CAREER INSTITUTE KOTA (RAJASTHAN)]

FINAL JEE-MAIN EXAMINATION - APRIL, 2024

(Held On Tuesday 09th April, 2024)
TIME : 3:00 PM to 6:00 PM

MATHEMATICS

SECTION-A

1. $\operatorname{Lim}_{x \rightarrow 0} \frac{e-(1+2 x)^{\frac{1}{2 x}}}{x}$ is equal to :
(1) e
(2) $\frac{-2}{e}$
(3) 0
(4) $\mathrm{e}-\mathrm{e}^{2}$

Ans. (1)
2. Consider the line L passing through the points $(1,2,3)$ and $(2,3,5)$. The distance of the point $\left(\frac{11}{3}, \frac{11}{3}, \frac{19}{3}\right)$ from the line L along the line $\frac{3 x-11}{2}=\frac{3 y-11}{1}=\frac{3 z-19}{2}$ is equal to :
(1) 3
(2) 5
(3) 4
(4) 6

Ans. (1)
3. Let $\int_{0}^{\mathrm{x}} \sqrt{1-\left(\mathrm{y}^{\prime}(\mathrm{t})\right)^{2}} \mathrm{dt}=\int_{0}^{\mathrm{x}} \mathrm{y}(\mathrm{t}) \mathrm{dt}, 0 \leq \mathrm{x} \leq 3, \mathrm{y} \geq 0$, $\mathrm{y}(0)=0$. Then at $\mathrm{x}=2, \mathrm{y}^{\prime \prime}+\mathrm{y}+1$ is equal to :
(1) 1
(2) 2
(3) $\sqrt{2}$
(4) $1 / 2$

Ans. (1)
4. Let z be a complex number such that the real part of $\frac{z-2 i}{z+2 i}$ is zero. Then, the maximum value of $|\mathrm{z}-(6+8 \mathrm{i})|$ is equal to :
(1) 12
(2) ∞
(3) 10
(4) 8

Ans. (1)

TEST PAPER WITH ANSWER

5. The area (in square units) of the region enclosed by the ellipse $x^{2}+3 y^{2}=18$ in the first quadrant below the line $y=x$ is :
(1) $\sqrt{3} \pi+\frac{3}{4}$
(2) $\sqrt{3} \pi$
(3) $\sqrt{3} \pi-\frac{3}{4}$
(4) $\sqrt{3} \pi+1$

Ans. (2)
6. Let the foci of a hyperbola H coincide with the foci of the ellipse $E: \frac{(x-1)^{2}}{100}+\frac{(y-1)^{2}}{75}=1$ and the eccentricity of the hyperbola H be the reciprocal of the eccentricity of the ellipse E. If the length of the transverse axis of H is α and the length of its conjugate axis is β, then $3 \alpha^{2}+2 \beta^{2}$ is equal to :
(1) 242
(2) 225
(3) 237
(4) 205

Ans. (2)
7. Two vertices of a triangle ABC are $\mathrm{A}(3,-1)$ and $\mathrm{B}(-2,3)$, and its orthocentre is $\mathrm{P}(1,1)$. If the coordinates of the point C are (α, β) and the centre of the circle circumscribing the triangle PAB is (h, k), then the value of $(\alpha+\beta)+2(\mathrm{~h}+\mathrm{k})$ equals :
(1) 51
(2) 81
(3) 5
(4) 15

Ans. (3)
8. If the variance of the frequency distribution is 160 , then the value of $c \in N$ is

x	c	2 c	3 c	4 c	5 c	6 c
f	2	1	1	1	1	1

(1) 5
(2) 8
(3) 7
(4) 6

Ans. (3)
9. Let the range of the function
$f(x)=\frac{1}{2+\sin 3 x+\cos 3 x}, x \in \operatorname{IR}$ be $[a, b]$.
If α and β are respectively the A.M. and the G.M. of a and b, then $\frac{\alpha}{\beta}$ is equal to :
(1) $\sqrt{2}$
(2) 2
(3) $\sqrt{\pi}$
(4) π

Ans. (1)
10. Between the following two statements:

Statement-I : Let $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$. Then the vector $\overrightarrow{\mathrm{r}}$ satisfying $\dot{\mathrm{a}} \times \dot{\mathrm{r}}=\dot{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{r}}=0$ is of magnitude $\sqrt{10}$.

Statement-II : In a triangle $\mathrm{ABC}, \cos 2 \mathrm{~A}+\cos 2 \mathrm{~B}$ $+\cos 2 \mathrm{C} \geq-\frac{3}{2}$.
(1) Both Statement-I and Statement-II are incorrect
(2) Statement-I is incorrect but Statement-II is correct
(3) Both Statement-I and Statement-II are correct
(4) Statement-I is correct but Statement-II is incorrect

Ans. (2)
11. $\lim _{x \rightarrow \frac{x}{2}}\left(\frac{\int_{x^{3}}^{(\pi / 2)^{3}}\left(\sin \left(2 t^{1 / 3}\right)+\cos \left(t^{1 / 3}\right)\right) d t}{\left(x-\frac{\pi}{2}\right)^{2}}\right)$ is equal to :
(1) $\frac{9 \pi^{2}}{8}$
(2) $\frac{11 \pi^{2}}{10}$
(3) $\frac{3 \pi^{2}}{2}$
(4) $\frac{5 \pi^{2}}{9}$

