PHYSICS

SECTION-A

31. The translational degrees of freedom (f_{t}) and rotational degrees of freedom $\left(f_{r}\right)$ of CH_{4} molecule are :
(1) $f_{t}=2$ and $f_{r}=2$
(2) $f_{t}=3$ and $f_{r}=3$
(3) $f_{t}=3$ and $f_{r}=2$
(4) $f_{t}=2$ and $f_{r}=3$

Ans. (2)
Sol. Since CH_{4} is polyatomic Non-Linear
D.O.F of CH_{4}
T. $\mathrm{DOF}=3$

R DOF $=3$
32. A cyclist starts from the point P of a circular ground of radius 2 km and travels along its circumference to the point S. The displacement of a cyclist is :

(1) 6 km
(2) $\sqrt{8} \mathrm{~km}$
(3) 4 km
(4) 8 km

Ans. (2)

Sol.

\therefore Displacement $=\mathrm{R} \sqrt{2}=2 \sqrt{2}=\sqrt{8} \mathrm{~km}$

TEST PAPER WITH SOLUTION

33. The magnetic moment of a bar magnet is $0.5 \mathrm{Am}^{2}$. It is suspended in a uniform magnetic field of $8 \times 10^{-2} \mathrm{~T}$. The work done in rotating it from its most stable to most unstable position is :
(1) $16 \times 10^{-2} \mathrm{~J}$
(2) $8 \times 10^{-2} \mathrm{~J}$
(3) $4 \times 10^{-2} \mathrm{~J}$
(4) Zero

Ans. (2)
Sol. At stable equilibrium
$\mathrm{U}=-\mathrm{mB} \cos 0^{\circ}=-\mathrm{mB}$
At unstable equilibrium
$\mathrm{U}=-\mathrm{mB} \cos 180^{\circ}=+\mathrm{mB}$
$\mathrm{W}=\Delta \mathrm{U}$
W.D. $=2 \mathrm{mB}$
$=2(0.5) 8 \times 10^{-2}=8 \times 10^{-2} \mathrm{~J}$
34. Which of the diode circuit shows correct biasing used for the measurement of dynamic resistance of p-n junction diode:
(1)

(2)

(3)

(4)

Ans. (2)

Sol. Diode should be in forward biased to calculate dynamic resistance
Hence correct answer would be 2.
35. Arrange the following in the ascending order of wavelength :
(A) Gamma rays $\left(\lambda_{1}\right)$
(B) x-ray $\left(\lambda_{2}\right)$
(C) Infrared waves $\left(\lambda_{3}\right)$
(D) Microwaves $\left(\lambda_{4}\right)$

Choose the most appropriate answer from the options given below :
(1) $\lambda_{4}<\lambda_{3}<\lambda_{1}<\lambda_{2}$
(2) $\lambda_{4}<\lambda_{3}<\lambda_{2}<\lambda_{1}$
(3) $\lambda_{1}<\lambda_{2}<\lambda_{3}<\lambda_{4}$
(4) $\lambda_{2}<\lambda_{1}<\lambda_{4}<\lambda_{3}$

Ans. (3)
Sol. $\lambda_{1}<\lambda_{2}<\lambda_{3}<\lambda_{4}$
36. Identify the logic gate given in the circuit :

(1) NAND - gate
(2) OR - gate
(3) AND gate
(4) NOR gate

Ans. (2)
Sol. $Y=\overline{\overline{\mathrm{A}} . \overline{\mathrm{B}}}$
By De-Morgan Law
$Y=\overline{\overline{\mathrm{A}+\mathrm{B}}}$
$Y=A+B$
Hence OR gate
37. The width of one of the two slits in a Young's double slit experiment is 4 times that of the other slit. The ratio of the maximum of the minimum intensity in the interference pattern is :
(1) $9: 1$
(2) $16: 1$
(3) $1: 1$
(4) $4: 1$

