FINAL JEE-MAIN EXAMINATION - APRIL, 2024

(Held On Saturday 06 ${ }^{\text {th }}$ April, 2024)
TIME: 3: 00 PM to 6: 00 PM

MATHEMATICS

SECTION-A

1. Let ABC be an equilateral triangle. A new triangle is formed by joining the middle points of all sides of the triangle $A B C$ and the same process is repeated infinitely many times. If P is the sum of perimeters and Q is be the sum of areas of all the triangles formed in this process, then:
(1) $P^{2}=36 \sqrt{3} Q$
(2) $\mathrm{P}^{2}=6 \sqrt{3} \mathrm{Q}$
(3) $\mathrm{P}=36 \sqrt{3} \mathrm{Q}^{2}$
(4) $\mathrm{P}^{2}=72 \sqrt{3} \mathrm{Q}$

Ans. (1)

Sol.

Area of first $\Delta=\frac{\sqrt{3} \mathrm{a}^{2}}{4}$
Area of second $\Delta=\frac{\sqrt{3} a^{2}}{4} \frac{a^{2}}{4}=\frac{\sqrt{3} a^{2}}{16}$
Area of third $\Delta=\frac{\sqrt{3} a^{2}}{64}$
sum of area $=\frac{\sqrt{3} a^{2}}{4}\left(1+\frac{1}{4}+\frac{1}{16} \ldots.\right)$
$\mathrm{Q}=\frac{\sqrt{3} \mathrm{a}^{2}}{4} \frac{1}{\frac{3}{4}}=\frac{\mathrm{a}^{2}}{\sqrt{3}}$
perimeter of $1^{\text {st }} \Delta=3 \mathrm{a}$
perimeter of $2^{\text {nd }} \Delta=\frac{3 \mathrm{a}}{2}$
perimeter of $3^{\text {rd }} \Delta=\frac{3 \mathrm{a}}{4}$
$\mathrm{P}=3 \mathrm{a}\left(1+\frac{1}{2}+\frac{1}{4}+\ldots\right)$
$\mathrm{P}=3 \mathrm{a} .2=6 \mathrm{a}$
$a=\frac{P}{6}$
$\mathrm{Q}=\frac{1}{\sqrt{3}} \cdot \frac{\mathrm{P}^{2}}{36}$
$\mathrm{P}^{2}=36 \sqrt{3} \mathrm{Q}$

TEST PAPER WITH SOLUTION

2. Let $A=\{1,2,3,4,5\}$. Let R be a relation on A defined by $x R y$ if and only if $4 x \leq 5 y$. Let m be the number of elements in R and n be the minimum number of elements from $\mathrm{A} \times \mathrm{A}$ that are required to be added to R to make it a symmetric relation. Then $\mathrm{m}+\mathrm{n}$ is equal to:
(1) 24
(2) 23
(3) 25
(4) 26

Ans. (3)
Sol. Given : $4 \mathrm{x} \leq 5 \mathrm{y}$
then
$\mathrm{R}=\{(1,1),(1,2),(1,3),(1,4),(1,5),(2,2),(2,3),(2,4)$
$(2,5),(3,3),(3,4),(3,5),(4,4),(4,5),(5,4),(5,5)\}$
i.e. 16 elements.
i.e. $m=16$

Now to make R a symmetric relation add
$\{(2,1)(3,2)(4,3)(3,1)(4,2)(5,3)(4,1)(5,2)(5,1)\}$
i.e. $\mathrm{n}=9$

So $\mathrm{m}+\mathrm{n}=25$
3. If three letters can be posted to any one of the 5 different addresses, then the probability that the three letters are posted to exactly two addresses is:
(1) $\frac{12}{25}$
(2) $\frac{18}{25}$
(3) $\frac{4}{25}$
(4) $\frac{6}{25}$

Ans. (1)
Sol. Total method $=5^{3}$
faverable $={ }^{5} \mathrm{C}_{2}\left(2^{3}-2\right)=60$
probability $=\frac{60}{125}=\frac{12}{25}$
4. Suppose the solution of the differential equation $\frac{d y}{d x}=\frac{(2+\alpha) x-\beta y+2}{\beta x-2 \alpha y-(\beta \gamma-4 \alpha)} \quad$ represents a circle passing through origin. Then the radius of this circle is :
(1) $\sqrt{17}$
(2) $\frac{1}{2}$
(3) $\frac{\sqrt{17}}{2}$
(4) 2

