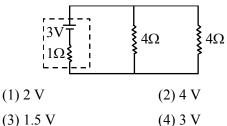
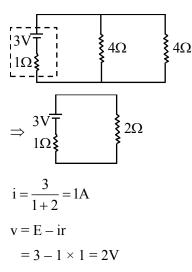


.


	FINAL JEE-MAIN EXAM Id On Monday 08th April, 2024)	INA	TION – APRIL, 2024 TIME : 9 : 00 AM to 12 : 00 NOON
пе			
	PHYSICS		TEST PAPER WITH SOLUTION
31.	SECTION-A Three bodies A, B and C have equal kinetic energies and their masses are 400 g, 1.2 kg and 1.6 kg respectively. The ratio of their linear momenta is : (1) $1:\sqrt{3}:2$ (2) $1:\sqrt{3}:\sqrt{2}$ (3) $\sqrt{2}:\sqrt{3}:1$ (4) $\sqrt{3}:\sqrt{2}:1$	Ans. Sol.	λ is same for both $P = \frac{h}{\lambda}$ same for both $P = \sqrt{2mK}$
Ans. Sol.	(1) $KE = \frac{P^2}{2m}$ $P \propto \sqrt{m}$		Hence, $K \propto \frac{1}{m}$ $\Rightarrow \frac{KE_p}{KE_e} = \frac{m_e}{m_p} = \frac{1}{1836}$
32.	Hence, $P_A : P_B : P_C$ = $\sqrt{400} : \sqrt{1200} : \sqrt{1600} = 1 : \sqrt{3} : 2$ Average force exerted on a non-reflecting surface at normal incidence is 2.4×10^{-4} N. If 360 W/cm ² is the light energy flux during span of 1 hour 30 minutes. Then the area of the surface is: (1) 0.2 m^2 (2) 0.02 m^2	34.	A mixture of one mole of monoatomic gas and one mole of a diatomic gas (rigid) are kept at room temperature (27°C). The ratio of specific heat of gases at constant volume respectively is: (1) $\frac{7}{5}$ (2) $\frac{3}{2}$ (3) $\frac{3}{5}$ (4) $\frac{5}{3}$
	(3) 20 m^2 (4) 0.1 m^2	Ans.	5
Ans. Sol.	(2) Pressure = $\frac{I}{C} = \frac{F}{A}$ $\Rightarrow \frac{360}{10^{-4} \times 3 \times 10^8} = \frac{2.4 \times 10^{-4}}{A}$ $\Rightarrow A = 2 \times 10^{-2} \text{ m}^2 = 0.02 \text{ m}^2$	Sol. 35.	$\frac{(C_v)_{mono}}{(C_v)_{dia}} = \frac{\frac{3}{2}R}{\frac{5}{2}R} = \frac{3}{5}$ In an expression a × 10 ^b : (1) a is order of magnitude for b ≤ 5
33.	A proton and an electron are associated with same de-Broglie wavelength. The ratio of their kinetic energies is: (Assume h = 6.63×10^{-34} J s, m _e = 9.0×10^{-31} kg and m _p = 1836 times m _e) (1) 1 : 1836 (2) 1 : $\frac{1}{1836}$	Ans. Sol.	(2) b is order of magnitude for $a \le 5$ (3) b is order of magnitude for $5 < a \le 10$ (4) b is order of magnitude for $a \ge 5$ (2)
	(3) $1:\frac{1}{\sqrt{1836}}$ (4) $1:\sqrt{1836}$		a > 5 order is $b + 1$

Download the new ALLEN app & enroll for Online Programs

CLICK HERE TO DOWNLOAD



36. In the given circuit, the terminal potential difference of the cell is :

Ans. (1)

Sol.

37. Binding energy of a certain nucleus is 18×10^8 J. How much is the difference between total mass of all the nucleons and nuclear mass of the given nucleus:

(1) 0.2 µg	(2) 20 µg
(3) 2 µg	(4) 10 μg

Ans. (2)

38.

Sol. $\Delta mc^2 = 18 \times 10^8$

 $\Delta m \times 9 \times 10^{16} = 18 \times 10^{8}$

 $\Delta m = 2 \times 10^{-8} \text{ kg} = 20 \text{ }\mu\text{g}$ Paramagnetic substances:

A. align themselves along the directions of external magnetic field.

- B. attract strongly towards external magnetic field.
- C. has susceptibility little more than zero.
- D. move from a region of strong magnetic field to weak magnetic field.

