MATHEMATICS

SECTION-A

1. Let the line L intersect the lines
$\mathrm{x}-2=-\mathrm{y}=\mathrm{z}-1,2(\mathrm{x}+1)=2(\mathrm{y}-1)=\mathrm{z}+1$
and be parallel to the line $\frac{\mathrm{x}-2}{3}=\frac{\mathrm{y}-1}{1}=\frac{\mathrm{z}-2}{2}$.
Then which of the following points lies on L ?
(1) $\left(-\frac{1}{3}, 1,1\right)$
(2) $\left(-\frac{1}{3}, 1,-1\right)$
(3) $\left(-\frac{1}{3},-1,-1\right)$
(4) $\left(-\frac{1}{3},-1,1\right)$

Ans. (2)
2. The parabola $y^{2}=4 x$ divides the area of the circle $x^{2}+y^{2}=5$ in two parts. The area of the smaller part is equal to :
(1) $\frac{2}{3}+5 \sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)$
(2) $\frac{1}{3}+5 \sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)$
(3) $\frac{1}{3}+\sqrt{5} \sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)$
(4) $\frac{2}{3}+\sqrt{5} \sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)$

Ans. (1)
3. The solution curve, of the differential equation $2 y \frac{d y}{d x}+3=5 \frac{d y}{d x}$, passing through the point $(0,1)$ is a conic, whose vertex lies on the line :
(1) $2 x+3 y=9$
(2) $2 x+3 y=-9$
(3) $2 x+3 y=-6$
(4) $2 x+3 y=6$

Ans. (1)
4. A ray of light coming from the point $\mathrm{P}(1,2)$ gets reflected from the point Q on the x -axis and then passes through the point $R(4,3)$. If the point $S(h$, k) is such that PQRS is a parallelogram, then hk^{2} is equal to :
(1) 80
(2) 90
(3) 60
(4) 70

Ans. (4)

TEST PAPER WITH ANSWER
5. Let $\lambda, \mu \in R$. If the system of equations
$3 x+5 y+\lambda z=3$
$7 x+11 y-9 z=2$
$97 x+155 y-189 z=\mu$
has infinitely many solutions, then $\mu+2 \lambda$ is equal to :
(1) 25
(2) 24
(3) 27
(4) 22

Ans. (1)
6. The coefficient of x^{70} in $x^{2}(1+x)^{98}+x^{3}(1+x)^{97}+$ $x^{4}(1+x)^{96}+\ldots \ldots \ldots+x^{54}(1+x)^{46}$ is ${ }^{99} C_{p}-{ }^{46} C_{q}$.
Then a possible value to $\mathrm{p}+\mathrm{q}$ is :
(1) 55
(2) 61
(3) 68
(4) 83

Ans. (4)
7. Let
$\int \frac{2-\tan x}{3+\tan x} d x=\frac{1}{2}\left(\alpha x+\log _{e}|\beta \sin x+\gamma \cos x|\right)+C$, where C is the constant of integration.

Then $\alpha+\frac{\gamma}{\beta}$ is equal to:
(1) 3
(2) 1
(3) 4
(4) 7

Ans. (3)
8. A variable line L passes through the point $(3,5)$ and intersects the positive coordinate axes at the points A and B . The minimum area of the triangle OAB , where O is the origin, is :
(1) 30
(2) 25
(3) 40
(4) 35

Ans. (1)
9. Let

$$
|\cos \theta \cos (60-\theta) \cos (60-\theta)| \leq \frac{1}{8}, \theta \in[0,2 \pi]
$$

Then, the sum of all $\theta \in[0,2 \pi]$, where $\cos 3 \theta$ attains its maximum value, is :
(1) 9π
(2) 18π
(3) 6π
(4) 15π

Ans. (3)
10. Let $\overrightarrow{\mathrm{OA}}=2 \overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{OB}}=6 \overrightarrow{\mathrm{a}}+5 \overrightarrow{\mathrm{~b}}$ and $\overrightarrow{\mathrm{OC}}=3 \overrightarrow{\mathrm{~b}}$, where O is the origin. If the area of the parallelogram with adjacent sides $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OC}}$ is 15 sq. units, then the area (in sq. units) of the quadrilateral OABC is equal to :
(1) 38
(2) 40
(3) 32
(4) 35

Ans. (4)
11. If the domain of the function
$f(x)=\sin ^{-1}\left(\frac{x-1}{2 x+3}\right)$ is $R-(\alpha, \beta)$
then $12 \alpha \beta$ is equal to :
(1) 36
(2) 24
(3) 40
(4) 32