Ans. (3)
Sol. $\frac{d y}{d x}=\frac{(2+\alpha) x-\beta y+2}{\beta x-y(2 \alpha+\beta)+4 \alpha}$
$\beta x d y-(2 \alpha+\beta) y d y+4 \alpha d y=(2+\alpha) x d x-\beta y d x+2 d x$
$\beta(x d y+y d x)-(2 \alpha+\beta) y d y+4 \alpha d y=(2+\alpha) x d x+2 d x$
$\beta x y-\frac{(2 \alpha+\beta) y^{2}}{2}+4 \alpha y=\frac{(2+\alpha) x^{2}}{2}$
$\Rightarrow \beta=0$ for this to be circle
$(2+\alpha) \frac{x^{2}}{2}+\alpha y^{2}+2 x-4 \alpha y=0$
coeff. of
$\begin{gathered}\text { coeff. of } \\ \mathrm{x}^{2}=\mathrm{y}^{2}\end{gathered}>2+\mathrm{a}=2 \mathrm{a}$
$\Rightarrow \quad \alpha=2$
i.e. $2 x^{2}+2 y^{2}+2 x-8 y=0$
$x^{2}+y^{2}+x-4 y=0$
$\mathrm{rd}=\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{2}$
5. If the locus of the point, whose distances from the point $(2,1)$ and $(1,3)$ are in the ratio $5: 4$, is $a x^{2}+b y^{2}+c x y+d x+e y+170=0$, then the value of $a^{2}+2 b+3 c+4 d+e$ is equal to:
(1) 5
(2) -27
(3) 37
(4) 437

Ans. (3)
Sol. let $\mathrm{P}(\mathrm{x}, \mathrm{y})$
$\frac{(\mathrm{x}-2)^{2}+(\mathrm{y}-1)^{2}}{(\mathrm{x}-1)^{2}+(\mathrm{y}-3)^{2}}=\frac{25}{16}$
$9 x^{2}+9 y^{2}+14 x-118 y+170=0$
$a^{2}+2 b+3 c+4 d+e$
$=81+18+0+56-118$
$=155-118$
$=37$
6. $\quad \lim _{n \rightarrow \infty} \frac{\left(1^{2}-1\right)(n-1)+\left(2^{2}-2\right)(n-2)+\ldots .+\left((n-1)^{2}-(n-1)\right) \cdot 1}{\left(1^{3}+2^{3}+\ldots .+n^{3}\right)-\left(1^{2}+2^{2}+\ldots .+n^{2}\right)}$
is equal to:
(1) $\frac{2}{3}$
(2) $\frac{1}{3}$
(3) $\frac{3}{4}$
(4) $\frac{1}{2}$

Ans. (2)
Sol. $\sum_{\lim \frac{n-1}{n-1}\left(r^{2}-r\right)(n-r)}$
Sol.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\sum_{r=1}^{n} r^{3}-\sum_{r=1}^{n} r^{2}}{\lim _{n \rightarrow \infty} \frac{\sum_{r=1}^{n-1}\left(-r^{3}+r^{2}(n+1)-n r\right)}{\left(\frac{n(n+1)}{2}\right)^{2}-\frac{n(n+1)(2 n+1)}{6}}} \\
& \lim _{n \rightarrow \infty} \frac{\left(\frac{((n-1) n)}{2}\right)^{2}+\frac{(n+1)(n-1) n(2 n-1)}{6}-\frac{n^{2}(n-1)}{2}}{\frac{n(n+1)}{2}\left(\frac{n(n+1)}{2}-\frac{2 n+1}{3}\right)} \\
& \lim _{n \rightarrow \infty} \frac{\frac{n(n-1)}{2}\left(\frac{-n(n-1)}{2}+\frac{(n+1)(2 n-1)}{3}-n\right)}{\frac{n(n+1)}{2} \frac{3 n^{2}+3 n-4 n-2}{6}} \\
& \lim _{n \rightarrow \infty} \frac{(n-1)\left(-3 n^{2}+3 n+2\left(2 n^{2}+n-1\right)-6\right)}{(n+1)\left(3 n^{2}-n-2\right)} \\
& \lim _{n \rightarrow \infty} \frac{(n-1)\left(n^{2}+5 n-8\right)}{(n+1)\left(3 n^{2}-n-2\right)}=\frac{1}{3}
\end{aligned}
$$

7. Let $0 \leq r \leq n$. If ${ }^{n+1} C_{r+1}:{ }^{n} C_{r}:{ }^{n-1} C_{r-1}=55: 35: 21$, then $2 n+5 r$ is equal to:
(1) 60
(2) 62
(3) 50
(4) 55

Ans. (3)
Ans. $\frac{{ }^{n+1} C_{r}}{{ }^{n} C_{r}}=\frac{55}{35}$
$\frac{(\mathrm{n}+1)!}{(\mathrm{r}+1)!(\mathrm{n}-\mathrm{r})}!\frac{\mathrm{r}!(\mathrm{n}-\mathrm{r})!}{\mathrm{n}!}=\frac{11}{7}$
$\frac{(\mathrm{n}+1)}{\mathrm{r}+1}=\frac{11}{7}$
$7 \mathrm{n}=4+11 \mathrm{r}$
$\frac{{ }^{n} C_{r}}{{ }^{n-1} C_{r-1}}=\frac{35}{21}$
$\frac{n!}{r!(n-r)!}=\frac{(r-1)!(n-r)!}{(n-1)!}=\frac{5}{3}$
$\frac{\mathrm{n}}{\mathrm{r}}=\frac{5}{3}$
$3 n=5 \mathrm{r}$
By solving $r=6$

$$
\mathrm{n}=10
$$

$2 \mathrm{n}+5 \mathrm{r}=50$
8. A software company sets up m number of computer systems to finish an assignment in 17 days. If 4 computer systems crashed on the start of the second day, 4 more computer systems crashed on the start of the third day and so on, then it took 8 more days to finish the assignment. The value of m is equal to :
(1) 125
(2) 150
(3) 180
(4) 160

