TIME: 3:00 PM to 6:00 PM

TEST PAPER WITH ANSWER

34. A hydrogen atom in ground state is given an energy of 10.2 eV . How many spectral lines will be emitted due to transition of electrons?
(1) 6
(2) 3
(3) 10
(4) 1

Ans. (4)
35. The magnetic field in a plane electromagnetic wave is $\mathrm{B}_{\mathrm{y}}=\left(3.5 \times 10^{-7}\right) \sin \left(1.5 \times 10^{3} \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{T}$. The corresponding electric field will be
(1) $E_{y}=1.17 \sin \left(1.5 \times 10^{3} x+0.5 \times 10^{11} t\right) \mathrm{Vm}^{-1}$
(2) $E_{Z}=105 \sin \left(1.5 \times 10^{3} x+0.5 \times 10^{11} t\right) \mathrm{Vm}^{-1}$
(3) $E_{Z}=1.17 \sin \left(1.5 \times 10^{3} \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$
(4) $E_{y}=10.5 \sin \left(1.5 \times 10^{3} \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$

Ans. (2)
36. A square loop of side 15 cm being moved towards right at a constant speed of $2 \mathrm{~cm} / \mathrm{s}$ as shown in figure. The front edge enters the 50 cm wide magnetic field at $t=0$. The value of induced emf in the loop at $\mathrm{t}=10 \mathrm{~s}$ will be :

(1) 0.3 mV
(2) 4.5 mV
(3) zero
(4) 3 mV

Ans. (3)
37. Two cars are travelling towards each other at speed of $20 \mathrm{~m} \mathrm{~s}^{-1}$ each. When the cars are 300 m apart, both the drivers apply brakes and the cars retard at the rate of $2 \mathrm{~m} \mathrm{~s}^{-2}$. The distance between them when they come to rest is :
(1) 200 m
(2) 50 m
(3) 100 m
(4) 25 m

Ans. (3)
38. The $I-V$ characteristics of an electronic device shown in the figure. The device is :

(1) a solar cell
(2) a transistor which can be used as an amplifier
(3) a zener diode which can be used as voltage regulator
(4) a diode which can be used as a rectifier

Ans. (3)
39. The excess pressure inside a soap bubble is thrice the excess pressure inside a second soap bubble. The ratio between the volume of the first and the second bubble is :
(1) $1: 9$
(2) $1: 3$
(3) $1: 81$
(4) $1: 27$

Ans. (4)
40. The de-Broglie wavelength associated with a particle of mass m and energy E is $\mathrm{h} / \sqrt{2 m E}$. The dimensional formula for Planck's constant is :
(1) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
(2) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
(3) $\left[\mathrm{MLT}^{-2}\right]$
(4) $\left[\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$

Ans. (2)
41. A satellite of $10^{3} \mathrm{~kg}$ mass is revolving in circular orbit of radius 2 R . If $\frac{10^{4} \mathrm{R}}{6} J$ energy is supplied to the satellite, it would revolve in a new circular orbit of radius :
(use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{R}=$ radius of earth)
(1) 2.5 R
(2) 3 R
(3) 4 R
(4) 6 R

Ans. (4)
42. The effective resistance between A and B, if resistance of each resistor is R, will be

(1) $\frac{2}{3} R$
(2) $\frac{8 R}{3}$
(3) $\frac{5 R}{3}$
(4) $\frac{4 R}{3}$

Ans. (2)
43. Five charges $+\mathrm{q},+5 \mathrm{q},-2 \mathrm{q},+3 \mathrm{q}$ and -4 q are situated as shown in the figure. The electric flux due to this configuration through the surface S is :

(1) $\frac{5 q}{\epsilon_{0}}$
(2) $\frac{4 q}{\epsilon_{0}}$
(3) $\frac{3 q}{\epsilon_{0}}$
(4) $\frac{q}{\epsilon_{0}}$

Ans. (2)
44. A proton and a deutron ($\mathrm{q}=+\mathrm{e}, m=2.0 \mathrm{u}$) having same kinetic energies enter a region of uniform magnetic field $\overrightarrow{\mathrm{B}}$, moving perpendicular to $\overrightarrow{\mathrm{B}}$. The ratio of the radius r_{d} of deutron path to the radius r_{p} of the proton path is :
(1) $1: 1$
(2) $1: \sqrt{2}$
(3) $\sqrt{2}: 1$
(4) $1: 2$

Ans. (3)
45. UV light of 4.13 eV is incident on a photosensitive metal surface having work function 3.13 eV . The maximum kinetic energy of ejected photoelectrons will be :
(1) 4.13 eV
(2) 1 eV
(3) 3.13 eV
(4) 7.26 eV

Ans. (2)
46. The energy released in the fusion of 2 kg of hydrogen deep in the sun is E_{H} and the energy released in the fission of 2 kg of ${ }^{235} \mathrm{U}$ is E_{U}. The ratio $\frac{E_{H}}{E_{U}}$ is approximately :
(Consider the fusion reaction as $4{ }_{1}^{1} \mathrm{H}+2 \mathrm{e}^{-} \rightarrow{ }_{2}^{4} \mathrm{He}+2 \mathrm{v}+6 \gamma+26.7 \mathrm{MeV}$, energy released in the fission reaction of ${ }^{235} \mathrm{U}$ is 200 MeV per fission nucleus and $\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23}$)
(1) 9.13
(2) 15.04
(3) 7.62
(4) 25.6

