FINAL JEE-MAIN EXAMINATION - APRIL, 2024

(Held On Tuesday 09th April, 2024)

TIME:9:00 AM to 12:00 NOON

MATHEMATICS

SECTION-A

1. Let the line L intersect the lines x - 2 = -y = z - 1, 2 (x + 1) = 2(y - 1) = z + 1and be parallel to the line $\frac{x - 2}{3} = \frac{y - 1}{1} = \frac{z - 2}{2}$.

Then which of the following points lies on L?

$$(1)\left(-\frac{1}{3},1,1\right) \qquad (2)\left(-\frac{1}{3},1,-1\right) \\ (3)\left(-\frac{1}{3},-1,-1\right) \qquad (4)\left(-\frac{1}{3},-1,1\right) \\ \end{cases}$$

Ans. (2)

2. The parabola $y^2 = 4x$ divides the area of the circle $x^2 + y^2 = 5$ in two parts. The area of the smaller part is equal to :

(1)
$$\frac{2}{3} + 5\sin^{-1}\left(\frac{2}{\sqrt{5}}\right)$$
 (2) $\frac{1}{3} + 5\sin^{-1}\left(\frac{2}{\sqrt{5}}\right)$
(3) $\frac{1}{3} + \sqrt{5}\sin^{-1}\left(\frac{2}{\sqrt{5}}\right)$ (4) $\frac{2}{3} + \sqrt{5}\sin^{-1}\left(\frac{2}{\sqrt{5}}\right)$

Ans. (1)

- **3.** The solution curve, of the differential equation
 - $2y\frac{dy}{dx} + 3 = 5\frac{dy}{dx}$, passing through the point
 - (0, 1) is a conic, whose vertex lies on the line :

(1)
$$2x + 3y = 9$$

(2) $2x + 3y = -9$
(3) $2x + 3y = -6$
(4) $2x + 3y = 6$
Ans. (1)

A ray of light coming from the point P (1, 2) gets reflected from the point Q on the x-axis and then passes through the point R (4, 3). If the point S (h, k) is such that PQRS is a parallelogram, then hk² is equal to :

Ans. (4)	
(3) 60	(4) 70
(1) 80	(2) 90

- TEST PAPER WITH ANSWER
- 5. Let $\lambda, \mu \in \mathbb{R}$. If the system of equations

 $3x + 5y + \lambda z = 3$

7x + 11y - 9z = 2

 $97x + 155y - 189z = \mu$

has infinitely many solutions, then $\mu + 2\lambda$ is equal to :

6. The coefficient of x^{70} in $x^2(1+x)^{98} + x^3(1+x)^{97} + x^4 (1+x)^{96} + \dots + x^{54}(1+x)^{46}$ is ${}^{99}C_p - {}^{46}C_q$.

Then a possible value to p + q is :

(1) 55	(2) 61
(3) 68	(4) 83

Ans. (4)

Let

7.

$$\int \frac{2 - \tan x}{3 + \tan x} dx = \frac{1}{2} (\alpha x + \log_e |\beta \sin x + \gamma \cos x|) + C$$

where C is the constant of integration.

Then
$$\alpha + \frac{\gamma}{\beta}$$
 is equal to :

(1) 3 (2) 1

(3) 4 (4) 7

Ans. (3)

8. A variable line L passes through the point (3, 5) and intersects the positive coordinate axes at the points A and B. The minimum area of the triangle OAB, where O is the origin, is :

(1) 30	(2) 25
(3) 40	(4) 35
Ans. (1)	

Download the new ALLEN app & enroll for Online Programs

Final JEE-Main Exam April, 2024/09-04-2024/Morning

9. Let

$$\left|\cos\theta\cos\left(60-\theta\right)\cos\left(60-\theta\right)\right| \le \frac{1}{8}, \theta\in\left[0,2\pi\right]$$

Then, the sum of all $\theta \in [0, 2\pi]$, where $\cos 3\theta$ attains its maximum value, is :

