(Held On Tuesday 09th April, 2024)

PHYSICS

SECTION-A

31. A proton, an electron and an alpha particle have the same energies. Their de-Broglie wavelengths will be compared as:
(1) $\lambda_{e}>\lambda_{\alpha}>\lambda_{p}$
(2) $\lambda_{\alpha}<\lambda_{p}<\lambda_{e}$
(3) $\lambda_{\mathrm{p}}<\lambda_{\mathrm{e}}<\lambda_{\alpha}$
(4) $\lambda_{p}>\lambda_{e}>\lambda_{\alpha}$

Ans. (2)
32. A particle moving in a straight line covers half the distance with speed $6 \mathrm{~m} / \mathrm{s}$. The other half is covered in two equal time intervals with speeds $9 \mathrm{~m} / \mathrm{s}$ and $15 \mathrm{~m} / \mathrm{s}$ respectively. The average speed of the particle during the motion is:
(1) $8.8 \mathrm{~m} / \mathrm{s}$
(2) $10 \mathrm{~m} / \mathrm{s}$
(3) $9.2 \mathrm{~m} / \mathrm{s}$
(4) $8 \mathrm{~m} / \mathrm{s}$

Ans. (4)
33. A plane EM wave is propagating along x direction. It has a wavelength of 4 mm . If electric field is in y -direction with the maximum magnitude of $60 \mathrm{Vm}^{-1}$, the equation for magnetic field is:
(1) $\mathrm{B}_{\mathrm{z}}=60 \sin \left[\frac{\pi}{2}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
(2) $\mathrm{B}_{\mathrm{z}}=2 \times 10^{-7} \sin \left[\frac{\pi}{2} \times 10^{3}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$
(3) $\mathrm{B}_{\mathrm{x}}=60 \sin \left[\frac{\pi}{2}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{i} T}$
(4) $\mathrm{B}_{\mathrm{z}}=2 \times 10^{-7} \sin \left[\frac{\pi}{2}\left(\mathrm{x}-3 \times 10^{8} \mathrm{t}\right)\right] \hat{\mathrm{k} T}$

Ans. (2)

TIME : 9: 00 AM to 12: 00 NOON

TEST PAPER WITH ANSWER

34. Given below are two statements:

Statement (I) : When an object is placed at the centre of curvature of a concave lens, image is formed at the centre of curvature of the lens on the other side.

Statement (II) : Concave lens always forms a virtual and erect image.

In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I is false but Statement II is true.
(2) Both Statement I and Statement II are false.
(3) Statement I is true but Statement II is false.
(4) Both Statement I and Statement II are true.

NTA Ans. (1)
Allen Ans. (2)
35. A light emitting diode (LED) is fabricated using GaAs semiconducting material whose band gap is 1.42 eV . The wavelength of light emitted from the LED is:
(1) 650 nm
(2) 1243 nm
(3) 875 nm
(4) 1400 nm

Ans. (3)
36. A sphere of relative density σ and diameter D has concentric cavity of diameter d. The ratio of $\frac{\mathrm{D}}{\mathrm{d}}$, if it just floats on water in a tank is:
(1) $\left(\frac{\sigma}{\sigma-1}\right)^{\frac{1}{3}}$
(2) $\left(\frac{\sigma+1}{\sigma-1}\right)^{\frac{1}{3}}$
(3) $\left(\frac{\sigma-1}{\sigma}\right)^{\frac{1}{3}}$
(4) $\left(\frac{\sigma-2}{\sigma+2}\right)^{\frac{1}{3}}$

Ans. (1)

Download the new ALLEN app \& enroll for Online Programs

37. A capacitor is made of a flat plate of area A and a second plate having a stair-like structure as shown in figure. If the area of each stair is $\frac{A}{3}$ and the height is d , the capacitance of the arrangement is:

(1) $\frac{11 \varepsilon_{0} A}{18 d}$
(2) $\frac{13 \varepsilon_{0} A}{17 d}$
(3) $\frac{11 \varepsilon_{0} A}{20 d}$
(4) $\frac{18 \varepsilon_{0} A}{11 d}$

Ans. (1)
38. A light unstretchable string passing over a smooth light pulley connects two blocks of masses m_{1} and m_{2}. If the acceleration of the system is $\frac{g}{8}$, then the ratio of the masses $\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}$ is:
(1) $9: 7$
(2) $4: 3$
(3) $5: 3$
(4) $8: 1$