Ans. (4)
12. If the sum of series
$\frac{1}{1 \cdot(1+d)}+\frac{1}{(1+d)(1+2 d)}+\ldots \ldots . .+\frac{1}{(1+9 d)(1+10 d)}$
is equal to 5 , then 50 d is equal to :
(1) 20
(2) 5
(3) 15
(4) 10

Ans. (2)
13. Let $f(x)=a x^{3}+b x^{2}+e x+41$ be such that $f(1)=40, f^{\prime}(1)=2$ and $f^{\prime \prime}(1)=4$.
Then $a^{2}+b^{2}+c^{2}$ is equal to :
(1) 62
(2) 73
(3) 54
(4) 51

Ans. (4)
14. Let a circle passing through $(2,0)$ have its centre at the point (h, k). Let ($\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}$) be the point of intersection of the lines $3 x+5 y=1$ and $(2+c) x+$ $5 c^{2} y=1$. If $h=\lim _{c \rightarrow 1} x_{c}$ and $k=\lim _{c \rightarrow 1} y_{c}$, then the equation of the circle is :
(1) $25 \mathrm{x}^{2}+25 \mathrm{y}^{2}-20 \mathrm{x}+2 \mathrm{y}-60=0$
(2) $5 x^{2}+5 y^{2}-4 x-2 y-12=0$
(3) $25 x^{2}+25 y^{2}-2 x+2 y-60=0$
(4) $5 x^{2}+5 y^{2}-4 x+2 y-12=0$

Ans. (1)
15. The shortest distance between the line
$\frac{x-3}{4}=\frac{y+7}{-11}=\frac{z-1}{5}$ and $\frac{x-5}{3}=\frac{y-9}{-6}=\frac{z+2}{1}$
is :
(1) $\frac{187}{\sqrt{563}}$
(2) $\frac{178}{\sqrt{563}}$
(3) $\frac{185}{\sqrt{563}}$
(4) $\frac{179}{\sqrt{563}}$

Ans. (1)
16. The frequency distribution of the age of students in a class of 40 students is given below.

Age	15	16	17	18	19	20
No. of Students	5	8	5	12	x	y

If the mean deviation about the median is 1.25 , then $4 x+5 y$ is equal to :
(1) 43
(2) 44
(3) 47
(4) 46

Ans. (2)
17. The solution of the differential equation $\left(x^{2}+y^{2}\right) d x-5 x y d y=0, y(1)=0$, is :
(1) $\left|x^{2}-4 y^{2}\right|^{5}=x^{2}$
(2) $\left|x^{2}-2 y^{2}\right|^{6}=x$
(3) $\left|x^{2}-4 y^{2}\right|^{6}=x$
(4) $\left|x^{2}-2 y^{2}\right|^{5}=x^{2}$

Ans. (1)
18. Let three vectors $\overrightarrow{\mathrm{a}}=\alpha \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$, $\overrightarrow{\mathrm{b}}=5 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}}$ from a triangle such that $\vec{c}=\vec{a}-\vec{b}$ and the area of the triangle is $5 \sqrt{6}$. if α is a positive real number, then $|\overrightarrow{\mathrm{c}}|^{2}$ is :
(1) 16
(2) 14
(3) 12
(4) 10

Ans. (2)
19. Let α, β be the roots of the equation
$x^{2}+2 \sqrt{2} x-1=0$. The quadratic equation, whose roots are $\alpha^{4}+\beta^{4}$ and $\frac{1}{10}\left(\alpha^{6}+\beta^{6}\right)$, is :
(1) $x^{2}-190 x+9466=0$
(2) $x^{2}-195 x+9466=0$
(3) $x^{2}-195 x+9506=0$
(4) $x^{2}-180 x+9506=0$

Ans. (3)
20. Let $f(x)=x^{2}+9, g(x)=\frac{x}{x-9}$ and $\mathrm{a}=\mathrm{fog}(10), \mathrm{b}=\operatorname{gof}(3)$. If e and 1 denote the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$, then $8 e^{2}+1^{2}$ is equal to.
(1) 16
(2) 8
(3) 6
(4) 12

Ans. (2)

SECTION-B

21. Let a, b and c denote the outcome of three independent rolls of a fair tetrahedral die, whose four faces are marked $1,2,3,4$. If the probability that $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ has all real roots is $\frac{\mathrm{m}}{\mathrm{n}}$, $\operatorname{gcd}(m, n)=1$, then $m+n$ is equal to \qquad .

