CAREER INSTITUTE
KAREER INSTITUTE

FINAL JEE-MAIN EXAMINATION - APRIL, 2024

(Held On Saturday 06 ${ }^{\text {th }}$ April, 2024)
TIME : 3: 00 PM to 6: 00 PM

CHEMISTRY

SECTION-A

61.

(I)

(II)

(III)

(IV)

The correct arrangement for decreasing order of electrophilic substitution for above compounds
(1) (IV) $>$ (I) $>$ (II) $>$ (III)
(2) (III) $>$ (I) $>$ (II) $>$ (IV)
(3) (II) $>$ (IV) $>$ (III) $>$ (I)
(4) (III) $>$ (IV) $>$ (II) $>$ (I)

Ans. (2)
Sol.

62. Molality (m) of 3 M aqueous solution of NaCl is: (Given : Density of solution $=1.25 \mathrm{~g} \mathrm{~mL}^{-1}$, Molar mass in $\mathrm{g} \mathrm{mol}^{-1}$: Na-23, Cl-35.5)
(1) 2.90 m
(2) 2.79 m
(3) 1.90 m
(4) 3.85 m

Ans. (2)
Sol. 3 moles are present in 1 litre solution

$$
\text { molality }=\frac{3 \times 1000}{1.25 \times 1000-[3 \times 58.5]}=2.79 \mathrm{~m}
$$

63. The incorrect statements regarding enzymes are:
(A) Enzymes are biocatalysts.
(B) Enzymes are non-specific and can catalyse different kinds of reactions.
(C) Most Enzymes are globular proteins.
(D) Enzyme - oxidase catalyses the hydrolysis of maltose into glucose.
Choose the correct answer from the option given below:
(1) (B) and (C)
(2) (B), (C) and (D)
(3) (B) and (D)
(4) (A), (B) and (C)

Ans. (3)

TEST PAPER WITH SOLUTION

Sol. Direct NCERT Based
64.

Consider the above chemical reaction. Product " A " is:
(1)

(2)

(3)

(4)

Ans. (2)
Sol.

(Major Product)
65. During the detection of acidic radical present in a salt, a student gets a pale yellow precipitate soluble with difficulty in $\mathrm{NH}_{4} \mathrm{OH}$ solution when sodium carbonate extract was first acidified with dil. HNO_{3} and then AgNO_{3} solution was added. This indicates presence of:
(1) Br^{-}
(2) CO_{3}^{2-}
(3) I^{-}
(4) Cl^{-}

Ans. (1)

Sol. $\mathrm{Ag}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{AgI}$
$\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{AgCl}$
ppt
$\mathrm{Ag}^{+}+\mathrm{Br}^{-} \rightarrow \mathrm{AgBr}$
White ppt
Pale yellow ppt
66. How can an electrochemical cell be converted into an electrolytic cell?
(1) Applying an external opposite potential greater than $\mathrm{E}_{\text {cell }}^{0}$
(2) Reversing the flow of ions in salt bridge.
(3) Applying an external opposite potential lower than $\mathrm{E}_{\text {cell }}^{0}$.
(4) Exchanging the electrodes at anode and cathode.
Ans. (1)
Sol. Applied external potential should be greater than $\mathrm{E}_{\text {cell }}^{0}$ in opposite direction.
67. Arrange the following elements in the increasing order of number of unpaired electrons in it.
(A) Sc
(B) Cr
(C) V
(D) Ti
(E) Mn

Choose the correct answer from the options given below:
(1) (C) $<$ (E) $<$ (B) $<$ (A) $<$ (D)
(2) (B) $<$ (C) $<$ (D) $<$ (E) $<$ (A)
(3) (A) $<$ (D) $<$ (C) $<$ (B) $<$ (E)
(4) (A) $<$ (D) $<$ (C) $<$ (E) $<$ (B)

Ans. (4)
Sol. Unpaired electron

$\mathrm{Sc}[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}$	1
$\mathrm{Cr}[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5}$	6
$\mathrm{~V}[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{3}$	3
$\mathrm{Ti}:[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{2}$	2
$\mathrm{Mn} \cdot[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$	5

68. Match List-I with List-II.

List-I
Alkali Metal
(A) Li
(B) Na
(C) Rb
(D) Cs

Choose below:
(1) (A)-(I), (B)-(IV), (C)-(III), (D)-(II)
(2) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
(3) (A)-(IV), (B)-(II), (C)-(I), (D)-(III)
(4) (A)-(II), (B)-(IV), (C)-(III), (D)-(I)

Ans. (2)
Sol. Fact Based
69. The major products formed:

A and B respectively are:
(1)
 and

(2)

(3)

(4)
 and

Ans. (2)
Sol.

