CHEMISTRY

SECTION-A

61. Functional group present in sulphonic acid is :
(1) $\mathrm{SO}_{4} \mathrm{H}$
(2) $\mathrm{SO}_{3} \mathrm{H}$
(3) $-\underset{{ }_{\mathrm{O}}^{\mathrm{O}}}{\mathrm{S}}-\mathrm{OH}$
(4) $-\mathrm{SO}_{2}$

Ans. (2)

Sol.

Group present in sulphonic acids
62. Match List I with List II :

List I (Molecule / Species)		List II (Property / Shape)	
A.	$\mathrm{SO}_{2} \mathrm{Cl}_{2}$	I.	Paramagnetic
B.	NO	II.	Diamagnetic
C.	NO_{2}^{-}	III.	Tetrahedral
D.	I_{3}^{-}	IV.	Linear

Choose the correct answer from the options given below:
(1) A-IV, B-I, C-III, D-II
(2) A-III, B-I, C-II, D-IV
(3) A-II, B-III, C-I, D-IV
(4) A-III, B-IV, C-II, D-I

Ans. (2)
Sol.

(A)	$\mathrm{SO}_{2} \mathrm{Cl}_{2}$	sp^{3}	 Tetrahedral
(B)	NO		Paramagnetic
(C)	NO_{2}^{-}		Diamagnetic
(D)	I_{3}^{-}	$\mathrm{sp}^{3} \mathrm{~d}$	

TEST PAPER WITH SOLUTION

63. Given below are two statements :

Statement I : Picric acid is 2, 4, 6-trinitrotoluene.
Statement II : Phenol-2, 4-disulphuric acid is treated with conc. HNO_{3} to get picric acid.

In the light of the above statement, choose the most appropriate answer from the options given below :
(1) Statement I is incorrect but Statement II is correct.
(2) Both Statement I and Statement II are incorrect.
(3) Statement I is correct but Statement II is incorrect.
(4) Both Statement I and Statement II are correct.

Ans. (1)

Sol.

picric acid
(2, 4, 6 - trinitrophenol)

Download the new ALLEN app \& enroll for Online Programs
64. Which of the following is metamer of the given compound (X)?

(X)
(1)

(2)

(3)

(4)

Ans. (4)
Sol. Metamer \Rightarrow Isomer having same molecular formula, same functional group but different alkyl/aryl groups on either side of functional group.
65. DNA molecule contains 4 bases whoes structure are shown below. One of the structure is not correct, identify the incorrect base structure.
(1)

(2)

(3)

(4)

Download the new ALLEN app

 \& enroll for Online Programs67. Given below are two statements :

Statement I : Gallium is used in the manufacturing of thermometers.

Statement II : A thermometer containing gallium is useful for measuring the freezing point (256 K) of brine solution.

In the light of the above statement, choose the correct answer from the options given below :
(1) Both Statement I and Statement II are false.
(2) Statement I is false but Statement II is true
(3) Both Statement I and Statement II are true.
(4) Statement I is true but Statement II is false.

Ans. (4)
Sol. Statement - I \Rightarrow Correct
Statement - II \Rightarrow False
Ga is used to measure high temperature
68. Which of the following statements are correct?
A. Glycerol is purified by vacuum distillation because it decomposes at its normal boiling point.
B. Aniline can be purified by steam distillation as aniline is miscible in water.
C. Ethanol can be separated from ethanol water mixture by azeotropic distillation because it forms azeotrope.
D. An organic compound is pure, if mixed M.P. is remained same.