Ans. (2)
Sol. $17 \mathrm{~m}=\mathrm{m}+(\mathrm{m}-4)+(\mathrm{m}-4 \times 2) \ldots+\ldots(\mathrm{m}-4 \times 24)$ $17 \mathrm{~m}=25 \mathrm{~m}-4(1+2 \ldots 24)$
$8 \mathrm{~m}=\frac{4 \cdot 24 \cdot 25}{2}=150$
9. If $\mathrm{z}_{1}, \mathrm{z}_{2}$ are two distinct complex number such that $\left|\frac{\mathrm{z}_{1}-2 \mathrm{z}_{2}}{\frac{1}{2}-\mathrm{z}_{1} \overline{\mathrm{z}}_{2}}\right|=2$, then
(1) either z_{1} lies on a circle of radius 1 or z_{2} lies on a circle of radius $\frac{1}{2}$
(2) either z_{1} lies on a circle of radius $\frac{1}{2}$ or z_{2} lies on a circle of radius 1 .
(3) z_{1} lies on a circle of radius $\frac{1}{2}$ and z_{2} lies on a circle of radius 1.
(4) both z_{1} and z_{2} lie on the same circle.

Ans. (1)

Sol. $\frac{z_{1}-2 z_{2}}{\frac{1}{2}-z_{1} \bar{z}_{2}} \times \frac{\bar{z}_{1}-2 \bar{z}_{2}}{\frac{1}{2}-\overline{\mathrm{z}}_{1} \mathrm{z}_{2}}=4$
$\left|\mathrm{z}_{1}\right|^{2} 2 \mathrm{z}_{1} \overline{\mathrm{z}}_{2}-2 \overline{\mathrm{z}}_{1} \mathrm{z}_{2}+4\left|\mathrm{z}_{2}\right|^{2}$
$=4\left(\frac{1}{4}-\frac{\bar{z}_{1} z_{2}}{2}-\frac{z_{1} \bar{z}_{2}}{2}+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}\right)$
$\mathrm{z}_{1} \overline{\mathrm{z}}_{1}+2 \mathrm{z}_{2} \cdot 2 \overline{\mathrm{z}}_{2}-\mathrm{z}_{1} \overline{\mathrm{z}}_{1} 2 \mathrm{z}_{2} 2 \overline{\mathrm{z}}_{2}-1=0$
\qquad
$\left(\mathrm{z}, \overline{\mathrm{z}}_{1}-1\right)\left(1-2 \mathrm{z}_{2} \cdot 2 \overline{\mathrm{z}}_{2}\right)=0$
$\left(\left|z_{1}\right|^{2}-1\right)\left(\left|2 z_{2}\right|^{2}-1\right)=0$
10. If the function $f(x)=\left(\frac{1}{x}\right)^{2 x} ; x>0$ attains the maximum value at $\mathrm{x}=\frac{1}{\mathrm{e}}$ then :
(1) $\mathrm{e}^{\pi}<\pi^{\mathrm{e}}$
(2) $\mathrm{e}^{2 \pi}<(2 \pi)^{\mathrm{e}}$
(3) $\mathrm{e}^{\pi}>\pi^{\mathrm{e}}$
(4) $(2 \mathrm{e})^{\pi}>\pi^{(2 \mathrm{e})}$

Ans. (3)
Sol. Let $y=\left(\frac{1}{x}\right)^{2 x}$
$\ell n y=2 x \ln \left(\frac{1}{x}\right)$
$\ell \mathrm{ny}=-2 \mathrm{x} \ell \mathrm{nx}$
$\frac{1}{y} \frac{d y}{d x}=-2(1+\ell n x)$
for $\mathrm{x}>\frac{1}{\mathrm{e}} \mathrm{f}^{\mathrm{n}}$ is decreasing
so, $\mathrm{e}<\pi$
$\left(\frac{1}{\mathrm{e}}\right)^{2 \mathrm{e}}>\left(\frac{1}{\pi}\right)^{2 \pi}$
$\mathrm{e}^{\pi}>\pi^{\mathrm{e}}$
11. Let $\vec{a}=6 \hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$. If \vec{c} is a is vector such that $|\overrightarrow{\mathrm{c}}| \geq 6, \overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{c}}=6|\overrightarrow{\mathrm{c}}|,|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 60°, then $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is equal to:
(1) $\frac{9}{2}(6-\sqrt{6})$
(2) $\frac{3}{2} \sqrt{3}$
(3) $\frac{3}{2} \sqrt{6}$
(4) $\frac{9}{2}(6+\sqrt{6})$