Ans. (1)
Sol. Since, Intensity \propto width of slit (ω)
so, $I_{1}=I, I_{2}=4 I$
$I_{\min }=\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}=I$
$\mathrm{I}_{\max }=\left(\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}\right)^{2}=9 \mathrm{I}$
$\frac{\mathrm{I}_{\max }}{\mathrm{I}_{\min }}=\frac{9 \mathrm{I}}{\mathrm{I}}=\frac{9}{1}$
38. Correct formula for height of a satellite from earths surface is :
(1) $\left(\frac{T^{2} R^{2} g}{4 \pi}\right)^{1 / 2}-R$
(2) $\left(\frac{T^{2} R^{2} g}{4 \pi^{2}}\right)^{1 / 3}-R$
(3) $\left(\frac{T^{2} R^{2}}{4 \pi^{2} g}\right)^{1 / 3}-R$
(4) $\left(\frac{T^{2} R^{2}}{4 \pi^{2}}\right)^{-1 / 3}+R$

Ans. (2)

Sol.

$\Rightarrow \frac{\mathrm{GMm}}{(\mathrm{R}+\mathrm{h})^{2}}=\frac{\mathrm{mv}^{2}}{(\mathrm{R}+\mathrm{h})}$
$\Rightarrow \frac{G M}{(\mathrm{R}+\mathrm{h})}=\mathrm{v}^{2} \ldots$
$\Rightarrow \mathrm{v}=(\mathrm{R}+\mathrm{h}) \omega$
$\Rightarrow \mathrm{v}=(\mathrm{R}+\mathrm{h}) \frac{2 \pi}{\mathrm{~T}} \ldots$
$\Rightarrow \frac{\mathrm{GM}}{\mathrm{R}^{2}}=\mathrm{g}$
$\Rightarrow \mathrm{GM}=\mathrm{gR}^{2}$
Put value from (2) \& (3) in eq. (1)
$\Rightarrow \frac{\mathrm{gR}^{2}}{(\mathrm{R}+\mathrm{h})}=(\mathrm{R}+\mathrm{h})^{2}\left(\frac{2 \pi}{\mathrm{~T}}\right)^{2}$
$\Rightarrow \frac{\mathrm{T}^{2} \mathrm{R}^{2} \mathrm{~g}}{(2 \pi)^{2}}=(\mathrm{R}+\mathrm{h})^{3}$
$\Rightarrow\left[\frac{\mathrm{T}^{2} \mathrm{R}^{2} \mathrm{~g}}{(2 \pi)^{2}}\right]^{1 / 3}-\mathrm{R}=\mathrm{h}$
39. Match List I with List II

	List-I		List-II
A.	Purely capacitive circuit	I.	$\xrightarrow{\mathrm{I} \uparrow} \mathrm{G}$
B.	Purely inductive circuit	II.	
C.	LCR series at resonance	III.	
D.	LCR series circuit	IV.	

Choose the correct answer from the options given below :
(1) A-I, B-IV, C-III, D-II
(2) A-IV, B-I, C-III, D-II
(3) A-IV, B-I, C-II, D-III
(4) A-I, B-IV, C-II, D-III

Ans. (4)
Sol. A - V lags by 90° from I hence option (I) is correct.

B - V lead by 90° from I hence option (IV) is correct
$\mathbf{C}-\operatorname{In} \operatorname{LCR}$ resonance $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{c}}$. Hence circuit is purely resistive so option (II) is correct

D - In LCR series V is at some angle from I hence (III) is correct

Hence option (4) is correct.
40. Given below are two statements :

Statement I : The contact angle between a solid and a liquid is a property of the material of the solid and liquid as well.
Statement II : The rise of a liquid in a capillary tube does not depend on the inner radius of the tube.
In the light of the above statements, choose the correct answer from the options given below :
(1) Both Statement I and Statement II are false
(2) Statement I is false but Statement II is true.
(3) Statement I is true but Statement II is false.
(4) Both Statement I and Statement II are true.