- (1) 9π (2) 18 π
- (3) 6π (4) 15 π

10. Let $\overrightarrow{OA} = 2\overrightarrow{a}, \overrightarrow{OB} = 6\overrightarrow{a} + 5\overrightarrow{b}$ and $\overrightarrow{OC} = 3\overrightarrow{b}$, where O is the origin. If the area of the parallelogram with adjacent sides \overrightarrow{OA} and \overrightarrow{OC} is 15 sq. units, then the area (in sq. units) of the quadrilateral OABC is equal to :

(1) 38	(2) 40
(3) 32	(4) 35

Ans. (4)

11. If the domain of the function

$$f(x) = \sin^{-1}\left(\frac{x-1}{2x+3}\right)$$
 is $R - (\alpha, \beta)$

then $12\alpha\beta$ is equal to :

(1)	36		
(1)) 30		

(3) 40	(4) 32

Ans. (4)

12. If the sum of series

1	1			1
$\overline{1\cdot(1+d)}^+$	d(1+2d)) ++	$\overline{(1+9d)}$	(1+10d)
is equal to 5, the	hen 50d is	equal to	:	
(1) 20		(2) 5		
(3) 15		(4) 10		
Ans. (2)				
$\mathbf{T} = \mathbf{C}(\mathbf{r})$	3 1 2	11		

(2) 24

13. Let $f(x) = ax^3 + bx^2 + ex + 41$ be such that

f(1) = 40, f(1) = 2 and f'(1) = 4. Then $a^2 + b^2 + c^2$ is equal to : (1) 62 (2) 73 (3) 54 (4) 51

Ans. (4)

14. Let a circle passing through (2, 0) have its centre at the point (h, k). Let (x_c, y_c) be the point of intersection of the lines 3x + 5y = 1 and $(2 + c) x + 5c^2y = 1$. If $h = \lim_{c \to 1} x_c$ and $k = \lim_{c \to 1} y_c$, then the

equation of the circle is :

(1) $25x^{2} + 25y^{2} - 20x + 2y - 60 = 0$ (2) $5x^{2} + 5y^{2} - 4x - 2y - 12 = 0$ (3) $25x^{2} + 25y^{2} - 2x + 2y - 60 = 0$ (4) $5x^{2} + 5y^{2} - 4x + 2y - 12 = 0$ Ans. (1)

15. The shortest distance between the line

$$\frac{x-3}{4} = \frac{y+7}{-11} = \frac{z-1}{5} \text{ and } \frac{x-5}{3} = \frac{y-9}{-6} = \frac{z+2}{1}$$

is:
(1) $\frac{187}{\sqrt{563}}$ (2) $\frac{178}{\sqrt{563}}$
(3) $\frac{185}{\sqrt{563}}$ (4) $\frac{179}{\sqrt{563}}$
Ans. (1)

16. The frequency distribution of the age of students in a class of 40 students is given below.

Age	15	16	17	18	19	20
No. of	5	8	5	12	Х	У
Students						

If the mean deviation about the median is 1.25, then 4x + 5y is equal to :

(1) 43	(2) 44
(3) 47	(4) 46

Ans. (2)

$$(x^{2} + y^{2})dx - 5xy dy = 0, y(1) = 0, is:$$

(1)
$$|x^2 - 4y^2|^5 = x^2$$
 (2) $|x^2 - 2y^2|^6 = x$

(3)
$$|x^2 - 4y^2|^6 = x$$
 (4) $|x^2 - 2y^2|^5 = x^2$

Ans. (1)

Download the new ALLEN app & enroll for Online Programs

Final JEE-Main Exam April, 2024/09-04-2024/Morning

18. Let three vectors $\vec{a} = \alpha \hat{i} + 4 \hat{j} + 2 \hat{k}$, $\vec{b} = 5\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}$ from a triangle such that $\vec{c} = \vec{a} - \vec{b}$ and the area of the triangle is $5\sqrt{6}$. if α is a positive real number, then $|\vec{c}|^2$ is : (1) 16 (2) 14 (3) 12 (4) 10