Choose the **most appropriate** answer from the options given below:

(1) A, B, C, D	(2) B, D Only
(3) A, B, C Only	(4) A, C Only

Ans. (4)

- **Sol.** A, C only
- **39.** A clock has 75 cm, 60 cm long second hand and minute hand respectively. In 30 minutes duration the tip of second hand will travel x distance more than the tip of minute hand. The value of x in meter is nearly (Take $\pi = 3.14$) :

Ans. (1)

Sol. $x_{\min} = \pi \times r_{\min}$

$$=\pi \times \frac{60}{100}$$
 m.

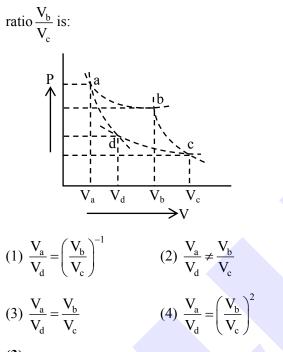
 $x_{second} = 30 \times 2\pi \times r_{second}$

$$= 30 \times 2\pi \times \frac{75}{100}$$

$$\mathbf{x} = \mathbf{x}_{\text{second}} - \mathbf{x}_{\text{min}}$$

= 139.4 m

40. Young's modulus is determined by the equation given by $Y = 49000 \frac{m}{\ell} \frac{dyne}{cm^2}$ where M is the mass and ℓ is the extension of wire used in the experiment. Now error in Young modules(Y) is estimated by taking data from M- ℓ plot in graph paper. The smallest scale divisions are 5 g and 0.02 cm along load axis and extension axis respectively. If the value of M and ℓ are 500 g and 2 cm respectively then percentage error of Y is :


(1) 0.2 %	(2) 0.02 %
(3) 2 %	(4) 0.5 %

Ans. (3)

Sol.
$$\frac{\Delta Y}{Y} = \frac{\Delta m}{m} + \frac{\Delta \ell}{\ell}$$
$$= \frac{5}{500} + \frac{0.02}{2} = 0.01 + 0.01$$
$$\frac{\Delta Y}{Y} = 0.02 \implies \% \frac{\Delta Y}{Y} = 2\%$$

41. Two different adiabatic paths for the same gas intersect two isothermal curves as shown in P-V diagram. The relation between the ratio $\frac{V_a}{V_c}$ and the

Ans. (3)

Sol. For adiabatic process

 $TV^{\gamma-1} = \text{constant}$ $T_{a} \cdot V_{a}^{\gamma-1} = T_{d} \cdot V_{d}^{\gamma-1}$ $\left(\frac{V_{a}}{V_{d}}\right)^{\gamma-1} = \frac{T_{d}}{T_{a}}$ $T_{b} \cdot V_{b}^{\gamma-1} = T_{c} \cdot V_{c}^{\gamma-1}$ $\left(\frac{V_{b}}{V_{c}}\right)^{\gamma-1} = \frac{T_{c}}{T_{c}}$

$$\frac{\mathbf{V}_{a}}{\mathbf{V}_{a}} = \frac{\mathbf{V}_{b}}{\mathbf{V}} \qquad \left(\begin{array}{c} \because \mathbf{T}_{d} = \mathbf{T}_{d} \\ \mathbf{T} = \mathbf{T}_{d} \end{array} \right)$$

42. Two planets A and B having masses m₁ and m₂ move around the sun in circular orbits of r₁ and r₂ radii respectively. If angular momentum of A is L and that

of B is 3L, the ratio of time period $\left(\frac{T_A}{T_B}\right)$ is:

$$(1) \left(\frac{r_2}{r_1}\right)^{\frac{3}{2}} \qquad (2) \left(\frac{r_1}{r_2}\right)^3$$
$$(3) \frac{1}{27} \left(\frac{m_2}{m_1}\right)^3 \qquad (4) 27 \left(\frac{m_1}{m_2}\right)^3$$

Ans. (3)

Sol.
$$\frac{\pi r_1^2}{T_A} = \frac{L}{2m_1} \dots \dots (1)$$
$$\frac{\pi r_2^2}{T_B} = \frac{3L}{2m_2} \dots \dots (2)$$
$$\Rightarrow \frac{T_A}{T_B} = 3 \cdot \frac{m_1}{m_2} \cdot \left(\frac{r_1}{r_2}\right)^2$$
$$\left(\frac{T_A}{T_B}\right)^2 = \left(\frac{r_1}{r_2}\right)^3 \Rightarrow \left(\frac{r_1}{r_2}\right)^2 = \left(\frac{T_A}{T_B}\right)^{\frac{4}{3}}$$
$$\Rightarrow \frac{1}{27} \cdot \left(\frac{m_2}{m_1}\right)^3 = \left(\frac{T_A}{T_B}\right)$$

43. A LCR circuit is at resonance for a capacitor C, inductance L and resistance R. Now the value of resistance is halved keeping all other parameters same. The current amplitude at resonance will be now:

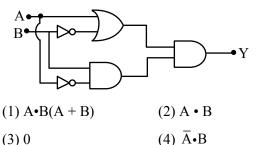
(1) Zero	(2) double
(3) same	(4) halved

Ans. (2)

Sol. In resonance Z = R

$$I = \frac{V}{R}$$

 $R \rightarrow halved$


 $\Rightarrow I \rightarrow 2I$ I becomes doubled.

