FINAL JEE-MAIN EXAMINATION - APRIL, 2024

(Held On Tuesday 09th April, 2024)
TIME : 3:00 PM to 6:00 PM

CHEMISTRY

SECTION-A

61. The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency ' A ' $\times 10^{12}$ hertz and that has a radiant intensity in that direction of $\frac{1}{{ }^{\prime} \mathrm{B}^{\prime}}$ watt per steradian. 'A' and 'B' are respectively
(1) 540 and $\frac{1}{683}$
(2) 540 and 683
(3) 450 and $\frac{1}{683}$
(4) 450 and 683

Ans. (2)
Sol. The candela is the luminous intensity of a source that emits monochromatic radiation of frequency radiation of frequency $540 \times 10^{12} \mathrm{~Hz}$ and has a radiant intensity in that direction of $\frac{1}{683} \mathrm{w} / \mathrm{sr}$. It is unit of Candela.
62. The correct stability order of the following resonance structures of $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$ is

(1) II $>$ III $>$ I
(2) III $>$ II $>$ I
(3) I $>$ II $>$ III
(4) II $>$ I $>$ III

Ans. (2)

TEST PAPER WITH SOLUTION

Sol.

Non Polar R.S.
More No of covalent bond

Having -ve charge on more
electronegative atom

Having -ve charge on less electronegative atom
Stability order III $>$ II $>$ I
63. Total number of stereo isomers possible for the given structure:

(1) 8
(2) 2
(3) 4
(4) 3

Ans. (1)

Sol.

There are three stereo center So No of stereoisomer $=2^{3}=8$
64. The correct increasing order for bond angles among $\mathrm{BF}_{3}, \mathrm{PF}_{3}$ and $\mathrm{C} \ell \mathrm{F}_{3}$ is :
(1) $\mathrm{PF}_{3}<\mathrm{BF}_{3}<\mathrm{C} \ell \mathrm{F}_{3}$
(2) $\mathrm{BF}_{3}<\mathrm{PF}_{3}<\mathrm{C} \ell \mathrm{F}_{3}$
(3) $\mathrm{C} \ell \mathrm{F}_{3}<\mathrm{PF}_{3}<\mathrm{BF}_{3}$
(4) $\mathrm{BF}_{3}=\mathrm{PF}_{3}<\mathrm{C} \ell \mathrm{F}_{3}$

Ans. (3)

Sol.

Order of bond angle is
$\mathrm{ClF}_{3}<\mathrm{PF}_{3}<\mathrm{BF}_{3}$
65. Match List I with List II

LIST-I (Test)		LIST-II (Observation)	
A.	Br r_{2} water test	I.	Yellow orange or orange red precipitate formed
B.	Ceric ammonium nitrate test	II.	Reddish orange colour disappears
C.	Ferric chloride test	III.	Red colour appears
D.	$2,4-$ DNP test	IV.	Blue, Green, Violet or Red colour appear

Choose the correct answer from the options given below:
(1) A-I, B-II, C-III, D-IV
(2) A-II, B-III, C-IV, D-I
(3) A-III, B-IV, C-I, D-II
(4) A-IV, B-I, C-II, D-III

Ans. (2)
Sol. (A) Br_{2} water test is test of unsaturation in which reddish orange colour of bromine water disappears.
(B) Alcohols given Red colour with ceric ammonium nitrate.
(C) Phenol gives Violet colour with natural ferric chloride.
(D) Aldehyde \& Ketone give Yellow/Orange/Red Colour compounds with 2, 4-DNP i.e., 2, 4-Dinitrophenyl hydrazine.
66. Match List I with List II

LIST-I (Cell)		LIST-II (Use/Property/Reaction)	
A.	Leclanche cell	I.	Converts energy of combustion into electrical energy
B.	Ni-Cd cell	II.	Does not involve any ion in solution and is used in hearing aids
C.	Fuel cell	III.	Rechargeable
D.	Mercury	IV.	Reaction at anode Zn $\rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$

Choose the correct answer from the options given below:
(1) A-I, B-II, C-III, D-IV
(2) A-III, B-I, C-IV, D-II
(3) A-IV, B-III, C-I, D-II
(4) A-II, B-III, C-IV, D-I

