

FINAL JEE-MAIN EXAMINATION - JANUARY, 2023

(Held On Tuesday 31st January, 2023)

TIME: 9:00 AM to 12:00 NOON

MATHEMATICS

SECTION-A

- 61. If the maximum distance of normal to the ellipse $\frac{x^2}{4} + \frac{y^2}{b^2} = 1$, b < 2, from the origin is 1, then the eccentricity of the ellipse is:
 - (1) $\frac{1}{\sqrt{2}}$
 - (2) $\frac{\sqrt{3}}{2}$
 - (3) $\frac{1}{2}$
 - (4) $\frac{\sqrt{3}}{4}$

Official Ans. by NTA (2)

Allen Ans. (2)

- 62. For all $z \in C$ on the curve $C_1 : |z| = 4$, let the locus of the point $z + \frac{1}{z}$ be the curve C_2 . Then
 - (1) the curves C_1 and C_2 intersect at 4 points
 - (2) the curves C_1 lies inside C_2
 - (3) the curves C_1 and C_2 intersect at 2 points
 - (4) the curves C_2 lies inside C_1

Official Ans. by NTA (1)

Allen Ans. (1)

- 63. A wire of length 20 m is to be cut into two pieces. A piece of length ℓ_1 is bent to make a square of area A_1 and the other piece of length ℓ_2 is made into a circle of area A_2 . If $2A_1 + 3A_2$ is minimum then $(\pi \ell_1)$: ℓ_2 is equal to:
 - (1) 6:1
 - (2)3:1
 - (3)1:6
 - (4) 4:1

Official Ans. by NTA (1)

Allen Ans. (1)

TEST PAPER WITH ANSWER

64. For the system of linear equations

$$x + y + z = 6$$

$$\alpha x + \beta y + 7z = 3$$

$$x + 2y + 3z = 14$$

which of the following is NOT true?

- (1) If $\alpha = \beta = 7$, then the system has no solution
- (2) If $\alpha = \beta$ and $\alpha \neq 7$ then the system has a unique solution.
- (3) There is a unique point (α, β) on the line x + 2y + 18 = 0 for which the system has infinitely many solutions
- (4) For every point $(\alpha, \beta) \neq (7, 7)$ on the line x 2y + 7 = 0, the system has infinitely many solutions.

Official Ans. by NTA (4)

Allen Ans. (4)

65. Let the shortest distance between the lines

L:
$$\frac{x-5}{-2} = \frac{y-\lambda}{0} = \frac{z+\lambda}{1}$$
, $\lambda \ge 0$ and L₁: $x + 1 =$

- y 1 = 4 z be $2\sqrt{6}$. If (α, β, γ) lies on L, then which of the following is NOT possible?
- (1) $\alpha + 2\gamma = 24$
- (2) $2\alpha + \gamma = 7$
- (3) $2\alpha \gamma = 9$
- (4) $\alpha 2\gamma = 19$

Official Ans. by NTA (1)

Allen Ans. (1)

66. Let y = f(x) represent a parabola with focus

$$\left(-\frac{1}{2},0\right)$$
 and directrix $y=-\frac{1}{2}$.

Then

$$S = \left\{ x \in \mathbb{R} : tan^{-1} \left(\sqrt{f(x)} + sin^{-1} \left(\sqrt{f(x) + 1} \right) \right) = \frac{\pi}{2} \right\} :$$

- (1) contains exactly two elements
- (2) contains exactly one element
- (3) is an infinite set
- (4) is an empty set

Official Ans. by NTA (1)

Allen Ans. (1)

67. Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3 \end{pmatrix}$. Then the sum of the

diagonal elements of the matrix $(A + I)^{11}$ is equal to:

- (1) 6144
- (2)4094
- (3)4097
- (4) 2050

Official Ans. by NTA (3)

Allen Ans. (3)

- **68.** Let R be a relation on $N \times N$ defined by (a, b) R
 - (c, d) if and only if ad(b c) = bc(a d). Then R is
 - (1) symmetric but neither reflexive nor transitive
 - (2) transitive but neither reflexive nor symmetric
 - (3) reflexive and symmetric but not transitive
 - (4) symmetric and transitive but not reflexive

Official Ans. by NTA (1)

Allen Ans. (1)

69. Let $y = f(x) = \sin^3 \left(\frac{\pi}{3} \left(\cos \left(\frac{\pi}{3\sqrt{2}} \left(-4x^3 + 5x^2 + 1 \right)^{\frac{3}{2}} \right) \right) \right)$