The output Y of following circuit for given inputs is : **44**.

- Ans. (3)
- Sol. By truth table

А	В	Y	
0	0	0	
0	1	0	
1	0	0	
1	1	0	

45. Two charged conducting spheres of radii a and b are connected to each other by a conducting wire. The ratio of charges of the two spheres respectively is:

(1)
$$\sqrt{ab}$$
 (2) ab
(3) $\frac{a}{b}$ (4) $\frac{b}{a}$

Ans. (3)

Sol. Potential at surface will be same

$$\frac{Kq_1}{a} = \frac{Kq_2}{b}$$
$$\frac{q_1}{q_2} = \frac{a}{b}$$

Correct Bernoulli's equation is (symbols have their **46**. usual meaning):

(1) P + mgh +
$$\frac{1}{2}$$
 mv² = constant
(2) P + ρ gh + $\frac{1}{2}$ ρ v² = constant
(3) P + ρ gh + ρ v² = constant
(4) P + $\frac{1}{2}$ ρ gh + $\frac{1}{2}$ ρ v² = constant

Sol.
$$P + \rho gh + \frac{1}{2}\rho V^2 = constant$$

A player caught a cricket ball of mass 150 g 47. moving at a speed of 20 m/s. If the catching process is completed in 0.1 s, the magnitude of force exerted by the ball on the hand of the player is:

Ans. (3)

Sol.
$$F = \frac{\Delta P}{\Delta t} = \frac{mv - 0}{0.1}$$

= $\frac{150 \times 10^{-3} \times 20}{0.1} = 30 \text{ N}$

- A stationary particle breaks into two parts of 48. masses m_A and m_B which move with velocities v_A and v_B respectively. The ratio of their kinetic energies (K_B : K_A) is :
 - (1) $v_B : v_A$ (2) $m_B : m_A$ (3) $m_B v_B : m_A v_A$ (4) 1 : 1

Ans. (1)

Sol. Initial momentum is zero.

Hence
$$|P_A| = |P_B|$$

 $\Rightarrow m_A v_B = m_B V_B$
 $\frac{(KE)_A}{(KE)_B} = \frac{\frac{1}{2}m_A v_A^2}{\frac{1}{2}m_B v_B^2} = \frac{v_A}{v_B}$
 $\frac{(KE)_B}{(KE)_A} = \frac{v_B}{v_A}$

49. Critical angle of incidence for a pair of optical media is 45°. The refractive indices of first and second media are in the ratio:

в

(1) $\sqrt{2}$:1 (2) 1 : 2 (3) 1: $\sqrt{2}$ (4) 2 : 1

Ans. (1)

Sol. $\sin\theta_c = \frac{\mu_R}{\mu_d} = \frac{\mu_2}{\mu_1}$ $\sin 45^\circ = \frac{\mu_2}{\mu_1}$ $\Rightarrow \frac{1}{\sqrt{2}} = \frac{\mu_2}{\mu_1}$ $\Rightarrow \frac{\mu_1}{\mu_2} = \frac{\sqrt{2}}{1}$

50. The diameter of a sphere is measured using a vernier caliper whose 9 divisions of main scale are equal to 10 divisions of vernier scale. The shortest division on the main scale is equal to 1 mm. The main scale reading is 2 cm and second division of vernier scale coincides with a division on main scale. If mass of the sphere is 8.635 g, the density of the sphere is:

(1) 2.5 g/cm ³	(2) 1.7 g/cm ³
(3) 2.2 g/cm ³	(4) 2.0 g/cm ³

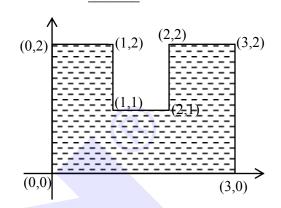
```
Ans. (4)
```

Sol. Given 9MSD = 10VSD

mass = 8.635 gLC = 1 MSD - 1 VSD

$$LC = 1 \text{ MSD} - \frac{9}{10} \text{ MSD}$$

 $LC = \frac{1}{10}MSD$


LC = 0.01 cm

Reading of diameter = MSR + LC × VSR = 2 cm + (0.01) × (2) = 2.02 cm Volume of sphere = $\frac{4}{3}\pi \left(\frac{d}{2}\right)^3 = \frac{4}{3}\pi \left(\frac{2.02}{2}\right)^3$ = 4.32 cm³