Ans. (19)
22. The sum of the square of the modulus of the elements in the set

$$
\{\mathrm{z}=\mathrm{a}+\mathrm{ib}: \mathrm{a}, \mathrm{~b} \in \mathrm{Z}, \mathrm{z} \in \mathrm{C},|\mathrm{z}-1| \leq 1,|\mathrm{z}-5| \leq|\mathrm{z}-5 \mathrm{i}|\}
$$

is \qquad .
Ans. (9)
23. Let the set of all positive values of λ, for which the point of local minimum of the function
$\left(1+x\left(\lambda^{2}-x^{2}\right)\right)$ satisfies $\frac{x^{2}+x+2}{x^{2}+5 x+6}<0$, be (α, β).
Then $\alpha^{2}+\beta^{2}$ is equal to \qquad .
Ans. (39)
24. Let

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\frac{\mathrm{n}}{\sqrt{\mathrm{n}^{4}+1}}-\frac{2 \mathrm{n}}{\left(\mathrm{n}^{2}+1\right) \sqrt{\mathrm{n}^{4}+1}}+\frac{\mathrm{n}}{\sqrt{\mathrm{n}^{4}+16}}-\frac{8 \mathrm{n}}{\left(\mathrm{n}^{2}+4\right) \sqrt{\mathrm{n}^{4}+16}}\right. \\
& \left.+\ldots \ldots+\frac{\mathrm{n}}{\sqrt{\mathrm{n}^{4}+\mathrm{n}^{4}}}-\frac{2 \mathrm{n} \cdot \mathrm{n}^{2}}{\left(\mathrm{n}^{2}+\mathrm{n}^{2}\right) \sqrt{\mathrm{n}^{4}+\mathrm{n}^{4}}}\right) \text { be } \frac{\pi}{\mathrm{k}},
\end{aligned}
$$

using only the principal values of the inverse trigonometric functions. Then k^{2} is equal to \qquad -.
Ans. (32)
25. The remainder when 428^{2024} is divided by 21 is
\qquad -.

Ans. (1)
26. Lef $f:(0, \pi) \rightarrow R$ be a function given by
$f(x)=\left\{\begin{array}{cc}\left(\frac{8}{7}\right)^{\frac{\tan 8 x}{\tan 7 x}}, & 0<x<\frac{\pi}{2} \\ a-8, & x=\frac{\pi}{2} \\ (1+|\cot x|)^{\frac{b}{a}|\tan x|}, & \frac{\pi}{2}<x<\pi\end{array}\right.$
Where $a, b \in Z$. If f is continuous at $x=\frac{\pi}{2}$, then $a^{2}+b^{2}$ is equal to \qquad .
Ans. (81)

Download the new ALLEN app \& enroll for Online Programs

27. Let A be a non-singular matrix of order 3. If $\operatorname{det}(3 \operatorname{adj}(2 \operatorname{adj}((\operatorname{det} A) A)))=3^{-13} \cdot 2^{-10}$ and det $(3 \operatorname{adj}(2 \mathrm{~A}))=2^{\mathrm{m}} \cdot 3^{\mathrm{n}}$, then $|3 \mathrm{~m}+2 \mathrm{n}|$ is equal to
\qquad .
Ans. (14)
28. Let the centre of a circle, passing through the point $(0,0),(1,0)$ and touching the circle $x^{2}+y^{2}=9$, be (h, k). Then for all possible values of the coordinates of the centre $(h, k), 4\left(h^{2}+k^{2}\right)$ is equal to \qquad .

Ans. (9)
29. If a function f satisfies $f(m+n)=f(m)+f(n)$ for all $\mathrm{m}, \mathrm{n} \in \mathrm{N}$ and $\mathrm{f}(1)=1$, then the largest natural number λ such that $\sum_{\mathrm{k}=1}^{2022} \mathrm{f}(\lambda+\mathrm{k}) \leq(2022)^{2}$ is equal to \qquad .
Ans. (1010)
30. Let $\mathrm{A}=\{2,3,6,7\}$ and $\mathrm{B}=\{4,5,6,8\}$. Let R be a relation defined on $A \times B$ by $\left(a_{1}, b_{1}\right) R\left(a_{2}, b_{2}\right)$ is and only if $a_{1}+a_{2}=b_{1}+b_{2}$. Then the number of elements in R is \qquad
Ans. (25)

Are you targeting JEE 2025 ?

Ace it with A내N's Leader Course

Online Program) 18 APRIL '24

Offiline Program ${ }^{24}$ APRIL '24

A노N
Get The Latest
IIT-JEE Special Books at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING
with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's |JEE-Adv. PYQ's

Available in HINDI \& ENGLISH

