

FINAL JEE-MAIN EXAMINATION - JANUARY, 2023

(Held On Sunday 29th January, 2023)

TEST PAPER WITH ANSWER

TIME: 3:00 PM to 6:00 PM

MATHEMATICS

SECTION-A

- **61.** The statement $B \Rightarrow ((\sim A) \lor B)$ is equivalent to :
 - $(1) B \Rightarrow (A \Rightarrow B)$
 - $(2) A \Rightarrow (A \Leftrightarrow B)$
 - $(3) A \Rightarrow ((\sim A) \Rightarrow B)$
 - $(4) B \Rightarrow ((\sim A) \Rightarrow B)$

Official Ans. by NTA (1,3,4)

Allen Ans. (1 or 3 or 4)

- 62. The shortest distance between the lines $\frac{x-1}{2} = \frac{y+8}{7} = \frac{z-4}{5} \text{ and } \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-6}{3} \text{ is}$
 - (1) $2\sqrt{3}$
 - (2) $4\sqrt{3}$
 - (3) $3\sqrt{3}$
 - (4) $5\sqrt{3}$

Official Ans. by NTA (2)

Allen Ans. (2)

63. If $\vec{a} = \hat{i} + 2\hat{k}$, $\vec{b} = \hat{i} + \hat{j} + \hat{k}$, $\vec{c} = 7\hat{i} - 3\hat{k} + 4\hat{k}$,

 $\vec{r} \times \vec{b} + \vec{b} \times \vec{c} = \vec{0}$ and $\vec{r} \cdot \vec{a} = 0$. Then $\vec{r} \cdot \vec{c}$ is equal to:

- (1)34
- (2) 32
- (3)36
- (4) 30

Official Ans. by NTA (1)

Allen Ans. (1)

64. Let $S = \{w_1, w_2,\}$ be the sample space associated

to a random experiment. Let $P(w_n) = \frac{P(w_{n-1})}{2}, n \ge 2$.

Let $A = \{2k+3\ell; \ k, \ell \in \mathbb{N}\}$ and $B = \{w_n \ ; n \in A\}$. Then P(B) is equal to

- $(1) \frac{3}{32}$
- (2) $\frac{3}{64}$
- $(3) \frac{1}{16}$
- $(4) \frac{1}{32}$

Official Ans. by NTA (2)

Allen Ans. (2)

- **65.** The value of the integral $\int_{1}^{2} \left(\frac{t^4 + 1}{t^6 + 1} \right) dt$ is:
 - (1) $\tan^{-1}\frac{1}{2} + \frac{1}{3}\tan^{-1}8 \frac{\pi}{3}$
 - (2) $\tan^{-1} 2 \frac{1}{3} \tan^{-1} 8 + \frac{\pi}{3}$
 - (3) $\tan^{-1} 2 + \frac{1}{3} \tan^{-1} 8 \frac{\pi}{3}$
 - (4) $\tan^{-1} \frac{1}{2} \frac{1}{3} \tan^{-1} 8 + \frac{\pi}{3}$

Official Ans. by NTA (3)

Allen Ans. (3)

66. Let K be the sum of the coefficients of the odd powers of x in the expansion of $(1+x)^{99}$. Let a be

the middle term in the expansion of $\left(2+\frac{1}{\sqrt{2}}\right)^{200}$.

If $\frac{^{200}C_{99}K}{a} = \frac{2^{\ell}m}{n}$, where m and n are odd

numbers, then the ordered pair (ℓ, n) is equal to :

- (1)(50,51)
- (2)(51,99)
- (3)(50, 101)
- (4)(51,101)

Official Ans. by NTA (3)

Allen Ans. (3)

67. Let f and g be twice differentiable functions on \mathbb{R} such that

$$f''(x) = g''(x) + 6x$$

$$f'(1)=4g'(1)-3=9$$

$$f(2)=3g(2)=12$$

Then which of the following is **NOT** true?

- (1) g(-2) f(-2) = 20
- (2) If -1 < x < 2, then |f(x) g(x)| < 8
- (3) $|f'(x)-g'(x)| < 6 \Rightarrow -1 < x < 1$
- (4) There exists $x_0 \in \left(1, \frac{3}{2}\right)$ such that $f(x_0) = g(x_0)$

Official Ans. by NTA (2)

Allen Ans. (2)

68. The set of all values of $t \in \mathbb{R}$, for which the matrix

$$\begin{bmatrix} e^t & e^{-t}(\sin t - 2\cos t) & e^{-t}(-2\sin t - \cos t) \\ e^t & e^{-t}(2\sin t + \cos t) & e^{-t}(\sin t - 2\cos t) \\ e^t & e^{-t}\cos t & e^{-t}\sin t \end{bmatrix} \quad is$$

invertible, is

$$(1) \left\{ (2k+1)\frac{\pi}{2}, k \in \mathbb{Z} \right\} \quad (2) \left\{ k\pi + \frac{\pi}{4}, k \in \mathbb{Z} \right\}$$