Density = $\frac{\text{mass}}{\text{volume}} = \frac{8.635}{4.32} = 1.998 \sim 2.00 \text{ g}$

SECTION-B

51. A uniform thin metal plate of mass 10 kg with dimensions is shown. The ratio of x and y coordinates of center of mass of plate in $\frac{n}{9}$. The value of n is

Ans. (15)

Sol.
$$m_1 = \sigma \times 5 = 10 \text{ Kg}$$

$$m_1 = \sigma \times 5 = 10 \text{Kg}$$

$$m_2 = \sigma \times 1 = 2 \text{Kg}$$

$$m_2 = \sigma \times 1 = 2 \text{Kg}$$

$$m_2 = \sigma \times 1 = 2 \text{Kg}$$

$$m_3 = \sigma \times 6 = 12 \text{Kg}$$

$$\Rightarrow m_1 x_1 + m_2 x_2 = m_3 x_3$$

$$10x_1 + 2(1.5) = 12(1.5) \Rightarrow x_1 = 1.5 \text{ cm}$$

$$\Rightarrow m_1 y_1 + m_2 y_2 = m_3 y_3$$

$$10y_1 + 2(1.5) = 12 \times 1 \Rightarrow y_1 = 0.9 \text{ cm}$$

$$\frac{x_1}{y_1} = \frac{1.5}{0.9} = \frac{15}{9}$$

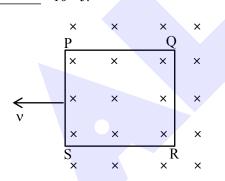
$$n = 15$$

52. An electron with kinetic energy 5 eV enters a region of uniform magnetic field of 3 μ T perpendicular to its direction. An electric field E is applied perpendicular to the direction of velocity and magnetic field. The value of E, so that electron moves along the same path, is _____ NC^{-1}. (Given, mass of electron = 9 × 10⁻³¹ kg, electric charge = 1.6×10^{-19} C)

Ans. (4)

Sol. For the given condition of moving undeflected, net force should be zero.

$$qE = qVB$$


$$E = VB$$

$$= \sqrt{\frac{2 \times KE}{m}} \times B$$

$$= \sqrt{\frac{2 \times 5 \times 1.6 \times 10^{-19}}{9 \times 10^{-31}}} \times 3 \times 10^{-6}$$

$$= 4 \text{ N/C}$$

53. A square loop PQRS having 10 turns, area 3.6×10^{-3} m² and resistance 100 Ω is slowly and uniformly being pulled out of a uniform magnetic field of magnitude B = 0.5 T as shown. Work done in pulling the loop out of the field in 1.0 s is $\times 10^{-6}$ J.

Ans. (3)

Sol. $\in = NB\ell v$

$$i = \frac{\epsilon}{R} = \frac{NB\ell v}{R}$$

 $F = N(i\ell B) = \frac{N^2 B^2 \ell^2 v}{R}$

 $W = F \times \ell = \frac{N^2 B^2 \ell^3}{R} \left(\frac{\ell}{t}\right)$ $A = \ell^2$

W =
$$\frac{(10 \times 10)(0.5)^2 \times (3.6 \times 10^{-3})^2}{100 \times 1}$$

W = 3.24 × 10⁻⁶ I

54. Resistance of a wire at 0 °C, 100 °C and t °C is found to be 10Ω , 10.2Ω and 10.95Ω respectively. The temperature t in Kelvin scale is_____.

Ans. (748)
Sol.
$$R = R_0(1 + \alpha \Delta T)$$

 $\frac{\Delta R}{R_0} = \alpha \Delta T$
Case-I
 $0 \,^{\circ}C \rightarrow 100 \,^{\circ}C$
 $\frac{10.2 - 10}{10} = \alpha(100 - 0) \qquad \dots (1)$
Case-II
 $0 \,^{\circ}C \rightarrow t \,^{\circ}C$
 $\frac{10.95 - 10}{10} = \alpha(t - 0) \qquad \dots (2)$
 $\Rightarrow \frac{t}{100} = \frac{0.95}{0.2} = 475 \,^{\circ}C$
 $t = 475 + 273 = 748 \, K$

55. An electric field, $\vec{E} = \frac{2i+6j+8k}{\sqrt{6}}$ passes through the surface of 4 m² area having unit vector $\hat{n} = \left(\frac{2\hat{i}+\hat{j}+\hat{k}}{\sqrt{6}}\right)$. The electric flux for that surface is _____ V m.