Choose the most appropriate answer from the options given below :
(1) A, B, C only
(2) A, C, D only
(3) B, C, D only
(4) A, B, D only

Ans. (2)
Sol. Option (B) is incorrect because aniline is immisible in water.
69. Match List I with List II :

LIST I (Compound / Species)		LIST II (Shape / Geometry)	
A.	SF_{4}	I.	Tetrahedral
B.	BrF_{3}	II.	Pyramidal
C.	BrO_{3}^{-}	III.	See saw
D.	NH_{4}^{+}	IV.	Bent T-shape

Choose the correct answer from the options given below :
(1) A-II, B-III, C-I, D-IV
(2) A-III, B-IV, C-II, D-I
(3) A-II, B-IV, C-III, D-I
(4) A-III, B-II, C-IV, D-I

Ans. (2)
Sol.

| (A) | SF_{4} | $\mathrm{sp}^{3} \mathrm{~d}$ |
| :--- | :--- | :--- | :--- | :--- |
| hybridisation | | |

70. In Reimer - Tiemann reaction, phenol is converted into salicylaldehyde through an intermediate. The structure of intermediate is \qquad .
(1)

(2)

(3)

(4)

Ans. (4)

Sol.

71. Which of the following material is not a semiconductor.
(1) Germanium
(2) Graphite
(3) Silicon
(4) Copper oxide

Ans. (2)
Sol. Graphite is conductor
72. Consider the following complexes.
$\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$,
$\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$,
(A)
(B)
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}, \quad\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$
(C)
(D)

The correct order of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D in terms of wavenumber of light absorbed is :
(1) C $<$ D $<$ A $<$ B
(2) D $<$ A $<$ C $<$ B
(3) A $<$ C $<$ B $<$ D
(4) B $<$ C $<$ A $<$ D

Ans. (2)
Sol. As ligand field increases, light of more energy is absorbed

Energy \propto wave number
(\bar{v})
73. Match List I with List II :

LIST I (Precipitating reagent and conditions)		LIST II (Cation)	
A.	$\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}$	I.	Mn^{2+}
B.	$\mathrm{NH}_{4} \mathrm{OH}+\mathrm{Na}_{2} \mathrm{CO}_{3}$	II.	Pb^{2+}
C.	$\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{~S}$ gas	III.	Al^{3+}
D.	dilute HCl	IV.	Sr^{2+}

Choose the correct answer from the options given below:
(1) A-IV, B-III, C-II, D-I
(2) A-IV, B-III, C-I, D-II
(3) A-III, B-IV, C-I, D-II
(4) A-III, B-IV, C-II, D-I

Ans. (3)
Sol. Theory based question
74. The electron affinity value are negative for :
A. $\mathrm{Be} \rightarrow \mathrm{Be}^{-}$
B. $\mathrm{N} \rightarrow \mathrm{N}^{-}$
C. $\mathrm{O} \rightarrow \mathrm{O}^{2-}$
D. $\mathrm{Na} \rightarrow \mathrm{Na}^{-}$
E. $\mathrm{Al} \rightarrow \mathrm{Al}^{-}$

Choose the most appropriate answer from the options given below :
(1) D and E only
(2) A, B, D and E only
(3) A and D only
(4) A, B and C only

Allen Ans. (4)
NTA Ans. (1)
Sol.
(A) $\mathrm{Be}+\mathrm{e}^{-} \rightarrow \mathrm{Be}^{-}$,
E. A = -ive
(B) $\mathrm{N}+\mathrm{e}^{-} \rightarrow \mathrm{N}^{-}$
E. $\mathrm{A}=-\mathrm{ive}$
(C) $\mathrm{O}+\mathrm{e}^{-} \rightarrow \mathrm{O}^{-}$
$\mathrm{O}^{-}+\mathrm{e}^{-} \rightarrow \mathrm{O}^{-2}$
E. $\mathrm{A}=-\mathrm{ive}$
(D) $\mathrm{Na}+\mathrm{e}^{-} \rightarrow \mathrm{Na}^{-}$
E. $\mathrm{A}=+\mathrm{ive}$
(E) $\mathrm{A} \ell+\mathrm{e}^{-} \rightarrow \mathrm{A} \ell^{-}$
E. $\mathrm{A}=+\mathrm{ive}$

Ans. A,B and C only
75. The number of element from the following that do not belong to lanthanoids is :
$\mathrm{Eu}, \mathrm{Cm}, \mathrm{Er}, \mathrm{Tb}, \mathrm{Yb}$ and Lu
(1) 3
(2) 4
(3) 1
(4) 5

