{\sqrt{x^2 25}}{(4 x^2)}$ +log₁₀ ($x^2 + 2x - 15$) is ($-\infty$, α) U [β , ∞), then $\alpha^2 + \beta^3$ is equal to :
 - (1) 140
- (2) 175
- (3)150
- (4) 125

Ans. (3)

- 14. Consider the relations R_1 and R_2 defined as aR_1b $\Leftrightarrow a^2 + b^2 = 1$ for all a, b, $\in R$ and (a, b) $R_2(c, d)$ $\Leftrightarrow a + d = b + c$ for all (a,b), $(c,d) \in N \times N$. Then
 - (1) Only R₁ is an equivalence relation
 - (2) Only R₂ is an equivalence relation
 - (3) R_1 and R_2 both are equivalence relations
 - (4) Neither R_1 nor R_2 is an equivalence relation **Ans.** (2)

- 15. If the mirror image of the point P(3,4,9) in the line $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z-2}{1} \text{ is } (\alpha, \beta, \gamma), \text{ then } 14 \ (\alpha + \beta + \gamma)$ is:
 - (1) 102
- (2) 138
- (3) 108
- (4) 132

Ans. (3)

16. Let $f(x) = \begin{cases} x - 1, x \text{ is even,} \\ 2x, x \text{ is odd,} \end{cases} x \in \mathbb{N}$. If for some

$$a \in N$$
, $f(f(f(a))) = 21$, then $\lim_{x \to a^{-}} \left\{ \frac{|x|^{3}}{a} - \left[\frac{x}{a}\right] \right\}$,

where [t] denotes the greatest integer less than or equal to t, is equal to :

- (1) 121
- (2) 144
- (3) 169
- (4) 225

Ans. (2)

- 17. Let the system of equations x + 2y + 3z = 5, 2x + 3y + z = 9, $4x + 3y + \lambda z = \mu$ have infinite number of solutions. Then $\lambda + 2\mu$ is equal to:
 - (1)28
- (2) 17
- (3) 22
- (4) 15

Ans. (2)

18. Consider 10 observation x_1 , x_2 ,..., x_{10} . such that $\sum_{i=1}^{10} (x_i - \alpha) = 2 \text{ and } \sum_{i=1}^{10} (x_i - \beta)^2 = 40, \text{ where } \alpha, \beta$ are positive integers. Let the mean and the variance of the observations be $\frac{6}{5}$ and $\frac{84}{25}$ respectively. The

$$\frac{\beta}{\alpha}$$
 is equal to :

- (1)2
- (2) $\frac{3}{2}$
- $(3) \frac{5}{2}$
- (4) 1
- Ans. (1)

2

Final JEE-Main Exam January, 2024/01-02-2024/Evening Session

- 19. Let Ajay will not appear in JEE exam with probability $p=\frac{2}{7}$, while both Ajay and Vijay will appear in the exam with probability $q=\frac{1}{5}$. Then the probability, that Ajay will appear in the exam and Vijay will not appear is:
 - $(1) \frac{9}{35}$
- $(2) \frac{18}{35}$
- $(3) \frac{24}{35}$
- $(4) \frac{3}{35}$

Ans. (2)

- 20. Let the locus of the mid points of the chords of circle $x^2+(y-1)^2=1$ drawn from the origin intersect the line x+y=1 at P and Q. Then, the length of PQ is:
 - $(1) \frac{1}{\sqrt{2}}$
- (2) $\sqrt{2}$
- $(3) \frac{1}{2}$
- (4) 1

Ans. (1)

SECTION-B

21. If three successive terms of a G.P. with common ratio r(r > 1) are the lengths of the sides of a triangle and [r] denotes the greatest integer less than or equal to r, then 3[r] + [-r] is equal to:

Ans. (1)

22. Let $A = I_2 - 2MM^T$, where M is real matrix of order 2×1 such that the relation $M^TM = I_1$ holds. If λ is a real number such that the relation $AX = \lambda X$ holds for some non-zero real matrix X of order 2×1 , then the sum of squares of all possible values of λ is equal to :

Ans. (2)

23. Let $f:(0, \infty) \to R$ and $F(x) = \int_{0}^{x} tf(t)dt$. If $F(x^{2}) = x^{4} + x^{5}$, then $\sum_{r=1}^{12} f(r^{2})$ is equal to:

Ans. (219)