Ans. (4)

Sol. $|(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})|=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}||\overrightarrow{\mathrm{c}}| \frac{\sqrt{3}}{2}$
$|\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}|=2 \sqrt{2}$
$|c|^{2}+|a|^{2}-2 \overrightarrow{\mathbf{c}} \cdot \vec{a}=8$
$|z|^{2}+38-12|z|=8$
$|z|^{2}-12|z|+30=0$
$|z|=\frac{12 \pm \sqrt{144-120}}{2}$
$=\frac{12 \pm 2 \sqrt{6}}{2}$
$|z|=6+\sqrt{6}$
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{\ell} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 6 & 1 & -1 \\ 1 & 1 & 0\end{array}\right|$
$\hat{\ell}-\hat{\mathrm{j}}+5 \hat{\mathrm{k}}$
$|\vec{a} \times \vec{b}|=\sqrt{27}$
$|(\overrightarrow{\mathrm{a}} \times \mathrm{b}) \times \mathrm{z}|=\sqrt{27}(6+\sqrt{6}) \frac{\sqrt{3}}{2}$
$\frac{9}{2}(6+\sqrt{6})$
12. If all the words with or without meaning made using all the letters of the word "NAGPUR" are arranged as in a dictionary, then the word at $315^{\text {th }}$ position in this arrangement is :
(1) NRAGUP
(2) NRAGPU
(3) NRAPGU
(4) NRAPUG

Ans. (3)
Sol. NAGPUR
$\mathrm{A} \rightarrow 5!=120$
G ® $5!=120$
NA $® 4!=24 \quad 264$
$\mathrm{NG}{ }^{\circledR} 4!=24 \quad 288$
$\mathrm{NP}{ }^{\circledR} 4!=24 \quad 312$
NRAGPU $=1 \quad 313$
NRAGUP 314
NRAPGU 315
13. Suppose for a differentiable function $\mathrm{h}, \mathrm{h}(0)=0$, $h(1)=1$ and $h^{\prime}(0)=h^{\prime}(1)=2$. If $g(x)=h\left(e^{x}\right) e^{h(x)}$, then $\mathrm{g}^{\prime}(0)$ is equal to:
(1) 5
(2) 3
(3) 8
(4) 4

Ans. (4)
Sol. $\quad g(x)=h\left(e^{x}\right) \cdot e^{h(x)}$
$g^{\prime}(x)=h\left(e^{x}\right) \cdot e^{h(x)} \cdot h^{\prime}(x)+e^{h(x)} h^{\prime}\left(e^{x}\right) \cdot e^{x}$
$\mathrm{g}^{\prime}(0)=\mathrm{h}(1) \mathrm{e}^{\mathrm{h}(0)} \mathrm{h}^{\prime}(0)+\mathrm{e}^{\mathrm{h}(0)} \mathrm{h}^{\prime}(1)$
$=2+2=4$
14. Let $\mathrm{P}(\alpha, \beta, \gamma)$ be the image of the point $\mathrm{Q}(3,-3,1)$ in the line $\frac{x-0}{1}=\frac{y-3}{1}=\frac{z-1}{-1}$ and R be the point $(2,5,-1)$. If the area of the triangle PQR is λ and $\lambda^{2}=14 \mathrm{~K}$, then K is equal to:
(1) 36
(2) 72
(3) 18
(4) 81

Ans. (4)
Sol.

$\mathrm{RQ}=\sqrt{1+64+4}=\sqrt{69}$
$\overrightarrow{\mathrm{RQ}}=\hat{\ell}-8 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{RS}}=\hat{\ell}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$
$\cos \theta=\frac{\overrightarrow{\mathrm{RQ}} \cdot \overrightarrow{\mathrm{RS}}}{|\overrightarrow{\mathrm{RQ}}||\overrightarrow{\mathrm{RS}}|}=\left|\frac{1-8-2}{\sqrt{69} \sqrt{3}}\right|=\frac{9}{3 \sqrt{23}}$
$\cos \theta=\frac{3}{\sqrt{23}}=\frac{\mathrm{RS}}{\mathrm{RQ}}=\frac{\mathrm{RS}}{\sqrt{69}}$
RS $=3 \sqrt{3}$
$\sin \theta=\frac{\sqrt{14}}{\sqrt{23}}=\frac{\mathrm{QS}}{\sqrt{69}}$
$\mathrm{QS}=\sqrt{42}$
area $=\frac{1}{2} \cdot 2 \mathrm{QS} \cdot \mathrm{RS}=\sqrt{42} \cdot 3 \sqrt{3}$
$\lambda=9 \sqrt{14}$
$\lambda^{2}=81.14=14 \mathrm{k}$
$\mathrm{k}=81$
15. If $\mathrm{P}(6,1)$ be the orthocentre of the triangle whose vertices are $\mathrm{A}(5,-2), \mathrm{B}(8,3)$ and $\mathrm{C}(\mathrm{h}, \mathrm{k})$, then the point C lies on the circle.
(1) $x^{2}+y^{2}-65=0$
(2) $x^{2}+y^{2}-74=0$
(3) $x^{2}+y^{2}-61=0$
(4) $x^{2}+y^{2}-52=0$

Ans. (1)

Sol.