Ans. (3)
Sol. Cm is Actinide
76. The density of ' x ' M solution (' x ' molar) of NaOH is $1.12 \mathrm{~g} \mathrm{~mL}^{-1}$. while in molality, the concentration of the solution is 3 m (3 molal). Then x is
(Given : Molar mass of NaOH is $40 \mathrm{~g} / \mathrm{mol}$)
(1) 3.5
(2) 3.0
(3) 3.8
(4) 2.8

Ans. (2)
Sol. Molality $=\frac{1000 \times \mathrm{M}}{1000 \times \mathrm{d}-\mathrm{M} \times(\mathrm{Mw})_{\text {solute }}}$
$3=\frac{1000 \times \mathrm{x}}{1000 \times 1.12-(\mathrm{x} \times 40)}$
$\mathrm{x}=3$
77. Which among the following aldehydes is most reactive towards nucleophilic addition reactions?
(1)

(2)

(3)

(4)

Ans. (1)

Sol.
 has low steric hindrance at carbonyl carbon and high partial positive charge at carbonyl carbon.
78. At $-20^{\circ} \mathrm{C}$ and 1 atm pressure, a cylinder is filled with equal number of $\mathrm{H}_{2} . \mathrm{I}_{2}$ and HI molecules for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$, the K_{P} for the process is $\mathrm{x} \times 10^{-1} . \mathrm{x}=$ \qquad .
[Given : $\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]
(1) 2
(2) 1
(3) 10
(4) 0.01

Ans. (3)

Sol. $\Delta \mathrm{n}_{\mathrm{g}}=0$

$$
\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{n}_{\mathrm{HI}}\right)^{2}}{\mathrm{n}_{\mathrm{H}_{2}} \mathrm{n}_{\mathrm{I}_{2}}}\left(\frac{\mathrm{P}_{\mathrm{T}}}{\mathrm{n}_{\mathrm{T}}}\right)^{\Delta \mathrm{n}_{\mathrm{g}}}
$$

$\mathrm{n}_{\mathrm{HI}}=\mathrm{n}_{\mathrm{H}_{2}}=\mathrm{n}_{\mathrm{I}_{2}}$
so $K_{P}=1$
$1=\mathrm{x} \times 10^{-1}$

$$
x=10
$$

79. Match List I with List II :

LIST I (Compound)		LIST II (Uses)	
A.	Iodoform	I.	Fire extinguisher
B.	Carbon tetrachloride	II.	Insecticide
C.	CFC	III.	Antiseptic
D.	DDT	IV.	Refrigerants

Choose the correct answer from the options given below :
(1) A-I, B-II, C-III, D-IV
(2) A-III, B-II, C-IV, D-I
(3) A-III, B-I, C-IV, D-II
(4) A-II, B-IV, C-I, D-III

Ans. (3)

Sol. Iodoform - Antiseptic
CCl_{4} - Fire extinguisher
CFC - Refrigerants
DDT - Insecticide
80. A conductivity cell with two electrodes (dark side) are half filled with infinitely dilute aqueous solution of a weak electrolyte. If volume is doubled by adding more water at constant temperature, the molar conductivity of the cell will -

(1) increase sharply
(2) remain same or can not be measured accurately
(3) decrease sharply
(4) depend upon type of electrolyte

Ans. (2)
Sol. Solution is already infinitely dilute, hence no change in molar conductivity upon addition of water

SECTION-B

81. Consider the dissociation of the weak acid HX as given below
$\mathrm{HX}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}), \mathrm{Ka}=1.2 \times 10^{-5}$
[K_{a} : dissociation constant]
The osmotic pressure of 0.03 M aqueous solution of HX at 300 K is \qquad $\times 10^{-2}$ bar (nearest integer).
[Given : $\mathrm{R}=0.083 \mathrm{~L}^{\mathrm{Lar} \mathrm{Mol}}{ }^{-1} \mathrm{~K}^{-1}$]