(3)
$$\{k\pi, k \in \mathbb{Z}\}$$

(4) ℝ

Official Ans. by NTA (4) Allen Ans. (4)

69. The area of the region

$$A = \left\{ (x,y) : \left| \cos x - \sin x \right| \le y \le \sin x, 0 \le x \le \frac{\pi}{2} \right\} is$$

(1)
$$1 - \frac{3}{\sqrt{2}} + \frac{4}{\sqrt{5}}$$
 (2) $\sqrt{5} + 2\sqrt{2} - 4.5$

(2)
$$\sqrt{5} + 2\sqrt{2} - 4.5$$

(3)
$$\frac{3}{\sqrt{5}} - \frac{3}{\sqrt{2}} + 1$$
 (4) $\sqrt{5} - 2\sqrt{2} + 1$

(4)
$$\sqrt{5} - 2\sqrt{2} + 1$$

Official Ans. by NTA (4)

Allen Ans. (4)

The set of all values of λ for which the equation 70. $\cos^2 2x - 2\sin^4 x - 2\cos^2 x = \lambda$ has a real solution x. is:-

$$(2)\left[-2,-\frac{3}{2}\right]$$

$$(3) \left[-1, -\frac{1}{2} \right] \qquad (4) \left[-\frac{3}{2}, -1 \right]$$

$$(4) \left[-\frac{3}{2}, -1 \right]$$

Official Ans. by NTA (4)

Allen Ans. (4)

71. The letters of the word OUGHT are written in all possible ways and these words are arranged as in a dictionary, in a series. Then the serial number of the word TOUGH is:

- (1)89
- (2)84
- (3)86
- (4)79

Official Ans. by NTA (1)

Allen Ans. (1)

The plane 2x - y + z = 4 intersects the line 72. segment joining the points A(a, -2, 4) and B(2, b, -3) at the point C in the ratio 2: 1 and the distance of the point C from the origin is $\sqrt{5}$. If ab < 0 and P is the point (a - b, b, 2b - a) then CP^2 is equal to:

$$(1) \frac{17}{3}$$

(2)
$$\frac{16}{3}$$

$$(3) \frac{73}{3}$$

(4)
$$\frac{97}{3}$$

Official Ans. by NTA (1)

Allen Ans. (1)

73. Let $\vec{a} = 4\hat{i} + 3\hat{j}$ and $\vec{b} = 3\hat{i} - 4\hat{j} + 5\hat{k}$ and \vec{c} is a vector such that $\vec{c} \cdot (\vec{a} \times \vec{b}) + 25 = 0$, $\vec{c} \cdot (\hat{i} + \hat{j} + \hat{k}) = 4$, and projection of \vec{c} on \vec{a} is 1, then the projection of \vec{c} on \vec{b} equals:

$$(1)\frac{5}{\sqrt{2}}$$

(2)
$$\frac{1}{5}$$

(3)
$$\frac{1}{\sqrt{2}}$$

$$(4) \frac{3}{\sqrt{2}}$$

Official Ans. by NTA (1) Allen Ans. (1)

the lines $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+3}{1}$ 74. and $\frac{x-a}{2} = \frac{y+2}{3} = \frac{z-3}{1}$ intersects at the point P, then

the distance of the point P from the plane z = a is:

- (1) 16
- (2)28
- (3) 10
- (4)22

Official Ans. by NTA (2)

Allen Ans. (2)

Final JEE-Main Exam January, 2023/29-01-2023/Evening Session

- 75. The value of the integral $\int_{1/2}^{2} \frac{\tan^{-1} x}{x} dx$ is equal to
 - $(1) \pi log_e 2$
- $(2) \frac{1}{2} \log_e 2$
- $(3) \frac{\pi}{4} \log_e 2$
- $(4) \frac{\pi}{2} \log_e 2$

Official Ans. by NTA (4)

Allen Ans. (4)

- 76. If the tangent at a point P on the parabola $y^2 = 3x$ is parallel to the line x + 2y = 1 and the tangents at the points Q and R on the ellipse $\frac{x^2}{4} + \frac{y^2}{1} = 1$ are perpendicular to the line x y = 2, then the area of the triangle PQR is:
 - (1) $\frac{9}{\sqrt{5}}$
 - (2) $5\sqrt{3}$
 - (3) $\frac{3}{2}\sqrt{5}$
 - (4) $3\sqrt{5}$

Official Ans. by NTA (4)

Allen Ans. (4)

77. Let y = y(x) be the solution of the differential equation $x \log_e x \frac{dy}{dx} + y = x^2 \log_e x$, (x > 1).

If y(2) = 2, then y(e) is equal to

- (1) $\frac{4+e^2}{4}$
- (2) $\frac{1+e^2}{4}$
- (3) $\frac{2+e^2}{2}$
- (4) $\frac{1+e^2}{2}$

Official Ans. by NTA (1)

Allen Ans. (1)