Ans. (3)
Sol. A-IV, B-III, C-I, D-II
67. Match List I with List II

LIST-I		LIST-II	
A.	$\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$	I.	sp 3
B.	$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$	II.	sp $^{3} \mathrm{~d}^{2}$
C.	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$	III.	dsp 2
D.	$\mathrm{Na}_{3}\left[\mathrm{CoF}_{6}\right]$	IV.	d $^{2} \mathrm{sp}^{3}$

Choose the correct answer from the options given below:
(1) A-III, B-I, C-II, D-IV
(2) A-III, B-II, C-IV, D-I
(3) A-I, B-III, C-II, D-IV
(4) A-III, B-I, C-IV, D-II

Ans. (4)

$+2$

Sol. (A) $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$
$\mathrm{Ni}^{2+}:[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{\circ},(\mathrm{CN}$ is S.F.L)
Pre hybridization state of Ni^{+2}

(B) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
$\mathrm{Ni}:[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$
CO is S.F.L, so pairing occur
Pre hybridization state of Ni

(C) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
$\mathrm{Co}^{+3}:[\mathrm{Ar}] 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$
With $\mathrm{Co}^{3+}, \mathrm{NH}_{3}$ act as S.F.L

(d) $\mathrm{Na}_{3}\left[\mathrm{CoF}_{6}\right]$
$\mathrm{Co}^{3+}:[\mathrm{Ar}] 3 \mathrm{~d}^{6}\left(\mathrm{~F}^{\Theta}\right.$: W.F.L)

68. The coordination environment of Ca^{2+} ion in its complex with EDTA ${ }^{4}$ is :
(1) tetrahedral
(2) octahedral
(3) square planar
(4) trigonal prismatic

Ans. (2)
Sol. EDTA ${ }^{4} \rightarrow$ Hexadentate ligand
$[\mathrm{Ca}(\text { EDTA })]^{2-}$
So Coordination environment is octahedral
69. The incorrect statement about Glucose is :
(1) Glucose is soluble in water because of having aldehyde functional group
(2) Glucose remains in multiple isomeric form in its aqueous solution
(3) Glucose is an aldohexose
(4) Glucose is one of the monomer unit in sucrose

Ans. (1)
Sol. Glucose is soluble in water due to presence of alcohol functional group and extensive hydrogen bonding.
Glucose exist is open chain as well as cyclic forms in its aqueous solution.
Glucose having 6 C atoms so it is hexose and having aldehyde functional group so it is aldose.
Thus, aldohexose.
Glucose is monomer unit in sucrose with fructose.
70.

In the above reaction product ' P ' is
(1)

(2)

(3)

(4)

Ans. (1)
Sol.

Due to NGP effect of phenyl ring Nucleophilic substitution of Br will occurs.
71. Which of the following compound can give positive iodoform test when treated with aqueous KOH solution followed by potassium hypoiodite.
(1)

(2)

(3)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
(4)

Ans. (2)
Sol.

72. For a sparingly soluble salt AB_{2}, the equilibrium concentrations of A^{2+} ions and B^{-}ions are $1.2 \times 10^{-4} \mathrm{M}$ and $0.24 \times 10^{-3} \mathrm{M}$, respectively. The solubility product of AB_{2} is :
(1) 0.069×10^{-12}
(2) 6.91×10^{-12}
(3) 0.276×10^{-12}
(4) 27.65×10^{-12}

Ans. (2)
Sol. $\quad \mathrm{AB}_{2(\mathrm{~s})} \rightleftharpoons \mathrm{A}_{(\mathrm{aq})}^{+2}+2 \mathrm{~B}_{(\mathrm{aq})}^{-}$

$$
\begin{aligned}
\mathrm{K}_{\text {sp }} & =\left[\mathrm{A}^{+2}\right]\left[\mathrm{B}^{-}\right]^{2} \\
& =1.2 \times 10^{-4} \times\left(2.4 \times 10^{-4}\right)^{2} \\
& =6.91 \times 10^{-12} \mathrm{M}^{3}
\end{aligned}
$$

73. Major product of the following reaction is

(1)

(2)

(3)

(4)

Ans. (2)
Sol.

74. Given below are two statements :

Statement I : The higher oxidation states are more stable down the group among transition elements unlike p-block elements.