Slope of AD $=3$
Slope of $\mathrm{BC}=-\frac{1}{3}$
equation of $\mathrm{BC}=3 \mathrm{y}+\mathrm{x}-17=0$
slope of $\mathrm{BE}=1$
Slope of $A C=-1$
equation of $A C$ is $x+y-3=0$
point C is $(-4,7)$
16. Let $f(x)=\frac{1}{7-\sin 5 x}$ be a function defined on R. Then the range of the function $f(x)$ is equal to:
(1) $\left[\frac{1}{8}, \frac{1}{5}\right]$
(2) $\left[\frac{1}{7}, \frac{1}{6}\right]$
(3) $\left[\frac{1}{7}, \frac{1}{5}\right]$
(4) $\left[\frac{1}{8}, \frac{1}{6}\right]$

Ans. (4)
Sol. $\sin 5 \mathrm{x} \in[-1,1]$
$-\sin 5 x \in[-1,1]$
$7-\sin 5 x \in[6,8]$
$\frac{1}{7-\sin 5 x} \in\left[\frac{1}{8}, \frac{1}{6}\right]$
17. Let $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=((\overrightarrow{\mathrm{a}} \times(\hat{\mathrm{i}}+\hat{\mathrm{j}})) \times \hat{\mathrm{i}}) \times \hat{\mathrm{i}}$.

Then the square of the projection of \vec{a} on \vec{b} is :
(1) $\frac{1}{5}$
(2) 2
(3) $\frac{1}{3}$
(4) $\frac{2}{3}$

Ans. (2)
Sol. $\quad \vec{a} \times(\hat{i}+\hat{j})=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ 1 & 1 & 0\end{array}\right|$
$=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$
$(\vec{a} \times(\hat{i} \times \hat{j})) \times \hat{i}=\hat{k}+\hat{j}$
$((\vec{a} \times(\hat{i} \times \hat{j})) \times i) \times \hat{i}=\hat{j}-\hat{k}$
projection of \vec{a} on $\hat{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
$=\frac{1+1}{\sqrt{2}}=\sqrt{2}$
18. If the area of the region
$\left\{(x, y): \frac{a}{x^{2}} \leq y \leq \frac{1}{x}, 1 \leq x \leq 2,0<a<1\right\}$ is
$\left(\log _{e} 2\right)-\frac{1}{7}$ then the value of $7 a-3$ is equal to:
(1) 2
(2) 0
(3) -1
(4) 1

Ans. (3)
Sol.

Download the new ALLEN app \& enroll for Online Programs

$\operatorname{area} \int_{1}^{2}\left(\frac{1}{x}-\frac{a}{x^{2}}\right) d x$
$\left[\ln x+\frac{\mathrm{a}}{\mathrm{x}}\right]_{1}^{2}$
$\ell \operatorname{n} 2+\frac{a}{2}-a=\log _{e} 2-\frac{1}{7}$
$\frac{-\mathrm{a}}{2}=-\frac{1}{7}$
$\mathrm{a}=\frac{2}{7}$
$7 \mathrm{a}=2$
$7 a-3=-1$
19. If $\int \frac{1}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x} d x=\frac{1}{12} \tan ^{-1}(3 \tan x)+$ constant, then the maximum value of $\operatorname{asin} x+b \cos x$, is :
(1) $\sqrt{40}$
(2) $\sqrt{39}$
(3) $\sqrt{42}$
(4) $\sqrt{41}$

Ans. (1)
Sol. $\int \frac{\sec ^{2} x d x}{a^{2} \tan ^{2} x+b^{2}}$
let $\tan x=t$
$\sec ^{2} d x=d t$
$\int \frac{d t}{a^{2} t^{2}+b^{2}}$
$\frac{1}{a^{2}} \int \frac{d t}{t^{2}+\left(\frac{b}{a}\right)^{2}}$
$\frac{1}{a^{2}} \frac{1}{\frac{b}{a}} \tan ^{-1}\left(\frac{\mathrm{t}}{\mathrm{b}} \mathrm{a}\right)+\mathrm{c}$
$\frac{1}{a b} \tan ^{-1}\left(\frac{\alpha}{b} \tan x\right)+c$
on comparing $\frac{a}{b}=3$
$\mathrm{ab}=12$
$a=6, b=2$
maximum value of
$6 \sin x+2 \cos x$ is $\sqrt{40}$
20. If A is a square matrix of order 3 such that $\operatorname{det}(\mathrm{A})=3$ and
$\operatorname{det}\left(\operatorname{adj}\left(-4 \operatorname{adj}\left(-3 \operatorname{adj}\left(3 \operatorname{adj}\left((2 \mathrm{~A})^{-1}\right)\right)\right)\right)\right)=2^{m} 3^{\mathrm{n}}$,
then $m+\mid 2 n$ is equal to:
(1) 3
(2) 2
(3) 4
(4) 6