Ans. (76)

Sol. $\mathrm{HX} \rightleftharpoons \mathrm{H}^{+}+\mathrm{X}^{-} \mathrm{K}_{\mathrm{a}}=1.2 \times 10^{-5}$
0.03 M
$0.03-\mathrm{x}$ x x
$\mathrm{K}_{\mathrm{a}}=1.2 \times 10^{-5}=\frac{\mathrm{x}^{2}}{0.03-\mathrm{x}}$
$0.03-\mathrm{x} \approx 0.03\left(\mathrm{~K}_{\mathrm{a}}\right.$ is very small)
$\frac{\mathrm{x}^{2}}{0.03}=1.2 \times 10^{-5}$
$\mathrm{x}=6 \times 10^{-4}$
Final solution : $0.03-\mathrm{x}+\mathrm{x}+\mathrm{x}$
$=0.03+\mathrm{x}=0.03+6 \times 10^{-4}$
$\Pi=\left(0.03+\left(6 \times 10^{-4}\right)\right) \times 0.083 \times 300$
$=76.19 \times 10^{-2} \approx 76 \times 10^{-2}$
82. The difference in the 'spin-only' magnetic moment values of KMnO_{4} and the manganese product formed during titration of KMnO_{4} against oxalic acid in acidic medium is \qquad BM. (nearest integer)
Ans. (6)
Sol. Spin only magnetic moment of Mn in $\mathrm{KMnO}_{4}=0$
Spin only value of manganese product fromed during titration of KMnO_{4} aganist oxalic acid in acidic medium is $=6$
Ans. 6
83. Time required for 99.9% completion of a first order reaction is \qquad time the time required for completion of 90% reaction.(nearest integer).
Ans. (3)
Sol. $K=\frac{1}{\mathrm{t}_{99.9 \%}} \ln \left(\frac{100}{0.1}\right)=\frac{1}{\mathrm{t}_{90 \%}} \ln \left(\frac{100}{10}\right)$
$\mathrm{t}_{99.9 \%}=\mathrm{t}_{90 \%} \frac{\ell \mathrm{n}\left(10^{3}\right)}{\ell \mathrm{n} 10}$
$\mathrm{t}_{99.9 \%}=\mathrm{t}_{90 \%} \times 3$
84. Number of molecules from the following which can exhibit hydrogen bonding is \qquad . (nearest integer)

$\mathrm{HF}, \mathrm{NH}_{3}$

Ans. (5)
Sol. $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}$,

$\mathrm{HF}, \mathrm{NH}_{3}$

Can show H -bonding.

Download the new ALLEN app \& enroll for Online Programs

85. $\quad 9.3 \mathrm{~g}$ of pure aniline upon diazotisation followed by coupling with phenol gives an orange dye. The mass of orange dye produced (assume 100\% yield/ conversion) is \qquad g. (nearest integer)

Ans. (20)

Sol.

Orange dye
Reaction suggests that 1 mole of aniline give 1 mole of orange dye.
so $(\mathrm{mol})_{\text {aniline }}=(\mathrm{mole})_{\text {orange dye }}$
$\frac{9.3 \mathrm{~g}}{93 \mathrm{~g} \mathrm{~mol}^{-1}}=\frac{\text { mass of orange dye }}{199 \mathrm{~g} \mathrm{~mol}^{-1}}$
mass of orange dye $=19.9 \mathrm{~g} \simeq 20 \mathrm{~g}$
86. The major product of the following reaction is P .

Number of oxygen atoms present in product ' P ' is
\qquad (nearest integer).