- **78.** The number of 3 digit numbers, that are divisible by either 3 or 4 but not divisible by 48, is
 - (1)472
 - (2)432
 - (3)507
 - (4) 400

Official Ans. by NTA (2)

Allen Ans. (2)

- 79. Let R be a relation defined on \mathbb{N} as a R b if 2a + 3b is a multiple of 5, a, $b \in \mathbb{N}$. Then R is
 - (1) not reflexive
 - (2) transitive but not symmetric
 - (3) symmetric but not transitive
 - (4) an equivalence relation

Official Ans. by NTA (4)

Allen Ans. (4)

- 80. Consider a function $f: \mathbb{N} \to \mathbb{R}$, satisfying $f(1) + 2f(2) + 3f(3) + \ldots + xf(x) = x(x+1) \ f(x); \ x \ge 2$ with f(1)=1. Then $\frac{1}{f(2022)} + \frac{1}{f(2028)}$ is equal to
 - (1)8200
 - (2)8000
 - (3)8400
 - (4)8100

Official Ans. by NTA (4)

Allen Ans. (4)

SECTION-B

81. The total number of 4-digit numbers whose greatest common divisor with 54 is 2, is

Official Ans. by NTA (3000)

Allen Ans. (3000)

82. A triangle is formed by the tangents at the point (2, 2) on the curves $y^2 = 2x$ and $x^2 + y^2 = 4x$, and the line x + y + 2 = 0. If r is the radius of its circumcircle, then r^2 is equal to _____.

Official Ans. by NTA (10)

Allen Ans. (10)

83. A circle with centre (2, 3) and radius 4 intersects the line x + y = 3 at the points P and Q. If the tangents at P and Q intersect at the point $S(\alpha, \beta)$, then $4\alpha - 7\beta$ is equal to _____.

Official Ans. by NTA (11)

Allen Ans. (11)

Final JEE-Main Exam January, 2023/29-01-2023/Evening Session

84. Let $a_1 = b_1 = 1$ and $a_n = a_{n-1} + (n-1)$, $b_n = b_{n-1} + a_{n-1}$, $\forall n \ge 2$. If $S = \sum_{n=1}^{10} \frac{b_n}{2^n}$ and $T = \sum_{n=1}^{8} \frac{n}{2^{n-1}}$, then $2^7(2S - T)$ is equal to _____.

Official Ans. by NTA (461)

Allen Ans. (461)

85. If the equation of the normal to the curve $y = \frac{x-a}{(x+b)(x-2)}$ at the point (1, -3) is x-4y=13, then the value of a+b is equal to _____.

Official Ans. by NTA (4)

Allen Ans. (4)

86. Let A be a symmetric matrix such that |A| = 2 and $\begin{bmatrix} 2 & 1 \\ 3 & \frac{3}{2} \end{bmatrix} A = \begin{bmatrix} 1 & 2 \\ \alpha & \beta \end{bmatrix}$. If the sum of the diagonal elements of A is s, then $\frac{\beta s}{\alpha^2}$ is equal to _____.

Official Ans. by NTA (5)

Allen Ans. (5)

87. Let $\{a_k\}$ and $\{b_k\}$, $k\in\mathbb{N}$, be two G.P.s with common ratios r_1 and r_2 respectively such that $a_1=b_1=4$ and $r_1< r_2$. Let $c_k=a_k+b_k,\, k\in\mathbb{N}$. If $c_2=5$ and $c_3=\frac{13}{4}$ then $\sum_{k=1}^\infty c_k-(12a_6+8b_4)$ is equal to _____.

Official Ans. by NTA (9)

Allen Ans. (9)

88. Let $X = \{11, 12, 13,, 40, 41\}$ and $Y = \{61, 62, 63,, 90, 91\}$ be the two sets of observations. If \overline{x} and \overline{y} are their respective means and σ^2 is the variance of all the observations in $X \cup Y$, then $\left|\overline{x} + \overline{y} - \sigma^2\right|$ is equal to _____.

Official Ans. by NTA (603)

Allen Ans. (603)

89. Let $\alpha = 8 - 14i$, $A = \left\{ z \in \mathbb{C} : \frac{\alpha z - \overline{\alpha} \overline{z}}{z^2 - (\overline{z})^2 - 112i} = 1 \right\}$ and $B = \left\{ z \in \mathbb{C} : |z + 3i| = 4 \right\}$.

Then $\sum_{z \in A \cap B} (\text{Re } z - \text{Im } z)$ is equal to _____.

Official Ans. by NTA (14)

Allen Ans. (14)

90. Let $\alpha_1, \ \alpha_2, \ \dots, \ \alpha_7$ be the roots of the equation $x^7 + 3x^5 - 13x^3 - 15x = 0$ and $|\alpha_1| \ge |\alpha_2| \ge \dots \ge |\alpha_7|$. Then $\alpha_1\alpha_2 - \alpha_3\alpha_4 + \alpha_5\alpha_6$ is equal to _____.

Official Ans. by NTA (9)

Allen Ans. (9)