Ans. (3)
Sol. $|\mathrm{A}|=3$
$\left|\operatorname{adj}\left(-4 \operatorname{adj}\left(-3 \operatorname{adj}\left(3 \operatorname{adj}\left((2 \mathrm{~A})^{-1}\right)\right)\right)\right)\right|$
$\mid-4 \operatorname{adj}\left(-\left.3 \operatorname{adj}\left(3 \operatorname{adj}(2 \mathrm{~A})^{-1}\right)\right|^{2}\right.$
$4^{6}\left|\operatorname{adj}\left(-3 \operatorname{adj}\left(3 \operatorname{adj}(2 \mathrm{~A})^{-1}\right)\right)\right|^{2}$
$2^{12} \cdot 3^{12}\left|3 \operatorname{adj}(2 \mathrm{~A})^{-1}\right|^{8}$
$2^{12} \cdot 3^{12} \cdot 3^{24}\left|\operatorname{adj}(2 \mathrm{~A})^{-1}\right|^{8}$
$2^{12} \cdot 3^{36}\left|(2 \mathrm{~A})^{-1}\right|^{16}$
$2^{12} \cdot 3^{36} \frac{1}{|2 \mathrm{~A}|^{16}}$
$2^{12} \cdot 3^{36} \frac{1}{2^{48}|\mathrm{~A}|^{16}}$
$2^{12} \cdot 3^{36} \frac{1}{2^{48} \cdot 3^{16}}$
$\frac{3^{20}}{2^{36}}=2^{-36} \cdot 3^{20}$
$\mathrm{m}=-36 \quad \mathrm{n}=20$
$m+2 n=4$

Download the new ALLEN app \& enroll for Online Programs

SECTION-B

21. Let [t] denote the greatest integer less than or equal to t. Let $f:[0, \infty) \rightarrow R$ be a function defined by $f(x)=\left[\frac{x}{2}+3\right]-[\sqrt{x}]$. Let S be the set of all points in the interval $[0,8]$ at which f is not continuous. Then $\sum_{a \in S} a$ is equal to \qquad .

Ans. (17)
Sol. $\left[\frac{x}{2}+3\right]$ is discontinuous at $x=2,4,6,8$
$\sqrt{\mathrm{x}}$ is discontinuous at $\mathrm{x}=1,4$
$\mathrm{F}(\mathrm{x})$ is discontinuous at $\mathrm{x}=1,2,6,8$
$\sum \mathrm{a}=1+2+6+8=17$
22. The length of the latus rectum and directrices of a hyperbola with eccentricity e are 9 and $x= \pm \frac{4}{\sqrt{3}}$, respectively. Let the line $y-\sqrt{3} x+\sqrt{3}=0$ touch this hyperbola at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$. If m is the product of the focal distances of the point $\left(x_{0}, y_{0}\right)$, then $4 \mathrm{e}^{2}+\mathrm{m}$ is equal to \qquad -.
NTA Ans. (61)
Ans. (Bonus)
Sol. Given $\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=9$ and $\frac{\mathrm{a}}{\mathrm{e}}= \pm \frac{4}{\sqrt{3}}$
equation of tangent $y-\sqrt{3} x+\sqrt{3}=0$
by equation of tangent
Let slope $=S=\sqrt{3}$
Constant $=-\sqrt{3}$
By condition of tangency
$\Rightarrow 6=6 a^{2}-9 a$
$\Rightarrow \mathrm{a}=2, \mathrm{~b}^{2}=9$
Equation of Hyperbola is
$\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$ and for tangent
Point of contact is $(4,3 \sqrt{3})=\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$

Now $\mathrm{e}=\sqrt{1+\frac{9}{4}}=\frac{\sqrt{13}}{2}$
Again product of focal distances
$\mathrm{m}=\left(\mathrm{x}_{0} \mathrm{e}+\mathrm{a}\right)\left(\mathrm{x}_{0} \mathrm{e}-\mathrm{a}\right)$
$\mathrm{m}+4 \mathrm{e}^{2}=20 \mathrm{e}^{2}-\mathrm{a}^{2}$

$$
=20 \times \frac{13}{4}-4=61
$$

(There is a printing mistake in the equation of directrix $x= \pm \frac{4}{\sqrt{3}}$.