Then, at x = 1,

- (1) $2y' + \sqrt{3}\pi^2 y = 0$
- (2) $2y' + 3\pi^2 y = 0$
- (3) $\sqrt{2}y' 3\pi^2y = 0$
- (4) $y' + 3\pi^2 y = 0$

Official Ans. by NTA (2)

Allen Ans. (2)

- **70.** If the sum and product of four positive consecutive terms of a G.P., are 126 and 1296, respectively, then the sum of common ratios of all such GPs is
 - (1)7
 - (2) $\frac{9}{2}$
 - (3)3
 - (4) 14

Official Ans. by NTA (1)

Allen Ans. (1)

- 71. The number of real roots of the equation $\sqrt{x^2 4x + 3} + \sqrt{x^2 9} = \sqrt{4x^2 14x + 6}$, is:
 - (1)0
 - (2) 1
 - (3) 3
 - (4)2

Official Ans. by NTA (2)

Allen Ans. (2)

72. Let a differentiable function f satisfy $f(x) + \int_{3}^{x} \frac{f(t)}{t} dt = \sqrt{x+1}, x \ge 3. \text{ Then } 12f(8) \text{ is}$

- equal to:
- (1) 34 (2) 19
- (3) 17 (4) 1

Official Ans. by NTA (3)

Allen Ans. (3)

- 73. If the domain of the function $f(x) = \frac{[x]}{1+x^2}$, where
 - [x] is greatest integer \leq x, is [2, 6), then its range is

$$(1)\left(\frac{5}{26}, \frac{2}{5}\right] - \left\{\frac{9}{29}, \frac{27}{109}, \frac{18}{89}, \frac{9}{53}\right\}$$

- $(2)\left(\frac{5}{26},\frac{2}{5}\right]$
- $(3)\left(\frac{5}{37},\frac{2}{5}\right] \left\{\frac{9}{29},\frac{27}{109},\frac{18}{89},\frac{9}{53}\right\}$
- $(4)\left(\frac{5}{37},\frac{2}{5}\right]$

Official Ans. by NTA (4)

Allen Ans. (4)

- 74. Let $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$, and \vec{b} and \vec{c} be two nonzero vectors such that $|\vec{a} + \vec{b} + \vec{c}| = |\vec{a} + \vec{b} \vec{c}|$ and $\vec{b} \cdot \vec{c} = 0$. Consider the following two statement:
 - (A) $|\vec{a} + \lambda \vec{c}| \ge |\vec{a}|$ for all $\lambda \in \mathbb{R}$.
 - (B) \vec{a} and \vec{c} are always parallel
 - (1) only (B) is correct
 - (2) neither (A) nor (B) is correct
 - (3) only (A) is correct
 - (4) both (A) and (B) are correct.

Official Ans. by NTA (3)

Allen Ans. (3)

Final JEE-Main Exam January, 2023/31-01-2023/Morning Session

75. Let $\alpha \in (0, 1)$ and $\beta = \log_e(1 - \alpha)$. Let

$$P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n}, x \in (0, 1).$$

Then the integral $\int_{0}^{\alpha} \frac{t^{50}}{1-t} dt$ is equal to

(1)
$$\beta - P_{50}(\alpha)$$

$$(2) - (\beta + P_{50}(\alpha))$$

(3)
$$P_{50}(\alpha) - \beta$$

(4)
$$\beta + P_{50}(\alpha)$$

Official Ans. by NTA (2)

Allen Ans. (2)

76. If $\sin^{-1}\frac{\alpha}{17} + \cos^{-1}\frac{4}{5} - \tan^{-1}\frac{77}{36} = 0$, $0 < \alpha < 13$,

then $\sin^{-1}(\sin \alpha) + \cos^{-1}(\cos \alpha)$ is equal to

- $(1) \pi$
- (2) 16
- (3)0
- $(4) 16 5\pi$

Official Ans. by NTA (1)

Allen Ans. (1)

- 77. Let a circle C₁ be obtained on rolling the circle $x^2 + y^2 4x 6y + 11 = 0$ upwards 4 units on the tangent T to it at the point (3, 2). Let C₂ be the image of C₁ in T. Let A and B be the centers of circles C₁ and C₂ respectively, and M and N be respectively the feet of perpendiculars drawn from A and B on the x-axis. Then the area of the trapezium AMNB is:
 - (1) $2(2+\sqrt{2})$
 - (2) $4(1+\sqrt{2})$
 - (3) $3+2\sqrt{2}$
 - (4) $2(1+\sqrt{2})$

Official Ans. by NTA (2)

Allen Ans. (2)