Ans. (3)
Sol. Statement I is correct as we know contact angle depends on cohesine and adhesive forces.
Statement II is incorrect because height of liquid is given by $h==\frac{2 T \cos \theta_{C}}{\rho g r}$ where r is radius of Tube (assuming length of capillary is sufficient) Hence option (3) is correct.
41. A body of m kg slides from rest along the curve of vertical circle from point A to B in friction less path. The velocity of the body at B is :

(given, $\mathrm{R}=14 \mathrm{~m}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\sqrt{2}=1.4$)
(1) $19.8 \mathrm{~m} / \mathrm{s}$
(2) $21.9 \mathrm{~m} / \mathrm{s}$
(3) $16.7 \mathrm{~m} / \mathrm{s}$
(4) $10.6 \mathrm{~m} / \mathrm{s}$

Ans. (2)

Sol.

Apply W.E.T. from A to B
$\Rightarrow \mathrm{W}_{\mathrm{mg}}=\mathrm{K}_{\mathrm{B}}-\mathrm{K}_{\mathrm{A}}$
$\Rightarrow \mathrm{mg} \times\left(\frac{\mathrm{R}}{\sqrt{2}}+\mathrm{R}\right)=\frac{1}{2} \operatorname{mv}_{\mathrm{B}}^{2}-0 \quad\left\{\mathrm{v}_{\mathrm{A}}=0\right.$ rest $\}$
$\Rightarrow \operatorname{mgR} \frac{(\sqrt{2}+1)}{\sqrt{2}}=\frac{1}{2} \operatorname{mv}_{\mathrm{B}}^{2}$
$\Rightarrow \sqrt{g R \frac{2(\sqrt{2}+1)}{\sqrt{2}}}=v_{B}$
$\Rightarrow \sqrt{\frac{10 \times 14 \times 2(2.4)}{1.4}}=\mathrm{v}_{\mathrm{B}}$
$\Rightarrow 21.9=\mathrm{v}_{\mathrm{B}}$
Hence option (2) is correct
42. An electric bulb rated $50 \mathrm{~W}-200 \mathrm{~V}$ is connected across a 100 V supply. The power dissipation of the bulb is :
(1) 12.5 W
(2) 25 W
(3) 50 W
(4) 100 W

Ans. (1)
Sol. Rated power \& voltage gives resistance
$\mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{P}}=\frac{(200)^{2}}{50}=\frac{40000}{50}$
$R=800$
$\mathrm{P}=\frac{\left(\mathrm{V}_{\text {applied }}\right)^{2}}{\mathrm{R}}=\frac{(100)^{2}}{800}$
$\mathrm{P}=12.5$ watt
Hence option 1 is correct.
43. A 2 kg brick begins to slide over a surface which is inclined at an angle of 45° with respect to horizontal axis. The co-efficient of static friction between their surfaces is :
(1) 1
(2) $\frac{1}{\sqrt{3}}$
(3) 0.5
(4) 1.7

Ans. (1)

Sol.

$m g \sin 45=f_{L}$
$m g \cos 45=\mathrm{N}$
$\mathrm{f}_{\mathrm{L}}=\mu_{\mathrm{s}} \mathrm{N}$
$\mu_{\mathrm{s}}=\tan 45=1$
or
$\tan \theta=\mu_{\mathrm{s}}$ (θ is angle of repose)
$\tan 45=\mu_{\mathrm{s}}=1$
correct option (1)
44. In simple harmonic motion, the total mechanical energy of given system is E. If mass of oscillating particle P is doubled then the new energy of the system for same amplitude is :

(1) $\frac{E}{\sqrt{2}}$
(2) E
(3) $\mathrm{E} \sqrt{2}$
(4) 2 E

Ans. (2)
Sol. T.E. $=\frac{1}{2} \mathrm{kA}^{2}$
since A is same T.E. will be same
correct option (2)
45. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : Number of photons increases with increase in frequency of light.
Reason R : Maximum kinetic energy of emitted electrons increases with the frequency of incident radiation.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both \mathbf{A} and \mathbf{R} are correct and \mathbf{R} is NOT the correct explanation of \mathbf{A}.
(2) \mathbf{A} is correct but \mathbf{R} is not correct.
(3) Both \mathbf{A} and \mathbf{R} are correct and \mathbf{R} is the correct explanation of \mathbf{A}.
(4) \mathbf{A} is not correct but \mathbf{R} is correct.