Corrected equation is $x= \pm \frac{4}{\sqrt{13}}$ for directrix, as eccentricity must be greater than one, so question must be bonus)
23. If $S(x)=(1+x)+2(1+x)^{2}+3(1+x)^{3}+\ldots .$. $+60(1+x)^{60}, x \neq 0$, and $(60)^{2} S(60)=a(b)^{b}+b$, where $a, b \in N$, then $(a+b)$ equal to \qquad
Ans. (3660)
Sol.
$S(x)=(1+x)+2(1+x)^{2}+3(1+x)^{3}+. .+60(1+x)^{60}$
$(1+x) S=(1+x)^{2}+\ldots \ldots$.
$59(1+x)^{60}+60(1+x)^{61}$
$-\mathrm{xS}=\frac{(1+\mathrm{x})(1+\mathrm{x})^{60}-1}{\mathrm{x}}-60(1+\mathrm{x})^{61}$
Put $x=60$
$-60 \mathrm{~S}=\frac{61\left((61)^{60}-1\right)}{60}-60(61)^{61}$
on solving 3660
24. Let [t] denote the largest integer less than or equal to t. If
$\int_{0}^{3}\left(\left[x^{2}\right]+\left[\frac{x^{2}}{2}\right]\right) d x=a+b \sqrt{2}-\sqrt{3}-\sqrt{5}+c \sqrt{6}-\sqrt{7}$,
where $a, b, c \in z$, then $a+b+c$ is equal to \qquad
Ans. (23)
Sol. $\int_{0}^{3}\left[x^{2}\right] d x+\int_{0}^{3}\left[\frac{x^{2}}{2}\right] d x$

$$
=\int_{0}^{1} 0 d x+\int_{1}^{12} 1 d x+\int_{\sqrt{2}}^{\sqrt{3}} 2 d x
$$

$+\int_{\sqrt{3}}^{2} 3 d x+\int_{2}^{\sqrt{5}} 4 d x+\int_{\sqrt{5}}^{\sqrt{6}} 5 d x$
$+\int_{\sqrt{6}}^{\sqrt{7}} 6 d x+\int_{\sqrt{7}}^{\sqrt{8}} 7 d x+\int_{\sqrt{8}}^{3} 8 d x$
$+\int_{0}^{\sqrt{2}} 0 d x+\int_{\sqrt{2}}^{2} 1 d x$
$+\int_{2}^{\sqrt{6}} 2 \mathrm{dx}+\int_{\sqrt{6}}^{\sqrt{8}} 3 \mathrm{dx}+\int_{\sqrt{8}}^{3} 4 \mathrm{dx}=31-6 \sqrt{2}-\sqrt{3}-\sqrt{5}$
$-2 \sqrt{6}-\sqrt{7}$
$a=31 \quad b=-6 \quad c=-2$
$a+b+c=31-6-2=23$
25. From a lot of 12 items containing 3 defectives, a sample of 5 items is drawn at random. Let the random variable X denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If variance of X is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $n-m$ is equal to \qquad .