Ans. (3)
47. A real gas within a closed chamber at $27^{\circ} \mathrm{C}$ undergoes the cyclic process as shown in figure. The gas obeys $P V^{3}=$ RT equation for the path A to B. The net work done in the complete cycle is (assuming $R=8 \mathrm{~J} / \mathrm{molK}$):

(1) 225 J
(2) 205 J
(3) 20 J
(4) -20 J

Ans. (2)
48. A 1 kg mass is suspended from the ceiling by a rope of length 4 m . A horizontal force ' F ' is applied at the mid point of the rope so that the rope makes an angle of 45° with respect to the vertical axis as shown in figure. The magnitude of F is :

(1) $\frac{10}{\sqrt{2}} \mathrm{~N}$
(2) 1 N
(3) $\frac{1}{10 \times \sqrt{2}} \mathrm{~N}$
(4) 10 N

Ans. (4)
49. A spherical ball of radius $1 \times 10^{-4} \mathrm{~m}$ and density $10^{5} \mathrm{~kg} / \mathrm{m}^{3}$ falls freely under gravity through a distance h before entering a tank of water, If after entering in water the velocity of the ball does not change, then the value of h is approximately :
(The coefficient of viscosity of water is 9.8×10^{-6} $\mathrm{N} \mathrm{s} / \mathrm{m}^{2}$)
(1) 2296 m
(2) 2249 m
(3) 2518 m
(4) 2396 m

Ans. (3)
50.

In the truth table of the above circuit the value of X and Y are :
(1) 1,1
(2) 1,0
(3) 0,1
(4) 0,0

Ans. (1)

SECTION-B

51. A straight magnetic strip has a magnetic moment of $44 \mathrm{Am}^{2}$. If the strip is bent in a semicircular shape, its magnetic moment will be \qquad Am ${ }^{2}$
(Given $\pi=\frac{22}{7}$)
Ans. (28)
52. A particle of mass 0.50 kg executes simple harmonic motion under force $\mathrm{F}=-50\left(\mathrm{Nm}^{-1}\right) \mathrm{x}$. The time period of oscillation is $\frac{x}{35} \mathrm{~s}$. The value of x is
\qquad
(Given $\pi=\frac{22}{7}$)
Ans. (22)
53. A capacitor of reactance $4 \sqrt{3} \Omega$ and a resistor of resistance 4Ω are connected in series with an ac source of peak value $8 \sqrt{2} \mathrm{~V}$. The power dissipation in the circuit is \qquad W.

Ans. (4)
54. An electric field $\overrightarrow{\mathrm{E}}=(2 x \hat{\mathrm{i}}) \mathrm{NC}^{-1}$ exists in space. A cube of side 2 m is placed in the space as per figure given below. The electric flux through the cube is
$\ldots \mathrm{Nm}^{2} / \mathrm{C}$.

Ans. (16)
55. A circular disc reaches from top to bottom of an inclined plane of length l. When it slips down the plane, if takes t s. When it rolls down the plane then it takes $\left(\frac{\alpha}{2}\right)^{1 / 2} \mathrm{ts}$, where α is \qquad
Ans. (3)
56. To determine the resistance (R) of a wire, a circuit is designed below, The V-I characteristic curve for this circuit is plotted for the voltmeter and the ammeter readings as shown in figure. The value of R is \qquad Ω.

Ans. (2500)
57. The resultant of two vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ is perpendicular to $\overrightarrow{\mathrm{A}}$ and its magnitude is half that of \vec{B}. The angle between vectors \vec{A} and \vec{B} is

Ans. (150)
58. Monochromatic light of wavelength 500 nm is used in Young's double slit experiment. An interference pattern is obtained on a screen When one of the slits is covered with a very thin glass plate (refractive index $=1.5$), the central maximum is shifted to a position previously occupied by the $4^{\text {th }}$ bright fringe. The thickness of the glass-plate is
\qquad .$\mu \mathrm{m}$.
Ans. (4)
59. A force $\left(3 x^{2}+2 x-5\right) N$ displaces a body from $\mathrm{x}=2 \mathrm{~m}$ to $\mathrm{x}=4 \mathrm{~m}$. Work done by this force is
\qquad
Ans. (58)
60. At room temperature $\left(27^{\circ} \mathrm{C}\right)$, the resistance of a heating element is 50Ω. The temperature coefficient of the material is $2.4 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$. The temperature of the element, when its resistance is 62Ω, is \qquad ${ }^{\circ} \mathrm{C}$.
Ans. (1027)

Are you targeting JEE 2025 ?

Ace it with A내N's Leader Course

Online Program) 18 APRIL '24

Offiline Program ${ }^{24}$ APRIL '24

A노N
Get The Latest
IIT-JEE Special Books at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING
with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's |JEE-Adv. PYQ's

Available in HINDI \& ENGLISH