Ans. (4)
Sol. Intensity of light $\mathrm{I}=\frac{\mathrm{nh} v}{\mathrm{~A}}$
Here n is no. of photons per unit time.
$\mathrm{n}=\frac{\mathrm{IA}}{\mathrm{h} \nu}$ so on increasing frequency v, n decreases taking intensity constant.
$\mathrm{k}_{\text {max }}=\mathrm{h} v-\phi$
So on increasing v, kinetic energy increases.
46. According to Bohr's theory, the moment of momentum of an electron revolving in $4^{\text {th }}$ orbit of hydrogen atom is :
(1) $8 \frac{\mathrm{~h}}{\pi}$
(2) $\frac{\mathrm{h}}{\pi}$
(3) $2 \frac{\mathrm{~h}}{\pi}$
(4) $\frac{h}{2 \pi}$

Ans. (3)
Sol. Moment of momentum is $\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{P}}$
$\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \mathrm{m} \overrightarrow{\mathrm{v}}$
$\mathrm{L}=\mathrm{mvr}=\frac{\mathrm{nh}}{2 \pi}=\frac{4 \mathrm{~h}}{2 \pi}=\frac{2 \mathrm{~h}}{\pi}$
47. A sample of gas at temperature T is adiabatically expanded to double its volume. Adiabatic constant for the gas is $\gamma=3 / 2$. The work done by the gas in the process is: $(\mu=1$ mole $)$
(1) $\mathrm{RT}[\sqrt{2}-2]$
(2) $\mathrm{RT}[1-2 \sqrt{2}]$
(3) $\operatorname{RT}[2 \sqrt{2}-1]$
(4) $\mathrm{RT}[2-\sqrt{2}]$

Ans. (4)
Sol. $\quad \mathrm{W}=\frac{\mathrm{nR} \Delta \mathrm{T}}{1-\gamma}$
$\mathrm{TV}^{\gamma-1}=$ constant $=\mathrm{T}_{\mathrm{f}}(2 \mathrm{~V})^{\gamma-1}$
$\mathrm{T}_{\mathrm{f}}=\mathrm{T}\left(\frac{1}{2}\right)^{1 / 2}=\frac{\mathrm{T}}{\sqrt{2}}$
$\mathrm{W}=\frac{\mathrm{R}\left(\frac{\mathrm{T}}{\sqrt{2}}-\mathrm{T}\right)}{1-\frac{3}{2}}=2 \mathrm{RT} \frac{(\sqrt{2}-1)}{\sqrt{2}}$
$=\mathrm{RT}(2-\sqrt{2})$
48. A charge q is placed at the center of one of the surface of a cube. The flux linked with the cube is :-
(1) $\frac{\mathrm{q}}{4 \epsilon_{0}}$
(2) $\frac{\mathrm{q}}{2 \epsilon_{0}}$
(3) $\frac{\mathrm{q}}{8 \epsilon_{0}}$
(4) Zero

Ans. (2)

Sol. From

$2 \phi=\frac{\mathrm{q}}{\epsilon_{0}}$
$\phi=\frac{\mathrm{q}}{2 \epsilon_{0}}$
49. Applying the principle of homogeneity of dimensions, determine which one is correct.
where T is time period, G is gravitational constant, M is mass, r is radius of orbit.
(1) $\mathrm{T}^{2}=\frac{4 \pi^{2} r}{\mathrm{GM}^{2}}$
(2) $\mathrm{T}^{2}=4 \pi^{2} \mathrm{r}^{3}$
(3) $\mathrm{T}^{2}=\frac{4 \pi^{2} \mathrm{r}^{3}}{G M}$
(4) $\mathrm{T}^{2}=\frac{4 \pi^{2} \mathrm{r}^{2}}{G M}$