(A)

70. The incorrect statement regarding the geometrical isomers of 2-butene is:
(1) cis-2-butene and trans-2-butene are not interconvertible at room temperature.
(2) cis-2-butene has less dipole moment than trans-2-butene.
(3) trans-2-butene is more stable than cis-2-butene.
(4) cis-2-butene and trans-2-butene are stereoisomers.

Ans. (2)
Sol.

Cis-but-2-ene (Polar)

Trans-but-2-ene
(Non Polar)

Cis-but-2-ene has higher Dipole moment than trans-but-2-ene.
71. Given below are two statements:

Statement I: PF_{5} and BrF_{5} both exhibit $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation.
Statement II: Both SF_{6} and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ exhibit $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation.
In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I is true but Statement II is false
(2) Both Statement I and Statement II are true
(3) Both Statement I and Statement II are false
(4) Statement I is false but Statement II is true

Ans. (3)
Sol.

Hybridisation
PF_{5}

$$
\mathrm{sp}^{3} \mathrm{~d}
$$

SF_{6}
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3} \quad \mathrm{~d}^{2} \mathrm{sp}^{3}$

Both Statement (1) and (2) are false.
72. The number of ions from the following that are expected to behave as oxidising agent is:
$\mathrm{Sn}^{4+}, \mathrm{Sn}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Tl}^{3+}, \mathrm{Pb}^{4+}, \mathrm{Tl}^{+}$
(1) 3
(2) 4
(3) 1
(4) 2

Ans. (4)
Sol. Due to inert pair effect; T^{+3} and Pb^{+4} can behave as oxidising agents.
73. Identify the product (A) in the following reaction.

(1)
(2)

(3)

(4)

Ans. (2)

Sol.

74. The correct statements among the following, for a "chromatography" purification method is:
(1) Organic compounds run faster than solvent in the thin layer chromatographic plate.
(2) Non-polar compounds are retained at top and polar compounds come down in column chromatography.
(3) R_{f} of a polar compound is smaller than that of a non-polar compound.
(4) R_{f} is an integral value.

Ans. (3)
Sol. Non polar compounds are having higher value of R_{f} than polar compound.

Download the new ALLEN app \& enroll for Online Programs
75. Evaluate the following statements related to group 14 elements for their correctness.
(A) Covalent radius decreases down the group from C to Pb in a regular manner.
(B) Electronegativity decreases from C to Pb down the group gradually.
(C) Maximum covalence of C is 4 whereas other elements can expand their covalence due to presence of d orbitals.
(D) Heavier elements do not form $\mathrm{p} \pi-\mathrm{p} \pi$ bonds.
(E) Carbon can exhibit negative oxidation states.

Choose the correct answer from the options given below:
(1) (C), (D) and (E) Only
(2) (A) and (B) Only
(3) (A), (B) and (C) Only
(4) (C) and (D) Only

Ans. (1)
Sol. (A) Down the group; radius increases
(B) EN does not decrease gradually from C to Pb .
(C) Correct.
(D) Correct.
(E) Range of oxidation state of carbon ; -4 to +4
76. Match List-I with the List-II

List-I
 Reaction

(A) $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{(\mathrm{g})}$
(B) $2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})}$

List-II

Type of redox reaction
(I) Decomposition
(II) Displacement
(III) Disproportionation $\rightarrow 2 \mathrm{NaOH}_{\text {(aq.) }}+\mathrm{H}_{2(\mathrm{~g})}$
(D) $2 \mathrm{NO}_{2(\mathrm{~g})}+2-\mathrm{OH}_{\text {(aq.) }}$
(IV) Combination
$\rightarrow \mathrm{NO}_{2 \text { (aq.) }}^{-}+\mathrm{NO}_{3 \text { (aq.) }}^{-}+\mathrm{H}_{2} \mathrm{O}_{\text {(1) }}$
Choose the correct answer from the options given below:
(1) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)
(2) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
(3) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)
(4) (A)-(IV), (B)-(I), (C)-(II), (D)-(III)

Ans. (4)
Sol. $\mathrm{A} \rightarrow$ (IV)
$\mathrm{B} \rightarrow$ (I)
$\mathrm{C} \rightarrow$ (II)
D \rightarrow (III)
77. Consider the given reaction, identify the major product P.