Ans. (71)
Sol. $\mathrm{a}=1-\frac{{ }^{3} \mathrm{C}_{5}}{{ }^{12} \mathrm{C}_{5}}$
$\mathrm{b}=3 \cdot \frac{{ }^{9} \mathrm{C}_{4}}{{ }^{12} \mathrm{C}_{5}}$
$\mathrm{c}=3 \cdot \frac{{ }^{9} \mathrm{C}_{3}}{{ }^{12} \mathrm{C}_{5}}$
$\mathrm{d}=1 \cdot \frac{{ }^{9} \mathrm{C}_{2}}{{ }^{12} \mathrm{C}_{5}}$
$u=0 . a+1 . b+2 . c+3 . d=1.25$
$\sigma^{2}=0 . a+1 . b+4 . c+9 d-u^{2}$
$\sigma^{2}=\frac{105}{176}$
Ans. 176-105 = 71
26. In a triangle $\mathrm{ABC}, \mathrm{BC}=7, \mathrm{AC}=8, \mathrm{AB}=\alpha \in \mathrm{N}$ and $\cos \mathrm{A}=\frac{2}{3}$. If $49 \cos (3 \mathrm{C})+42=\frac{\mathrm{m}}{\mathrm{n}}$, where $\operatorname{gcd}(m, n)=1$, then $m+n$ is equal to \qquad Ans. (39)
26. In a triangle $\mathrm{ABC}, \mathrm{BC}=7, \mathrm{AC}=8, \mathrm{AB}=\alpha \in \mathrm{N}$ and $\cos \mathrm{A}=\frac{2}{3}$. If $49 \cos (3 \mathrm{C})+42=\frac{\mathrm{m}}{\mathrm{n}}$, where $\operatorname{gcd}(m, n)=1$, then $m+n$ is equal to \qquad
Ans. (39)
Sol. $\cos \mathrm{A}=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2 \mathrm{bc}}$
$\frac{2}{3}=\frac{8^{2}+\mathrm{c}^{2}-7^{2}}{2 \times 8 \times \mathrm{c}}$
$\mathrm{C}=9$
$\cos \mathrm{C}=\frac{7^{2}+8^{2}-9^{2}}{2 \times 7 \times 8}=\frac{2}{7}$
$49 \cos 3 \mathrm{C}+42$
$49\left(4 \cos ^{3} \mathrm{C}-3 \cos \mathrm{C}\right)+42$
$49\left(4\left(\frac{2}{7}\right)^{3}-3\left(\frac{2}{7}\right)\right)+42$
$=\frac{32}{7}$
$\mathrm{m}+\mathrm{n}=32+7=39$
27. If the shortest distance between the lines $\frac{x-\lambda}{3}=\frac{y-2}{-1}=\frac{z-1}{1}$ and $\frac{x+2}{-3}=\frac{y+5}{2}=\frac{z-4}{4}$ is $\frac{44}{\sqrt{30}}$, then the largest possible value of $|\lambda|$ is equal to \qquad -
Ans. (43)
Sol. $\quad \overline{\mathrm{a}}_{1}=\lambda \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
$\overline{\mathrm{a}}_{2}=-2 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{p}}-=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$
$\vec{q}-=-3 \hat{i}+2 \hat{j}+4 \hat{k}$
$(\lambda+2) \hat{\mathrm{i}}+7 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}=\overline{\mathrm{a}}_{1}-\overline{\mathrm{a}}_{2}$
$\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}-=-6 \hat{\mathrm{i}}-15 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$
$\frac{44}{\sqrt{30}}=\frac{|-6 \lambda-12-105-9|}{\sqrt{(-6)^{2}+(-15)^{2}+3^{2}}}$
$\frac{44}{\sqrt{30}}=\frac{|6 \lambda+126|}{3 \sqrt{30}}$
$132=|6 \lambda+126|$
$\lambda=1, \lambda=-43$
$|\lambda|=43$
28. Let α, β be roots of $x^{2}+\sqrt{2} x-8=0$.

If $U_{n}=\alpha^{n}+\beta^{n}$, then $\frac{U_{10}+\sqrt{12} U_{9}}{2 U_{8}}$
is equal to \qquad .
Ans. (4)
Sol. $\frac{\alpha^{10}+\beta^{10}+\sqrt{2}\left(\alpha^{9}+\beta^{9}\right)}{2\left(\alpha^{8}+\beta^{8}\right)}$
$\frac{\alpha^{8}\left(\alpha^{2}+\sqrt{2} \alpha\right)+\beta^{8}\left(\beta^{2}+\sqrt{2} \beta\right)}{2\left(\alpha^{8}+\beta^{8}\right)}$
$\frac{8 \alpha^{8}+8 \beta^{8}}{2\left(\alpha^{8}+\beta^{8}\right)}=4$
29. If the system of equations
$2 x+7 y+\lambda z=3$
$3 x+2 y+5 z=4$
$x+\mu y+32 z=-1$
has infinitely many solutions, then $(\lambda-\mu)$ is equal to \qquad :

Ans. (38)

Sol. $\mathrm{D}=\mathrm{D}_{1}=\mathrm{D}_{2}=\mathrm{D}_{3}=0$
$\mathrm{D}_{3}=\left|\begin{array}{ccc}2 & 7 & 3 \\ 3 & 2 & 4 \\ 1 & \mu & -1\end{array}\right|=0 \Rightarrow \mu=-39$
$\mathrm{D}=\left|\begin{array}{ccc}2 & 7 & \lambda \\ 3 & 2 & 5 \\ 1 & -39 & 32\end{array}\right|=0 \Rightarrow \lambda=-1$
$\lambda-\mu=38$
30. If the solution $y(x)$ of the given differential equation $\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$ passes through the point $\left(\frac{\pi}{2}, 0\right)$, then the value of $\mathrm{e}^{\mathrm{y}\left(\frac{\pi}{6}\right)}$ is equal to \qquad .
Ans. (3)
Sol. $\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$
$\Rightarrow \mathrm{d}\left(\left(\mathrm{e}^{\mathrm{y}}+1\right) \sin \mathrm{x}\right)=0$
$\left(e^{y}+1\right) \sin x=C$
It passes through $\left(\frac{\pi}{2}, 0\right)$
$\Rightarrow \mathrm{c}=2$
Now, $x=\frac{\pi}{6}$
$\Rightarrow e^{y}=3$

Are you targeting JEE 2025 ?

Ace it with ALLEN's Leader Course

Online Program 18 APRIL'24

Offline Program) 24 APRIL'24

ALLEET
Get The Latest

IIT-JJE Special Books

 at Your Door Steps...!!JOIN THE JOURNEY OF LEARNING with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's |JEE-Adv. PYQ's

Available in HINDI \& ENGLISH