Ans. (3)
Sol. According to principle of homogeneity dimension of LHS should be equal to dimensions of RHS so option (3) is correct.
$\mathrm{T}^{2}=\frac{4 \pi^{2} \mathrm{r}^{3}}{\mathrm{GM}}$
$\left[\mathrm{T}^{2}\right]=\frac{\left[\mathrm{L}^{3}\right]}{\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right][\mathrm{M}]}$
(Dimension of G is $\left[M^{-1} L^{3} T^{-2}\right]$)
$\left[\mathrm{T}^{2}\right]=\frac{\left[\mathrm{L}^{3}\right]}{\left[\mathrm{L}^{3} \mathrm{~T}^{-2}\right]}=\left[\mathrm{T}^{2}\right]$
50. A 90 kg body placed at 2 R distance from surface of earth experiences gravitational pull of :
($\mathrm{R}=$ Radius of earth, $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
(1) 300 N
(2) 225 N
(3) 120 N
(4) 100 N

Ans. (4)
Sol. Value of $g=g_{s}\left(1+\frac{h}{R}\right)^{-2}$
$=g_{s}(1+2)^{-2}=\frac{\mathrm{g}_{\mathrm{s}}}{9}$
Here $\mathrm{g}_{\mathrm{s}}=$ gravitational acceleration at surface

Force $=m g=90 \times \frac{\mathrm{g}_{\mathrm{s}}}{9}=100 \mathrm{~N}$

SECTION-B

51. The displacement of a particle executing SHM is given by $x=10 \sin \left(\omega t+\frac{\pi}{3}\right) \mathrm{m}$. The time period of motion is 3.14 s . The velocity of the particle at $\mathrm{t}=0$ is \qquad m / s.
Ans. (10)
Sol. Given,
$\mathrm{T}=3.14=\frac{2 \pi}{\omega}$
$\omega=2 \mathrm{rad} / \mathrm{s}$
$x=10 \sin \left(\omega t+\frac{\pi}{3}\right)$
$\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=10 \omega \cos \left(\omega \mathrm{t}+\frac{\pi}{3}\right)$
at $\mathrm{t}=0$
$\mathrm{v}=10 \omega \cos \left(\frac{\pi}{3}\right)=10 \times 2 \times \frac{1}{2}[$ using $\omega=2 \mathrm{rad} / \mathrm{s}]$
$\mathrm{v}=10 \mathrm{~m} / \mathrm{s}$
52. A bus moving along a straight highway with speed of $72 \mathrm{~km} / \mathrm{h}$ is brought to halt within 4 s after applying the brakes. The distance travelled by the bus during this time (Assume the retardation is uniform) is \qquad m.

Ans. (40)
Sol. Initial velocity $=u=72 \mathrm{~km} / \mathrm{h}=20 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}=\mathrm{u}+\mathrm{at}$
$\Rightarrow 0=20+\mathrm{a} \times 4$
$\mathrm{a}=-5 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{v}^{2}-\mathrm{u}^{2}=2 \mathrm{as}$
$\Rightarrow 0^{2}-20^{2}=2(-5) . \mathrm{s}$
$\mathrm{s}=40 \mathrm{~m}$
53. A parallel plate capacitor of capacitance 12.5 pF is charged by a battery connected between its plates to potential difference of 12.0 V . The battery is now disconnected and a dielectric slab $\left(\epsilon_{r}=6\right)$ is inserted between the plates. The change in its potential energy after inserting the dielectric slab is
\qquad $\times 10^{-12} \mathrm{~J}$.

Ans. (750)