Ans. (12)

Sol.
$$\phi = \vec{E} \cdot \vec{A}$$

$$= \left(\frac{2\hat{i} + 6\hat{j} + 8\hat{k}}{\sqrt{6}}\right) \cdot 4\left(\frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}\right)$$
$$= \frac{4}{\sqrt{6}} \times (4 + 6 + 8) = 12 \text{ Vm}$$

56. A liquid column of height 0.04 cm balances excess pressure of soap bubble of certain radius. If density of liquid is 8×10^3 kg m⁻³ and surface tension of soap solution is 0.28 Nm⁻¹, then diameter of the soap bubble is _____ cm.

 $(if g = 10 ms^{-2})$

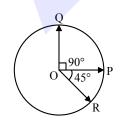
Ans. (7)

Sol.
$$\rho gh = \frac{4S}{R}$$

 $\Rightarrow R = \frac{4 \times 0.28}{8 \times 10^3 \times 10 \times 4 \times 10^{-4}}$
 $\Rightarrow \frac{0.28}{8} m = \frac{28}{8} cm$
 $\Rightarrow R = 3.5 cm$
Diameter = 7 cm

57. A closed and an open organ pipe have same lengths. If the ratio of frequencies of their seventh overtones is $\left(\frac{a-1}{a}\right)$ then the value of a is _____.

Ans. (16)


Sol. For closed organ pipe

$$f_{c} = (2n+1)\frac{v}{4\ell} = \frac{15v}{4\ell}$$

For open organ pipe

$$f_o = (n+1)\frac{v}{2\ell} = \frac{8v}{2\ell}$$
$$\frac{f_o}{f_o} = \frac{15}{16} = \frac{a-1}{a}$$
$$\Rightarrow a = 16$$

58. Three vectors $\overrightarrow{OP}, \overrightarrow{OQ}$ and \overrightarrow{OR} each of magnitude A are acting as shown in figure. The resultant of the three vectors is $A\sqrt{x}$. The value of x is _____.

Ans. (3)

Sol.

$$\vec{R} = \left(A + \frac{A}{\sqrt{2}}\right)\hat{i} + \left(A - \frac{A}{\sqrt{2}}\right)\hat{j}$$
$$|\vec{R}| = \sqrt{\left(A + \frac{A}{\sqrt{2}}\right)^2 + \left(A - \frac{A}{\sqrt{2}}\right)^2} = \sqrt{3}A$$

59. A parallel beam of monochromatic light of wavelength 600 nm passes through single slit of 0.4 mm width. Angular divergence corresponding to second order minima would be $___\times 10^{-3}$ rad.

Ans. (6)

Sol.
$$\sin\theta \simeq \theta \simeq \frac{2\lambda}{b}$$

$$=\frac{2\times600\times10^{-9}}{4\times10^{-4}}=3\times10^{-3}\,\mathrm{rad}$$

Total divergence = $(3 + 3) \times 10^{-3} = 6 \times 10^{-3}$ rad

60. In an alpha particle scattering experiment distance of closest approach for the α particle is 4.5×10^{-14} m. If target nucleus has atomic number 80, then maximum velocity of α -particle is _____× 10⁵ m/s approximately.

$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ SI unit, mass of } \alpha \text{ particle} = 6.72 \times 10^{-27} \text{ kg}\right)$$

Ans. (156)

Sol.
$$v = \sqrt{\frac{4\text{KZ}e^2}{\text{mr}_{\text{min}}}}$$

= $\sqrt{\frac{4 \times 9 \times 10^9 \times 80}{6.72 \times 10^{-27} \times 4.5 \times 10^{-14}}} \times 1.6 \times 10^{-19}$
= 9.759 × 10²⁵ × 1.6 × 10⁻¹⁹
= 156 × 10⁵ m/s

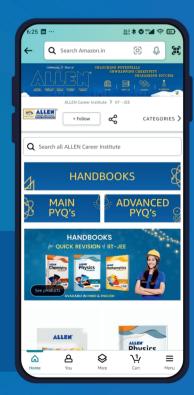
Are you targeting JEE 2025?

Ace it with **ALLEN's** Leader Course

Online Program 18 APRIL '24

Offline Program 24 APRIL '24

ALLEN


The

Get The Latest **IT-JEE Special Books** at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING

with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's | JEE-Adv. PYQ's