Ans. (2)
Sol. $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$

87. Frequency of the de-Broglie wave of election in Bohr's first orbit of hydrogen atom is \qquad $\times 10^{13} \mathrm{~Hz}$ (nearest integer).
$\left[\right.$ Given : $\mathrm{R}_{\mathrm{H}}($ Rydberg constant $)=2.18 \times 10^{-18} \mathrm{~J}$. $h($ Plank's constant $\left.)=6.6 \times 10^{-34} \mathrm{~J} . \mathrm{s}.\right]$
Allen Ans. (661)
NTA Ans. (658)
Sol. $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$
$\lambda=\frac{\mathrm{hv}}{\mathrm{mv}^{2}}$
$\frac{m v^{2}}{\mathrm{~h}}=\frac{\mathrm{v}}{\lambda}=v($ frequency $)$
Given $\frac{1}{2} \mathrm{mv}^{2}=2.18 \times 10^{-18} \mathrm{~J}$
$h=6.6 \times 10^{-34}$
$v=\frac{4.36 \times 10^{-18}}{6.6 \times 10^{-34}}=660.60 \times 10^{13} \mathrm{~Hz}$
$\approx 661 \times 10^{13} \mathrm{~Hz}$
88. The major products from the following reaction sequence are product A and product B .

The total sum of π electrons in product A and product B are \qquad (nearest integer)

Ans. (8)

Sol.

89. Among $\mathrm{CrO}, \mathrm{Cr}_{2} \mathrm{O}_{3}$ and CrO_{3}, the sum of spin-only magnetic moment values of basic and amphoteric oxides is \qquad $10^{-2} \mathrm{BM}$ (nearest integer).
(Given atomic number of Cr is 24)

Ans. (877)
Sol. CrO Basic oxide
$\mathrm{Cr}_{2} \mathrm{O}_{3}$ Amphoteric oxide
In $\mathrm{CrO}, \mathrm{Cr}$ exist as Cr^{+2} and have μ only $=4.90$
In $\mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{Cr}$ exist as Cr^{+3} and have μ only $=3.87$
Sum of spin only magnetic moment
$=4.90+3.87=8.77$
$\mu_{\text {only }}=877 \times 10^{-2}$
Ans. 877
90. An ideal gas, $\overline{\mathrm{C}}_{\mathrm{V}}=\frac{5}{2} \mathrm{R}$, is expanded adiabatically against a constant pressure of 1 atm untill it doubles in volume. If the initial temperature and pressure is 298 K and 5 atm , respectively then the final temperature is \qquad K (nearest integer).
[$\overline{\mathrm{C}}_{\mathrm{V}}$ is the molar heat capacity at constant volume]
Ans. (274)
Sol. $\quad \Delta \mathrm{U}=\mathrm{q}+\mathrm{w}(\mathrm{q}=0)$
$\mathrm{nC}_{\mathrm{V}} \Delta \mathrm{T}=-\mathrm{P}_{\mathrm{ext}}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
$\mathrm{V}_{2}=2 \mathrm{~V}_{1}$
$\frac{\mathrm{nRT}_{2}}{\mathrm{P}_{2}}=\frac{2 \mathrm{nRT}_{1}}{\mathrm{P}_{1}}$
$\mathrm{P}_{1}=5, \mathrm{~T}_{1}=298$
$\mathrm{P}_{2}=\frac{5 \mathrm{~T}_{2}}{2 \times 298}$
$\mathrm{n} \frac{5}{2} \mathrm{R}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=-1\left(\frac{\mathrm{nRT}_{2}}{\mathrm{P}_{1}}-\frac{\mathrm{nRT}_{1}}{\mathrm{P}_{1}}\right)$
Put $\mathrm{T}_{1}=298$
and $\mathrm{P}_{2}=\frac{5 \mathrm{~T}_{2}}{2 \times 298}$
Solve and we get $\mathrm{T}_{2}=274.16 \mathrm{~K}$
$\mathrm{T}_{2} \approx 274 \mathrm{~K}$

Are you targeting JEE 2025 ?

Ace it with ALLEN's Leader Course

Online Program 18 APRIL'24

Offline Program) 24 APRIL'24

ALLEET
Get The Latest

IIT-JJE Special Books

 at Your Door Steps...!!JOIN THE JOURNEY OF LEARNING with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's |JEE-Adv. PYQ's

Available in HINDI \& ENGLISH