24. If
$$y = \frac{(\sqrt{x} + 1)(x^2 - \sqrt{x})}{x\sqrt{x} + x + \sqrt{x}} + \frac{1}{15}(3\cos^2 x - 5)\cos^3 x$$
,
then $96y'(\frac{\pi}{6})$ is equal to:

Ans. (105)

25. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = -\hat{i} - 8\hat{j} + 2\hat{k}$ and $\vec{c} = 4\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three vectors such that $\vec{b} \times \vec{a} = \vec{c} \times \vec{a}$. If the angle between the vector \vec{c} and the vector $3\hat{i} + 4\hat{j} + \hat{k}$ is θ , then the greatest integer less than or equal to $\tan^2\theta$ is:

Ans. (38)

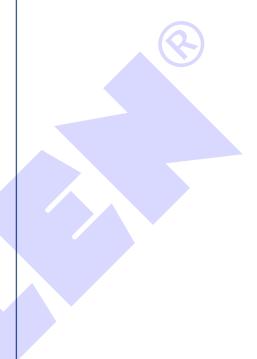
26. The lines L₁, L₂, ..., L₂₀ are distinct. For n = 1,
2, 3, ..., 10 all the lines L_{2n-1} are parallel to each other and all the lines L_{2n} pass through a given point P. The maximum number of points of intersection of pairs of lines from the set {L₁, L₂, ..., L₂₀} is equal to:

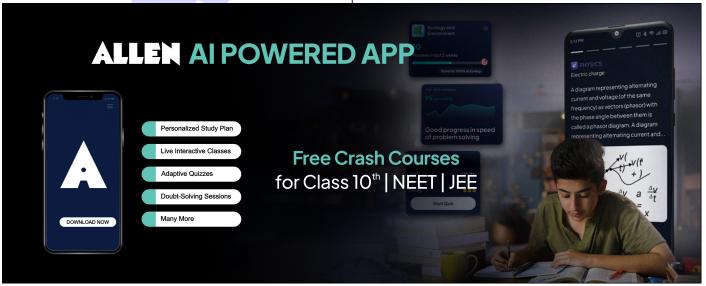
Ans. (101)

27. Three points O(0,0), P(a, a^2), Q(-b, b^2), a > 0, b > 0, are on the parabola $y = x^2$. Let S_1 be the area of the region bounded by the line PQ and the parabola, and S_2 be the area of the triangle OPQ. If the minimum value of $\frac{S_1}{S_2}$ is $\frac{m}{n}$, gcd(m, n) = 1, then m + n is equal to:

Ans. (7)

28. The sum of squares of all possible values of k, for which area of the region bounded by the parabolas $2y^2 = kx$ and $ky^2 = 2(y - x)$ is maximum, is equal to:


Ans. (8)


3

- **29.** If $\frac{dx}{dy} = \frac{1 + x y^2}{y}$, x(1) = 1, then 5x(2) is equal to:
 - Ans. (5)
- 30. Let ABC be an isosceles triangle in which A is at (-1, 0), $\angle A = \frac{2\pi}{3}$, AB = AC and B is on the positive x-axis. If BC = $4\sqrt{3}$ and the line BC intersects the line y = x + 3 at (α, β) , then $\frac{\beta^4}{\alpha^2}$ is:

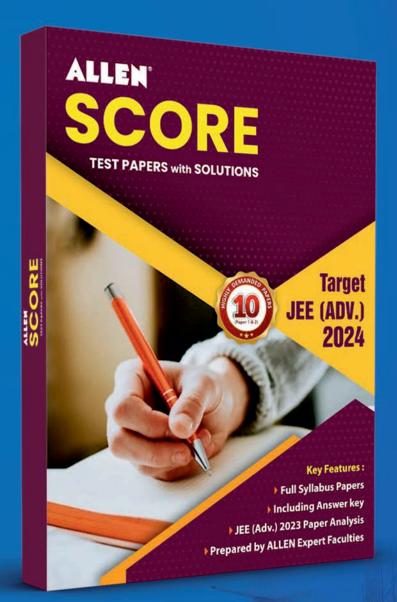
 Ans. (36)

SCALE UP YOUR SCORE! with ALLEN SCORE TEST PAPERS

Total 10 Full syllabus papers

Paper Analysis of JEE Advanced 2023

By **ALLEN**Subject Experts



Answer key with Solutions

Scan QR to Buy