Sol. Before inserting dielectric capacitance is given $\mathrm{C}_{0}=12.5 \mathrm{pF}$ and charge on the capacitor $\mathrm{Q}=\mathrm{C}_{0} \mathrm{~V}$
After inserting dielectric capacitance will become $\in_{\mathrm{r}} \mathrm{C}_{0}$.
Change in potential energy of the capacitor $=\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{f}}$
$=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}_{\mathrm{i}}}-\frac{\mathrm{Q}^{2}}{2 \mathrm{C}_{\mathrm{f}}}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}_{0}}\left[1-\frac{1}{\epsilon_{\mathrm{r}}}\right]$
$=\frac{\left(\mathrm{C}_{0} \mathrm{~V}\right)^{2}}{2 \mathrm{C}_{0}}\left[1-\frac{1}{\epsilon_{\mathrm{r}}}\right]=\frac{1}{2} \mathrm{C}_{0} \mathrm{~V}^{2}\left[1-\frac{1}{\epsilon_{\mathrm{r}}}\right]$
Using $\mathrm{C}_{0}=12.5 \mathrm{pF}, \mathrm{V}=12 \mathrm{~V}, \epsilon_{\mathrm{r}}=6$
$=\frac{1}{2}(12.5) \times 12^{2}\left[1-\frac{1}{6}\right]=\frac{1}{2}(12.5) \times 12^{2} \times \frac{5}{6}$
$=750 \mathrm{pJ}=750 \times 10^{-12} \mathrm{~J}$
54. In a system two particles of masses $m_{1}=3 \mathrm{~kg}$ and $\mathrm{m}_{2}=2 \mathrm{~kg}$ are placed at certain distance from each other. The particle of mass m_{1} is moved towards the center of mass of the system through a distance 2 cm . In order to keep the center of mass of the system at the original position, the particle of mass m_{2} should move towards the center of mass by the distance \qquad cm .
Ans. (3)
Sol.

$\Delta \mathrm{X}_{\text {С.О.м. }}=\frac{\mathrm{m}_{1} \Delta \mathrm{x}_{1}+\mathrm{m}_{2} \Delta \mathrm{x}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$
$\Rightarrow 0=\frac{3 \times 2+2(-\mathrm{x})}{3+2}$
$\Rightarrow \mathrm{x}=3 \mathrm{~cm}$
55. The disintegration energy Q for the nuclear fission
of ${ }^{235} \mathrm{U} \rightarrow{ }^{140} \mathrm{Ce}+{ }^{94} \mathrm{Zr}+\mathrm{n}$ is \qquad MeV .
Given atomic masses of
${ }^{235} \mathrm{U}: 235.0439 \mathrm{u} ;{ }^{140} \mathrm{Ce} ; 139.9054 \mathrm{u}$,
${ }^{94} \mathrm{Zr}: 93.9063 \mathrm{u} ; \mathrm{n}: 1.0086 \mathrm{u}$, Value of $\mathrm{c}^{2}=931 \mathrm{MeV} / \mathrm{u}$.

Ans. (208)
Sol. ${ }^{235} \mathrm{U} \rightarrow{ }^{140} \mathrm{Ce}+{ }^{94} \mathrm{Zr}+\mathrm{n}$

Disintegration energy

$$
\begin{aligned}
\mathrm{Q} & =\left(\mathrm{m}_{\mathrm{R}}-\mathrm{m}_{\mathrm{p}}\right) \cdot \mathrm{c}^{2} \\
\mathrm{~m}_{\mathrm{R}} & =235.0439 \mathrm{u} \\
\mathrm{~m}_{\mathrm{p}} & =139.9054 \mathrm{u}+93.9063 \mathrm{u}+1.0086 \mathrm{u} \\
& =234.8203 \mathrm{u} \\
\mathrm{Q} & =(235.0439 \mathrm{u}-234.8203 \mathrm{u}) \mathrm{c}^{2} \\
& =0.2236 \mathrm{c}^{2} \\
& =0.2236 \times 931 \\
\mathrm{Q} & =208.1716
\end{aligned}
$$

56. A light ray is incident on a glass slab of thickness $4 \sqrt{3} \mathrm{~cm}$ and refractive index $\sqrt{2}$. The angle of incidence is equal to the critical angle for the glass slab with air. The lateral displacement of ray after passing through glass slab is \qquad cm .
(Given $\sin 15^{\circ}=0.25$)
Ans. (2)

Sol.

$\mathbf{i}=\theta_{\mathrm{C}}$
$\Rightarrow \mathrm{i}=\sin ^{-1}\left(\frac{1}{\mu}\right)$
$\Rightarrow \mathrm{i}=45^{\circ}$
and according to snell's law
$1 \sin 45^{\circ}=\sqrt{2} \sin r$
$\Rightarrow \mathrm{r}=30^{\circ}$
Lateral displacement $\Delta=\frac{\mathrm{t} \sin (\mathrm{i}-\mathrm{r})}{\cos \mathrm{r}}$
$\Rightarrow \Delta=\frac{4 \sqrt{3} \times \sin 15^{\circ}}{\cos 30^{\circ}}$
$\Rightarrow \Delta=2 \mathrm{~cm}$
57. A rod of length 60 cm rotates with a uniform angular velocity $20 \mathrm{rad} \mathrm{s}^{-1}$ about its perpendicular bisector, in a uniform magnetic field 0.5 T . The direction of magnetic field is parallel to the axis of rotation. The potential difference between the two ends of the rod is \qquad V.