Statement II : Copper can not liberate hydrogen from weak acids.

In the light of the above statements, choose the correct answer from the options given below :
(1) Both Statement I and Statement II are false
(2) Statement I is false but Statement II is true
(3) Both Statement I and Statement II are true
(4) Statement I is true but Statement II is false

Ans. (3)
Sol. On moving down the group in transition elements, stability of higher oxidation state increases, due to increase in effective nuclear charge.
$\Rightarrow \mathrm{E}_{\mathrm{Cu}^{+2} / \mathrm{Cu}}^{\mathrm{o}}=0.34 \mathrm{~V}$
$\Rightarrow \mathrm{E}_{\mathrm{H}^{+} / \mathrm{H}_{2}}^{0}=0$
SRP : $\mathrm{Cu}^{2+}>\mathrm{H}^{+}$
Cu can't liberate hydrogen gas from weak acid.
75. The incorrect statement regarding ethyne is
(1) The $\mathrm{C}-\mathrm{C}$ bonds in ethyne is shorter than that in ethene
(2) Both carbons are sp hybridised
(3) Ethyne is linear
(4) The carbon-carbon bonds in ethyne is weaker than that in ethene

Ans. (4)
Sol. The carbon-carbon bonds in ethyne is stronger than that in ethene.
$(\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H})$ Ethyne is linear and carbon atoms are SP hybridised.
76. Match List I with List II

List-I (Element)		List-II (Electronic Configuration)	
A.	N	I.	$[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{5}$
B.	S	II.	$[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{4}$
C.	Br	III.	$[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$
D	Kr	IV.	$[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6}$

Choose the correct answer from the options given below:
(1) A-IV, B-III, C-II, D-I
(2) A-III, B-II, C-I, D-IV
(3) A-I, B-IV, C-III, D-II
(4) A-II, B-I, C-IV, D-III

Ans. (2)
Sol. (A) ${ }_{7} \mathrm{~N}:[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$
(B) ${ }_{16} \mathrm{~S}:[\mathrm{Ne}] 2 \mathrm{~s}^{2} 3 \mathrm{p}^{4}$
(C) ${ }_{35} \mathrm{Br}:[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{5}$
(D) ${ }_{36} \mathrm{Kr}:[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6}$
77. Match List I with List II

List-I		List-II	
A.	Melting point $[\mathrm{K}]$	I.	$\mathrm{Tl}>\mathrm{In}>\mathrm{Ga}>\mathrm{Al}>\mathrm{B}$
B.	Ionic Radius $\left[\mathrm{M}^{+3} / \mathrm{pm}\right]$	II.	$\mathrm{B}>\mathrm{Tl}>\mathrm{Al} \approx \mathrm{Ga}>\mathrm{In}$
C.	$\Delta_{\mathrm{i}} \mathrm{H}_{1}$ $\left[\mathrm{~kJ} \mathrm{~mol}^{-1}\right]$	III.	$\mathrm{Tl}>\mathrm{In}>\mathrm{Al}>\mathrm{Ga}>\mathrm{B}$
D	Atomic Radius $[\mathrm{pm}]$	IV.	$\mathrm{B}>\mathrm{Al}>\mathrm{Tl}>\mathrm{In}>\mathrm{Ga}$

Choose the correct answer from the options given below:
(1) A-III, B-IV, C-I, D-II
(2) A-II, B-III, C-IV, D-I
(3) A-IV, B-I, C-II, D-III
(4) A-I, B-II, C-III, D-IV

Ans. (3)

Sol. Melting point : $\mathrm{B}>\mathrm{A} \ell>\mathrm{T} \ell>\mathrm{In}>\mathrm{Ga}$
Ionic radius $\left(\mathrm{M}^{+3} / \mathrm{pm}\right): \mathrm{T} \ell>\mathrm{In}>\mathrm{Ga}>\mathrm{A} \ell>\mathrm{B}$
$\left(\Delta_{\text {IE }} \mathrm{H}\right)_{1}\left[\frac{\mathrm{~kJ}}{\mathrm{~mol}}\right]: \mathrm{B}>\mathrm{T} \ell>\mathrm{A} \ell \approx \mathrm{Ga}>\mathrm{In}$
Atomic radius (in pm) : $\mathrm{T} \ell>\mathrm{In}>\mathrm{A} \ell>\mathrm{Ga}>\mathrm{B}$
78. Which of the following compounds will give silver mirror with ammoniacal silver nitrate?
(A) Formic acid
(B) Formaldehyde
(C) Benzaldehyde
(D) Acetone