Ans. (1)
39. The dimensional formula of latent heat is:
(1) $\left[\mathrm{M}^{0} \mathrm{LT}^{-2}\right]$
(2) $\left[\mathrm{MLT}^{-2}\right]$
(3) $\left[\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$
(4) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$

Ans. (3)
40. The volume of an ideal gas $(\gamma=1.5)$ is changed adiabatically from 5 litres to 4 litres. The ratio of initial pressure to final pressure is:
(1) $\frac{4}{5}$
(2) $\frac{16}{25}$
(3) $\frac{8}{5 \sqrt{5}}$
(4) $\frac{2}{\sqrt{5}}$

Ans. (3)
41. The energy equivalent of 1 g of substance is:
(1) $11.2 \times 10^{24} \mathrm{MeV}$
(2) $5.6 \times 10^{12} \mathrm{MeV}$
(3) 5.6 eV
(4) $5.6 \times 10^{26} \mathrm{MeV}$
42. An astronaut takes a ball of mass m from earth to space. He throws the ball into a circular orbit about earth at an altitude of 318.5 km . From earth's surface to the orbit, the change in total mechanical
 $\left(\right.$ take $\left.\mathrm{R}_{\mathrm{e}}=6370 \mathrm{~km}\right)$:
(1) 11
(2) 9
(3) 12
(4) 10

Ans. (1)
43. Given below are two statements:

Statement (I) : When currents vary with time, Newton's third law is valid only if momentum carried by the electromagnetic field is taken into account.

Statement (II) : Ampere's circuital law does not depend on Biot-Savart's law.

In the light of the above statements, choose the correct answer from the options given below:
(1) Both Statement I and Statement II are false.
(2) Statement I is true but Statement II is false.
(3) Statement I is false but Statement II is true.
(4) Both Statement I and Statement II are true.

NTA Ans. (2)
Allen Ans. (4)
44. A particle of mass m moves on a straight line with its velocity increasing with distance according to the equation $\mathrm{v}=\alpha \sqrt{\mathrm{x}}$, where α is a constant. The total work done by all the forces applied on the particle during its displacement from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{d}$, will be:
(1) $\frac{m}{2 \alpha^{2} d}$
(2) $\frac{\mathrm{md}}{2 \alpha^{2}}$
(3) $\frac{m \alpha^{2} d}{2}$
(4) $2 m \alpha^{2} d$

Ans. (3)

Ans. (4)

Download the new ALLEN app \& enroll for Online Programs

45. A galvanometer has a coil of resistance 200Ω with a full scale deflection at $20 \mu \mathrm{~A}$. The value of resistance to be added to use it as an ammeter of range (0-20) mA is:
(1) 0.40Ω
(2) 0.20Ω
(3) 0.50Ω
(4) 0.10Ω

Ans. (2)
46. A heavy iron bar, of weight W is having its one end on the ground and the other on the shoulder of a person. The bar makes an angle θ with the horizontal. The weight experienced by the person is:
(1) $\frac{\mathrm{W}}{2}$
(2) W
(3) $\mathrm{W} \cos \theta$
(4) $\mathrm{W} \sin \theta$

Ans. (1)
47. One main scale division of a vernier caliper is equal to m units. If $n^{\text {th }}$ division of main scale coincides with $(\mathrm{n}+1)^{\text {th }}$ division of vernier scale, the least count of the vernier caliper is:
(1) $\frac{n}{(n+1)}$
(2) $\frac{m}{(n+1)}$
(3) $\frac{1}{(n+1)}$
(4) $\frac{m}{n(n+1)}$

Ans. (2)
48. A bulb and a capacitor are connected in series across an ac supply. A dielectric is then placed between the plates of the capacitor. The glow of the bulb:
(1) increases
(2) remains same
(3) becomes zero
(4) decreases

Ans. (1)
49. The equivalent resistance between A and B is:

(1) 18Ω
(2) 25Ω
(3) 27Ω
(4) 19Ω

Ans. (4)
50. A sample of 1 mole gas at temperature T is adiabatically expanded to double its volume. If adiabatic constant for the gas is $\gamma=\frac{3}{2}$, then the work done by the gas in the process is:
(1) $\mathrm{RT}[2-\sqrt{2}]$
(2) $\frac{R}{T}[2-\sqrt{2}]$
(3) $\mathrm{RT}[2+\sqrt{2}]$
(4) $\frac{\mathrm{T}}{\mathrm{R}}[2+\sqrt{2}]$