Ans. (0)

Sol.

$\because \mathrm{V}_{0}-\mathrm{V}_{\mathrm{A}}=\frac{\mathrm{B} \omega \ell^{2}}{2}$
$V_{0}-V_{B}=\frac{B \omega \ell^{2}}{2}$
$\therefore \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}} \therefore \mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=0$
58. Two wires A and B are made up of the same material and have the same mass. Wire A has radius of 2.0 mm and wire B has radius of 4.0 mm .

The resistance of wire B is 2Ω. The resistance of wire A is \qquad Ω.

Ans. (32)
Sol. $\because \mathrm{R}=\frac{\rho \ell}{\mathrm{A}}=\frac{\rho \mathrm{V}}{\mathrm{A}^{2}}$

$$
\begin{aligned}
& \therefore \frac{R_{A}}{R_{B}}=\frac{A_{B}^{2}}{A_{A}^{2}}=\frac{r_{B}^{4}}{r_{A}^{4}} \\
& \Rightarrow \frac{R_{A}}{2}=\left[\frac{4 \times 10^{-3}}{2 \times 10^{-3}}\right]^{4}
\end{aligned}
$$

$$
\Rightarrow \mathrm{R}_{\mathrm{A}}=32 \Omega
$$

59. Two parallel long current carrying wire separated by a distance 2 r are shown in the figure. The ratio of magnetic field at A to the magnetic field produced at C is $\frac{X}{7}$. The value of x is \qquad -.

Ans. (5)
Sol. $\quad B_{A}=\frac{\mu_{0} \mathrm{i}}{2 \pi r}+\frac{\mu_{0}(2 \mathrm{i})}{2 \pi(3 r)}=\frac{5 \mu_{0} \mathrm{i}}{6 \pi r}$
$B_{C}=\frac{\mu_{0}(2 i)}{2 \pi r}+\frac{\mu_{0} i}{2 \pi(3 r)}=\frac{7 \mu_{0} i}{6 \pi r}$
$\therefore \frac{\mathrm{B}_{\mathrm{A}}}{\mathrm{B}_{\mathrm{C}}}=\frac{5}{7}$
$\therefore \mathrm{x}=5$
60. Mercury is filled in a tube of radius 2 cm up to a height of 30 cm . The force exerted by mercury on the bottom of the tube is \qquad N .
(Given, atmospheric pressure $=10^{5} \mathrm{Nm}^{-2}$, density of mercury $=1.36 \times 10^{4} \mathrm{~kg} \mathrm{~m}^{-3}, \mathrm{~g}=10 \mathrm{~ms}^{-2}$, $\pi=\frac{22}{7}$)

Ans. (177)
Sol. $\quad \mathrm{F}=\mathrm{P}_{0} \mathrm{~A}+\rho_{\mathrm{m}} \mathrm{ghA}$
$=10^{5} \times \frac{22}{7} \times\left(2 \times 10^{-2}\right)^{2}$
$+1.36 \times 10^{4} \times 10 \times\left(30 \times 10^{-2}\right)\left(\frac{22}{7} \times\left(2 \times 10^{-2}\right)^{2}\right)$
$\mathrm{F}=51.29+125.71=177 \mathrm{~N}$

Are you targeting JEE 2025 ?

Ace it with ALLEN's Leader Course

Online Program 18 APRIL'24

Offline Program) 24 APRIL'24

ALLEET
Get The Latest

IIT-JJE Special Books

 at Your Door Steps...!!JOIN THE JOURNEY OF LEARNING with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's |JEE-Adv. PYQ's

Available in HINDI \& ENGLISH