78.
$$(S1)(p \Rightarrow q) \lor (p \land (\sim q))$$
 is a tautology

$$(S2)((\sim p) \Rightarrow (\sim q)) \land ((\sim p) \lor q)$$
 is a

Contradiction. Then

- (1) only (S2) is correct
- (2) both (S1) and (S2) are correct
- (3) both (S1) and (S2) are wrong
- (4) only (S1) is correct

Official Ans. by NTA (4)

Allen Ans. (4)

79. The value of
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{(2+3\sin x)}{\sin x(1+\cos x)} dx$$
 is equal to

(1)
$$\frac{7}{2} - \sqrt{3} - \log_e \sqrt{3}$$

(2)
$$-2 + 3\sqrt{3} + \log_e \sqrt{3}$$

(3)
$$\frac{10}{3} - \sqrt{3} + \log_e \sqrt{3}$$

(4)
$$\frac{10}{3} - \sqrt{3} - \log_e \sqrt{3}$$

Official Ans. by NTA (3)

Allen Ans. (3)

- **80.** A bag contains 6 balls. Two balls are drawn from it at random and both are found to be black. The probability that the bag contains at least 5 black balls is
 - $(1) \frac{5}{7}$
 - (2) $\frac{2}{7}$
 - (3) $\frac{3}{7}$
 - (4) $\frac{5}{6}$

Official Ans. by NTA (1)

Allen Ans. (1)

SECTION-B

81. Let 5 digit numbers be constructed using the digits 0, 2, 3, 4, 7, 9 with repetition allowed, and are arranged in ascending order with serial numbers. Then the serial number of the number 42923 is

Official Ans. by NTA (2997) Allen Ans. (2997)

- 82. Let a_1, a_2, \dots, a_n be in A.P. If $a_5 = 2a_7$ and $a_{11} = 18$, then $12 \left(\frac{1}{\sqrt{a_{10}} + \sqrt{a_{11}}} + \frac{1}{\sqrt{a_{11}} + \sqrt{a_{12}}} + \dots + \frac{1}{\sqrt{a_{17}} + \sqrt{a_{18}}} \right)$ is equal to _____.

 Official Ans. by NTA (8)
 Allen Ans. (8)
- 83. Let θ be the angle between the planes $P_1 = \vec{r} \cdot (\hat{i} + \hat{j} + 2\hat{k}) = 9$ and $P_2 = \vec{r} \cdot (2\hat{i} \hat{j} + \hat{k}) = 15$. Let L be the line that meets P_2 at the point (4, -2, 5) and makes an angle θ with the normal of P_2 . If α is the angle between L and P_2 then $(\tan^2\theta)(\cot^2\alpha)$ is equal to _____.

Official Ans. by NTA (9) Allen Ans. (9)

84. Let $\alpha > 0$, be the smallest number such that the expansion of $\left(x^{\frac{2}{3}} + \frac{2}{x^3}\right)^{30}$ has a term $\beta x^{-\alpha}, \beta \in \mathbb{N}$. Then α is equal to _____.

Official Ans. by NTA (2)
Allen Ans. (2)

85. Let \vec{a} and \vec{b} be two vector such that $|\vec{a}| = \sqrt{14}$, $|\vec{b}| = \sqrt{6}$ and $|\vec{a} \times \vec{b}| = \sqrt{48}$. Then $(\vec{a}.\vec{b})^2$ is equal to

Official Ans. by NTA (36) Allen Ans. (36) 86. Let the line $L: \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{1}$ intersect the plane 2x + y + 3z = 16 at the point P. Let the point Q be the foot of perpendicular from the point R(1, -1, -3) on the line L. If α is the area of triangle PQR, then α^2 is equal to _____.

Official Ans. by NTA (180) Allen Ans. (180)

- 87. The remainder on dividing 5⁹⁹ by 11 is _____.

 Official Ans. by NTA (9)

 Allen Ans. (9)
- **88.** If the variance of the frequency distribution

Xi	2	3	4	5	6	7	8
Frequency f _i	3	6	16	α	9	5	6

Official Ans. by NTA (5)
Allen Ans. (5)

89. Let for $x \in R$

$$f(x) = \frac{x + |x|}{2} \text{ and } g(x) = \begin{cases} x, & x < 0 \\ x^2, & x \ge 0 \end{cases}$$

Then area bounded by the curve y = (fog)(x) and the lines y = 0, 2y - x = 15 is equal to

Official Ans. by NTA (72) Allen Ans. (72)

90. Number of 4-digit numbers that are less than or equal to 2800 and either divisible by 3 or by 11, is equal to ______.

Official Ans. by NTA (710) Allen Ans. (710)