Ans. (1)

SECTION-B

51. If \vec{a} and \vec{b} makes an angle $\cos ^{-1}\left(\frac{5}{9}\right)$ with each other, then $|\vec{a}+\vec{b}|=\sqrt{2}|\vec{a}-\vec{b}|$ for $|\vec{a}|=n|\vec{b}|$ The integer value of n is \qquad -
Ans. (3)
52. At the centre of a half ring of radius $\mathrm{R}=10 \mathrm{~cm}$ and linear charge density $4 \mathrm{n} \mathrm{C} \mathrm{m}^{-1}$, the potential is $x \pi V$. The value of x is \qquad .
Ans. (36)
53. A star has 100% helium composition. It starts to convert three ${ }^{4} \mathrm{He}$ into one ${ }^{12} \mathrm{C}$ via triple alpha process as ${ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}+\mathrm{Q}$. The mass of the star is $2.0 \times 10^{32} \mathrm{~kg}$ and it generates energy at the rate of $5.808 \times 10^{30} \mathrm{~W}$. The rate of converting these ${ }^{4} \mathrm{He}$ to ${ }^{12} \mathrm{C}$ is $\mathrm{n} \times 10^{42} \mathrm{~s}^{-1}$, where n is \qquad _.
[Take, mass of ${ }^{4} \mathrm{He}=4.0026 \mathrm{u}$, mass of ${ }^{12} \mathrm{C}=12 \mathrm{u}$]
NTA Ans. (5)
Allen Ans. (15)
54. In a Young's double slit experiment, the intensity at a point is $\left(\frac{1}{4}\right)^{\text {th }}$ of the maximum intensity, the minimum distance of the point from the central maximum is \qquad $\mu \mathrm{m}$.
(Given : $\lambda=600 \mathrm{~nm}, \mathrm{~d}=1.0 \mathrm{~mm}, \mathrm{D}=1.0 \mathrm{~m}$)
Ans. (200)
55. A string is wrapped around the rim of a wheel of moment of inertia $0.40 \mathrm{kgm}^{2}$ and radius 10 cm . The wheel is free to rotate about its axis. Initially the wheel is at rest. The string is now pulled by a force of 40 N . The angular velocity of the wheel after 10 s is x rad/s, where x is \qquad -.

Ans. (100)
56. A square loop of edge length 2 m carrying current of 2 A is placed with its edges parallel to the $x-y$ axis. A magnetic field is passing through the $x-y$ plane and expressed as $\vec{B}=B_{0}(1+4 x) \hat{k}$, where $B_{0}=5 \mathrm{~T}$. The net magnetic force experienced by the loop is \qquad N .

Ans. (160)
57. Two persons pull a wire towards themselves. Each person exerts a force of 200 N on the wire. Young's modulus of the material of wire is $1 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}$. Original length of the wire is 2 m and the area of cross section is $2 \mathrm{~cm}^{2}$. The wire will extend in length by \qquad $\mu \mathrm{m}$.
Ans. (20)
58. When a coil is connected across a 20 V dc supply, it draws a current of 5 A . When it is connected across $20 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply, it draws a current of 4 A . The self inductance of the coil is \qquad mH . (Take $\pi=3$)
Ans. (10)
59. The position, velocity and acceleration of a particle executing simple harmonic motion are found to have magnitudes of $4 \mathrm{~m}, 2 \mathrm{~ms}^{-1}$ and $16 \mathrm{~ms}^{-2}$ at a certain instant. The amplitude of the motion is $\sqrt{\mathrm{x}} \mathrm{m}$ where x is \qquad .

Ans. (17)
60. The current flowing through the 1Ω resistor is $\frac{n}{10}$
A. The value of n is \qquad .

Ans. (25)

Are you targeting JEE 2025 ?

Ace it with A내N's Leader Course

Online Program) 18 APRIL '24

Offiline Program ${ }^{24}$ APRIL '24

A노N
Get The Latest
IIT-JEE Special Books at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING
with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's |JEE-Adv. PYQ's

Available in HINDI \& ENGLISH