(1)

(2)

(3)

(4)

Ans. (4)
Sol.

78. The correct IUPAC name of $\left[\mathrm{PtBr}_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ is:
(1) bis(trimethylphosphine)dibromoplatinum(II)
(2) bis[bromo(trimethylphosphine)]platinum(II)
(3) dibromobis(trimethylphosphine)platinum(II)
(4) dibromodi(trimethylphosphine)platinum(II)

Ans. (3)
Sol. Dibromo bis(trimethylphosphine) platinum (II)

Download the new ALLEN app \& enroll for Online Programs
79. Match List-I with List-II

List-I

Tetrahedral Complex
(A) TiCl_{4}
(I) $\mathrm{e}^{2}, \mathrm{t}_{2}^{0}$
(B) $\left[\mathrm{FeO}_{4}\right]^{2-}$
(II) $\mathrm{e}^{4}, \mathrm{t}_{2}^{3}$
(C) $\left[\mathrm{FeCl}_{4}\right]^{-}$
(III) $\mathrm{e}^{0}, \mathrm{t}_{2}^{0}$
(D) $\left[\mathrm{CoCl}_{4}\right]^{2-}$

List-II

Electronic configuration

Choose the correct answer from the option given below:
(1) (A)-(I), (B)-(III), (C)-(IV), (D)-(II)
(2) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)
(3) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
(4) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)

Ans. (4)

Sol.
80. The ratio $\frac{K_{P}}{K_{C}}$ for the reaction:
$\mathrm{CO}_{(\mathrm{g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CO}_{2(\mathrm{~g})}$ is:
(1) $(\mathrm{RT})^{1 / 2}$
(2) RT
(3) 1
(4) $\frac{1}{\sqrt{\mathrm{RT}}}$

Ans. (4)
Sol. $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta \mathrm{n}_{\mathrm{g}}=1-\left(1+\frac{1}{2}\right)=-\frac{1}{2}$
$\frac{\mathrm{K}_{\mathrm{P}}}{\mathrm{K}_{\mathrm{C}}}=(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}=\frac{1}{\sqrt{\mathrm{RT}}}$

SECTION-B

81. An amine (X) is prepared by ammonolysis of benzyl chloride. On adding p-toluenesulphonyl chloride to it the solution remains clear. Molar mass of the amine (X) formed is \qquad $\mathrm{g} \mathrm{mol}^{-1}$.
(Given molar mass in gmol $^{-1} \mathrm{C}: 12, \mathrm{H}: 1, \mathrm{O}: 16, \mathrm{~N}: 14$)
Ans. (287)
Sol.

(X) (3° amine)
Molar Mass of (X) is $287 \mathrm{~g} \mathrm{~mol}^{-1}$
82. Consider the following reactions
$\mathrm{NiS}+\mathrm{HNO}_{3}+\mathrm{HCl} \rightarrow \mathrm{A}+\mathrm{NO}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$

The number of protons that do not involve in hydrogen bonding in the product B is \qquad .

Ans. (12)

Sol. B \rightarrow

$3 \mathrm{NiS}+2 \mathrm{HNO}_{3}+6 \mathrm{HCl}$
$\longrightarrow 3 \mathrm{NiCl}_{2}+2 \mathrm{NO}+3 \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{NiCl}_{2}+2 \mathrm{NH}_{4} \mathrm{OH}+\begin{array}{r}\mathrm{H}_{3} \mathrm{C}-\mathrm{C}=\mathrm{N}-\mathrm{OH} \\ \mathrm{H}_{3} \mathrm{C}-\mathrm{C}=\mathrm{N}-\mathrm{OH}\end{array}$

$$
\rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}+(\mathrm{B})
$$

83. When ' x ' $\times 10^{-2} \mathrm{~mL}$ methanol (molar mass $=32 \mathrm{~g}$; density $=0.792 \mathrm{~g} / \mathrm{cm}^{3}$) is added to 100 mL water (density $=1 \mathrm{~g} / \mathrm{cm}^{3}$), the following diagram is obtained.