Choose the correct answer from the options given below :
(1) C and D only
(2) A, B and C only
(3) A only
(4) B and C only

Ans. (2)

Sol. Apart from aldehyde, Formic acid
 also gives silver mirror test with ammonical silver nitrate.
79. Which out of the following is a correct equation to show change in molar conductivity with respect to concentration for a weak electrolyte, if the symbols carry their usual meaning :
(1) $\Lambda^{2}{ }_{\mathrm{m}} \mathrm{C}-\mathrm{K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\circ}+\mathrm{K}_{\mathrm{a}} \Lambda_{\mathrm{m}} \Lambda_{\mathrm{m}}^{\circ}=0$
(2) $\Lambda_{m}-\Lambda_{m}^{\circ}+A C^{\frac{1}{2}}=0$
(3) $\Lambda_{m}-\Lambda_{m}^{\circ}-{A C^{\frac{1}{2}}}^{\frac{1}{2}} 0$
(4) $\Lambda^{2}{ }_{\mathrm{m}} \mathrm{C}+\mathrm{K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\circ 2}-\mathrm{K}_{\mathrm{a}} \Lambda_{\mathrm{m}} \Lambda_{\mathrm{m}}^{\circ}=0$

Ans. (1)

Sol. $\mathrm{HA}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{a}}=\frac{\alpha^{2} \mathrm{C}}{1-\alpha}$
$\alpha^{2} C+K_{a} \alpha-K_{a}=0$
$\left(\frac{\lambda_{\mathrm{m}}}{\lambda_{\mathrm{m}}^{\infty}}\right)^{2} \mathrm{C}+\mathrm{K}_{\mathrm{a}} \frac{\lambda_{\mathrm{m}}}{\lambda_{\mathrm{m}}^{\infty}}-\mathrm{K}_{\mathrm{a}}=0$
$\lambda_{\mathrm{m}}^{2} \mathrm{C}+\mathrm{K}_{\mathrm{a}} \lambda_{\mathrm{m}} \lambda_{\mathrm{m}}^{\infty}-\mathrm{K}_{\mathrm{a}}\left(\lambda_{\mathrm{m}}^{\infty}\right)^{2}=0$
80. The electronic configuration of Einsteinium is :
(Given atomic number of Einsteinium $=99$)
(1) $[\mathrm{Rn}] 5 \mathrm{f}^{12} 6 \mathrm{~d}^{0} 7 \mathrm{~s}^{2}$
(2) $[R n] 5 f^{11} 6 \mathrm{~d}^{0} 7 \mathrm{~s}^{2}$
(3) $[\mathrm{Rn}] 5 \mathrm{f}^{13} 6 \mathrm{~d}^{0} 7 \mathrm{~s}^{2}$
(4) $[\mathrm{Rn}] 5 \mathrm{f}^{10} 6 \mathrm{~d}^{0} 7 \mathrm{~s}^{2}$

Ans. (2)
Sol. Einsteinium (atomic $\mathrm{No}=99$) : $[\mathrm{Rn}] 5 \mathrm{f}^{11} 6 \mathrm{~d}^{0} 7 \mathrm{~s}^{2}$

SECTION-B

81. Number of oxygen atoms present in chemical formula of fuming sulphuric acid is \qquad .

Ans. (7)
Sol. Fuming sulphuric acid is a mixture of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{3} \mathrm{Or} \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$

So, Number of Oxygen atoms $=7$
82. A transition metal 'M' among $\mathrm{Sc}, \mathrm{Ti}, \mathrm{V}, \mathrm{Cr}, \mathrm{Mn}$ and Fe has the highest second ionisation enthalpy. The spin only magnetic moment value of M^{+}ion is
\qquad BM (Near integer)
(Given atomic number $\mathrm{Sc}: 21, \mathrm{Ti}: 22, \mathrm{~V}: 23, \mathrm{Cr}$: $24, \mathrm{Mn}: 25, \mathrm{Fe}: 26)$