19. Let α , β be the roots of the equation

 $x^{2} + 2\sqrt{2} x - 1 = 0$. The quadratic equation, whose roots are $\alpha^{4} + \beta^{4}$ and $\frac{1}{10}(\alpha^{6} + \beta^{6})$, is : (1) $x^{2} - 190x + 9466 = 0$ (2) $x^{2} - 195x + 9466 = 0$ (3) $x^{2} - 195x + 9506 = 0$ (4) $x^{2} - 180x + 9506 = 0$ **Ans. (3)**

20. Let
$$f(x) = x^2 + 9$$
, $g(x) = \frac{x}{x - 9}$ and

a = fog(10), b = gof(3). If e and 1 denote the eccentricity and the length of the latus rectum of

the ellipse $\frac{x^2}{a} + \frac{y^2}{b} = 1$, then $8e^2 + l^2$ is equal to. (1) 16 (2) 8 (3) 6 (4) 12

Ans. (2)

SECTION-B

21. Let a, b and c denote the outcome of three independent rolls of a fair tetrahedral die, whose four faces are marked 1, 2, 3, 4. If the probability that ax² + bx + c = 0 has all real roots is m/n, gcd(m, n) = 1, then m + n is equal to _____.
Ans. (19)

22. The sum of the square of the modulus of the elements in the set

$$\{z = a + ib : a, b \in Z, z \in C, |z - 1| \le 1, |z - 5| \le |z - 5i|\}$$

is _____.
Ans. (9)

Let the set of all positive values of λ, for which the point of local minimum of the function

$$(1 + x (\lambda^2 - x^2))$$
 satisfies $\frac{x^2 + x + 2}{x^2 + 5x + 6} < 0$, be (α, β) .

Then $\alpha^2 + \beta^2$ is equal to _____. Ans. (39)

24. Let

$$\lim_{n \to \infty} \left(\frac{n}{\sqrt{n^4 + 1}} - \frac{2n}{(n^2 + 1)\sqrt{n^4 + 1}} + \frac{n}{\sqrt{n^4 + 16}} - \frac{8n}{(n^2 + 4)\sqrt{n^4 + 16}} \right)$$

+.....+ $\frac{n}{\sqrt{n^4 + n^4}} - \frac{2n \cdot n^2}{(n^2 + n^2)\sqrt{n^4 + n^4}} \right) be \frac{\pi}{k},$

using only the principal values of the inverse trigonometric functions. Then k^2 is equal to _____. Ans. (32)

25. The remainder when 428^{2024} is divided by 21 is

Ans. (1)

Where a, b \in Z. If f is continuous at $x = \frac{\pi}{2}$, then a² + b² is equal to _____.

```
Ans. (81)
```


Final JEE-Main Exam April, 2024/09-04-2024/Morning

- 27. Let A be a non-singular matrix of order 3. If det(3adj(2adj((detA)A))) = $3^{-13} \cdot 2^{-10}$ and det (3adj(2A)) = $2^m \cdot 3^n$, then |3m+2n| is equal to

Ans. (14)

28. Let the centre of a circle, passing through the point (0, 0), (1, 0) and touching the circle $x^2 + y^2 = 9$, be (h, k). Then for all possible values of the coordinates of the centre (h, k), $4(h^2 + k^2)$ is equal to _____.

Ans. (9)

29. If a function f satisfies f(m + n) = f(m) + f(n) for all m, $n \in N$ and f(1) = 1, then the largest natural number λ such that $\sum_{k=1}^{2022} f(\lambda + k) \le (2022)^2$ is equal to _____.

Ans. (1010)

30. Let A = {2, 3, 6, 7} and B = {4, 5, 6, 8}. Let R be a relation defined on A × B by (a_1, b_1) R (a_2, b_2) is and only if $a_1 + a_2 = b_1 + b_2$. Then the number of elements in R is _____.

Ans. (25)

Download the new ALLEN app & enroll for Online Programs

Get The Latest **JEE Special Books** at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING

with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ'S | JEE-Adv. PYQ'S

Available in HINDI & ENGLISH