$\mathrm{x}=$. \qquad .(nearest integer)
[Given: Molal freezing point depression constant of water at $273.15 \mathrm{~K}^{\text {is }} 1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]
Ans. (543)
Sol. $\Delta \mathrm{T}_{\mathrm{f}}=273.15-270.65=2.5 \mathrm{~K}$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{m} \Rightarrow 2.5=1.86 \times \frac{\mathrm{n}}{0.1}$
$\Rightarrow \mathrm{n}=0.1344$ moles
$\Rightarrow \mathrm{w}=0.1344 \times 32=4.3 \mathrm{~g}$
Volume $=\frac{4.3}{0.792}=5.43 \mathrm{ml}=543 \times 10^{-2} \mathrm{ml}$
84.

The ratio of number of oxygen atoms to bromine atoms in the product Q is \qquad $\times 10^{-1}$.
Ans. (15)
Sol.

85. Number of carbocation from the following that are not stabilized by hyperconjugation is... \qquad . .

Ans. (5)
Sol.

86. For the reaction at $298 \mathrm{~K}, 2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C} . \Delta \mathrm{H}$ $=400 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}=0.2 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. The reaction will become spontaneous above \qquad K.

Ans. (2000)
Sol. $\Delta \mathrm{G}=0$
$\mathrm{T}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}}=\frac{400}{0.2}=2000 \mathrm{~K}$
87. Total number of species from the following with central atom utilising $2 \mathrm{p}^{2}$ hybrid orbitals for bonding is \qquad
$\mathrm{NH}_{3}, \mathrm{SO}_{2}, \mathrm{SiO}_{2}, \mathrm{BeCl}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{BCl}_{3}, \mathrm{HCHO}$, $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{BF}_{3}, \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$

Ans. (6)

Sol. Central atom utilising sp^{2} hybrid orbitals
$\mathrm{SO}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{BCl}_{3}, \mathrm{HCHO}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{BF}_{3}$

Download the new ALLEN app \& enroll for Online Programs

88. Consider the two different first order reactions given below
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$ (Reaction 1)
$\mathrm{P} \rightarrow \mathrm{Q}$ (Reaction 2)
The ratio of the half life of Reaction 1 : Reaction 2 is $5: 2$. If t_{1} and t_{2} represent the time taken to complete $2 / 3^{\text {rd }}$ and $4 / 5$ of Reaction 1 and
Reaction 2, respectively, then the value of the ratio
$\mathrm{t}_{1}: \mathrm{t}_{2}$ is \qquad $\times 10^{-1}$ (nearest integer).
[Given: $\log _{10}(3)=0.477$ and $\log _{10}(5)=0.699$]
Ans. (17)
Sol. $\frac{\left(\mathrm{t}_{1 / 2}\right)_{\mathrm{I}}}{\left(\mathrm{t}_{1 / 2}\right)_{\mathrm{II}}}=\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{5}{2}$
$\therefore \mathrm{K}_{1} \mathrm{t}_{1}=\ln \frac{1}{1-\frac{2}{3}}=\ln 3$
$\mathrm{K}_{2} \mathrm{t}_{2}=\ln \frac{1}{1-\frac{4}{5}}=\ln 5$
$\Rightarrow \frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}} \times \frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}=\frac{0.477}{0.699}$
$\Rightarrow \frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}=\frac{0.477}{0.699} \times \frac{5}{2}=1.7=17 \times 10^{-1}$
89. For hydrogen atom, energy of an electron in first excited state is -3.4 eV , K.E. of the same electron of hydrogen atom is $x e V$. Value of x is \qquad $\times 10^{-1} \mathrm{eV}$. (Nearest integer)

Ans. (34)
90. Among $\mathrm{VO}_{2}^{+}, \mathrm{MnO}_{4}^{-}$and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$, the spin-only magnetic moment value of the species with least oxidising ability is...................BM (Nearest integer).
(Given atomic member $\mathrm{V}=23, \mathrm{Mn}=25, \mathrm{Cr}=24$)
Ans. (0)
Sol. For 3d transition series;
Oxidising power : $\mathrm{V}^{+5}<\mathrm{Cr}^{+6}<\mathrm{Mn}^{+7}$
$\mathrm{V}^{+5}:[\mathrm{Ar}] 4 \mathrm{~s}^{0} 3 \mathrm{~d}^{0}$
Number of unpaired electron $=0$
$\mu=0$

Are you targeting JEE 2025 ?

Ace it with ALLEN's Leader Course

Online Program 18 APRIL'24

Offline Program) 24 APRIL'24

ALLEET
Get The Latest

IIT-JJE Special Books

 at Your Door Steps...!!JOIN THE JOURNEY OF LEARNING with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's |JEE-Adv. PYQ's

Available in HINDI \& ENGLISH