Ans. (6)
Sol. Among given metals, Cr has maximum IE_{2}
because Second electron is removed from stable configuration $3 \mathrm{~d}^{5}$
$\mathrm{Cr}^{+}:[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{0}$
\therefore No of unpaired e^{-}in Cr^{+}is $5, \mathrm{n}=5$
So, Magnetic moment $=\sqrt{\mathrm{n}(\mathrm{n}+2)}$ B.M

$$
=\sqrt{5(5+2)}=5.92 \mathrm{BM} \approx 6
$$

Download the new ALLEN app \& enroll for Online Programs

83. The vapour pressure of pure benzene and methyl benzene at $27^{\circ} \mathrm{C}$ is given as 80 Torr and 24 Torr, respectively. The mole fraction of methyl benzene in vapour phase, in equilibrium with an equimolar mixture of those two liquids (ideal solution) at the same temperature is \qquad $\times 10^{-2}$ (nearest integer)

Ans. (23)
Sol. $\mathrm{X}_{\text {methylbenzene }}=0.5$

$$
\begin{aligned}
\mathrm{Y}_{\text {methylbenzene }} & =\frac{\mathrm{P}_{\text {methylbenzene }}}{\mathrm{P}_{\text {total }}} \\
\mathrm{Y}_{\text {methylbenzene }} & =\frac{0.5 \times 24}{0.5 \times 80+0.5 \times 24} \\
& =\frac{12}{40+12}=0.23=23 \times 10^{-2}
\end{aligned}
$$

84. Consider the following test for a group-IV cation.
$\mathrm{M}^{2+}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~A}$ (Black precipitate) + byproduct
$\mathrm{A}+$ aqua regia $\rightarrow \mathrm{B}+\mathrm{NOCl}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{B}+\mathrm{KNO}_{2}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{C}+$ byproduct
The spin only magnetic moment value of the metal complex C is \qquad BM.
(Nearest integer)
Ans. (0)
Sol. $\mathrm{Co}^{2+}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{CoS} \downarrow$ (Black)
(A)
$\mathrm{CoS}+$ Aqua-regia $\rightarrow \mathrm{Co}^{2+}(\mathrm{aq})+\mathrm{NOCl}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$
(A)
(B)
$\mathrm{Co}^{2+}(\mathrm{aq})+\mathrm{KNO}_{2}+\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]+\mathrm{NO}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$
In $K_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right], \mathrm{Co}^{+3}: 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$
$\mathrm{Co}^{3+}: \mathrm{d}^{2} \mathrm{sp}^{3}$ Hybridisation
Number of unpaired $\mathrm{e}^{-}=0$
Magnetic moment $=\sqrt{\mathrm{n}(\mathrm{n}+2)}=0$ B.M
85. Consider the following first order gas phase reaction at constant temperature
$\mathrm{A}(\mathrm{g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$
If the total pressure of the gases is found to be 200 torr after 23 sec . and 300 torr upon the complete decomposition of A after a very long time, then the rate constant of the given reaction is \qquad $\times 10^{-2} \mathrm{~s}^{-1}$ (nearest integer)
[Given : $\left.\log _{10}(2)=0.301\right]$
Ans. (3)
Sol. $\mathrm{A}(\mathrm{g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$
$\mathrm{P}_{23}=\mathrm{P}_{0}+2 \mathrm{x}=200$
$\mathrm{P}_{\infty}=3 \mathrm{P}_{0}=300$
$\mathrm{P}_{0}=100$
$K=\frac{1}{t} \ln \frac{P_{\infty}-P_{0}}{P_{\infty}-P_{t}}$
$\mathrm{K}=\frac{2.3}{23} \log \frac{300-100}{300-200}$

$$
=\frac{2.3 \times 0.301}{23}=0.0301=3.01 \times 10^{-2} \mathrm{sec}^{-1}
$$

86.

In the given TLC, the distance of spot $\mathrm{A} \& \mathrm{~B}$ are $5 \mathrm{~cm} \& 7 \mathrm{~cm}$, from the bottom of TLC plate, respectively.
R_{f} value of B is $\mathrm{x} \times 10^{-1}$ times more than A . The value of x is \qquad .

Ans. (15)

Sol.
$R_{f}=\frac{\text { Distance moved by substance from base line }}{\text { Distance moved by solvent from base line }}$

Base line

$$
\begin{aligned}
& \left(\mathrm{R}_{\mathrm{f}}\right)_{A}=\frac{4}{8} \quad\left(\mathrm{R}_{\mathrm{f}}\right)_{B}=\frac{6}{8} \\
& \frac{\left(\mathrm{R}_{\mathrm{f}}\right)_{B}}{\left(\mathrm{R}_{\mathrm{f}}\right)_{A}}=\frac{6}{8} \times \frac{8}{4} \\
& \left(\mathrm{R}_{\mathrm{f}}\right)_{B}=1.5\left(\mathrm{R}_{\mathrm{f}}\right)_{A} \\
& x=15
\end{aligned}
$$

87. Based on Heisenberg's uncertainty principle, the uncertainty in the velocity of the electron to be found within an atomic nucleus of diameter $10^{-15} \mathrm{~m}$ is \qquad $\times 10^{9} \mathrm{~ms}^{-1}$ (nearest integer)
[Given : mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$, Plank's constant $(\mathrm{h})=6.626 \times 10^{-34} \mathrm{Js}$]
(Value of $\pi=3.14$)
Ans. (58)
Sol. $m \Delta V . \Delta x=\frac{h}{4 \pi}$

$$
\begin{aligned}
\Delta \mathrm{V} & =\frac{6.626 \times 10^{-34}}{9.1 \times 10^{-31} \times 10^{-15} \times 4 \times 3.14} \\
& =57.97 \times 10^{+9} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

88. Number of compounds from the following which cannot undergo Friedel-Crafts reactions is : \qquad toluene, nitrobenzene, xylene, cumene, aniline, chlorobenzene, m-nitroaniline, m-dinitrobenzene

Ans. (4)

Sol. Compounds which can not undergo Friedel Crafts reaction are

Nitrobenzene Aniline

m -nitroaniline m -dinitrobenzene
89. Total number of electron present in $\left(\pi^{*}\right)$ molecular orbitals of $\mathrm{O}_{2}, \mathrm{O}_{2}^{+}$and O_{2}^{-}is \qquad .

Ans. (6)
Sol. $\quad \mathrm{O}_{2}(16 \mathrm{e}):\left(\sigma_{1 \mathrm{~s}}\right)^{2}\left(\sigma_{\mathrm{ls}}^{*}\right)^{2}\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}}^{*}\right)^{2}$
$\left(\sigma_{2 \mathrm{p}}\right)^{2}\left[\left(\pi_{2 \mathrm{p}}\right)^{2}=\left(\pi_{2 \mathrm{p}}\right)^{2}\right],\left[\left(\pi_{2 \mathrm{p}}^{*}\right)^{1}=\left(\pi_{2 \mathrm{p}}^{*}\right)^{1}\right]$
Number of e- present in $\left(\pi^{*}\right)$ of $\mathrm{O}_{2}=2$
Number of e present in $\left(\pi^{*}\right)$ of $\mathrm{O}_{2}^{+}=1$
Number of e^{-}present in $\left(\pi^{*}\right)$ of $\mathrm{O}_{2}^{-}=3$
So total e^{-}in $\left(\pi^{*}\right)=2+1+3=6$
90. When $\Delta \mathrm{H}_{\text {vap }}=30 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}_{\text {vap }}=75 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, then the temperature of vapour, at one atmosphere is \qquad K.

Ans. (400)
Sol. At equilibrium $\Delta \mathrm{G}_{\mathrm{PT}}=0$
$\Delta \mathrm{H}_{\text {vap }}=\mathrm{T} \Delta \mathrm{S}_{\text {vap }}$
$30 \times 1000=T \times 75$
$\mathrm{T}=400 \mathrm{~K}$

Are you targeting JEE 2025 ?

Ace it with ALLEN's Leader Course

Online Program 18 APRIL'24

Offline Program) 24 APRIL'24

ALLEET
Get The Latest

IIT-JJE Special Books

 at Your Door Steps...!!JOIN THE JOURNEY OF LEARNING with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's |JEE-Adv. PYQ's

Available in HINDI \& ENGLISH