Ans. (1)
12. The sum of the coefficient of $\mathrm{x}^{2 / 3}$ and $\mathrm{x}^{-2 / 5}$ in the binomial expansion of $\left(x^{2 / 3}+\frac{1}{2} x^{-2 / 5}\right)^{9}$ is :
(1) $21 / 4$
(2) $69 / 16$
(3) $63 / 16$
(4) $19 / 4$

Ans. (1)
13. Let $\mathrm{B}=\left[\begin{array}{ll}1 & 3 \\ 1 & 5\end{array}\right]$ and A be a 2×2 matrix such that $\mathrm{AB}^{-1}=\mathrm{A}^{-1}$. If $\mathrm{BCB}^{-1}=\mathrm{A}$ and $\mathrm{C}^{4}+\alpha \mathrm{C}^{2}+\beta I=\mathrm{O}$, then $2 \beta-\alpha$ is equal to :
(1) 16
(2) 2
(3) 8
(4) 10

Ans. (4)
14. If $\log _{e} y=3 \sin ^{-1} x$, then $(1-x)^{2} y^{\prime \prime}-x y^{\prime}$ at $x=\frac{1}{2}$ is equal to :
(1) $9 e^{\pi / 6}$
(2) $3 e^{\pi / 6}$
(3) $3 e^{\pi / 2}$
(4) $9 e^{\pi / 2}$

Ans. (4)
15. The integral $\int_{1 / 4}^{3 / 4} \cos \left(2 \cot ^{-1} \sqrt{\frac{1-\mathrm{x}}{1+\mathrm{x}}}\right) \mathrm{dx}$ is equal to:
(1) $-1 / 2$
(2) $1 / 4$
(3) $1 / 2$
(4) $-1 / 4$

Ans. (4)
16. Let $\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}$,be an infinite G.P. If $\sum_{n=0}^{\infty} \operatorname{ar}^{n}=57$ and $\sum_{n=0}^{\infty} a^{3} r^{3 n}=9747$, then $a+18 r$ is equal to :
(1) 27
(2) 46
(3) 38
(4) 31

Ans. (4)
17. If an unbiased dice is rolled thrice, then the probability of getting a greater number in the $i^{\text {th }}$ roll than the number obtained in the $(i-1)^{\text {th }}$ roll, $\mathrm{i}=2,3$, is equal to :
(1) $3 / 54$
(2) $2 / 54$
(3) $5 / 54$
(4) $1 / 54$

Ans. (3)
18. The value of the integral $\int_{-1}^{2} \log _{e}\left(x+\sqrt{x^{2}+1}\right) d x$ is :
(1) $\sqrt{5}-\sqrt{2}+\log _{\mathrm{e}}\left(\frac{9+4 \sqrt{5}}{1+\sqrt{2}}\right)$
(2) $\sqrt{2}-\sqrt{5}+\log _{\mathrm{e}}\left(\frac{9+4 \sqrt{5}}{1+\sqrt{2}}\right)$
(3) $\sqrt{5}-\sqrt{2}+\log _{\mathrm{e}}\left(\frac{7+4 \sqrt{5}}{1+\sqrt{2}}\right)$
(4) $\sqrt{2}-\sqrt{5}+\log _{\mathrm{e}}\left(\frac{7+4 \sqrt{5}}{1+\sqrt{2}}\right)$

Ans. (2)
19. Let $\alpha, \beta ; \alpha>\beta$, be the roots of the equation $x^{2}-\sqrt{2} x-\sqrt{3}=0$. Let $P_{n}=\alpha^{n}-\beta^{n}, n \in N$. Then $(11 \sqrt{3}-10 \sqrt{2}) \mathrm{P}_{10}+(11 \sqrt{2}+10) \mathrm{P}_{11}-11 \mathrm{P}_{12}$ is equal to :
(1) $10 \sqrt{2} \mathrm{P}_{9}$
(2) $10 \sqrt{3} \mathrm{P}_{9}$
(3) $11 \sqrt{2} \mathrm{P}_{9}$
(4) $11 \sqrt{3} \mathrm{P}_{9}$
20. Let $\vec{a}=2 \hat{i}+\alpha \hat{j}+\hat{k}, \quad \vec{b}=-\hat{i}+\hat{k}, \quad \vec{c}=\beta \hat{j}-\hat{k}$, where α and β are integers and $\alpha \beta=-6$. Let the values of the ordered pair (α, β) for which the area of the parallelogram of diagonals $\vec{a}+\vec{b}$ and $\vec{b}+\vec{c}$
is $\frac{\sqrt{21}}{2}$, be $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$.
Then $\alpha_{1}^{2}+\beta_{1}^{2}-\alpha_{2} \beta_{2}$ is equal to
(1) 17
(2) 24
(3) 21
(4) 19

Ans. (4)

SECTION-B

21. Consider the circle $C: x^{2}+y^{2}=4$ and the parabola $P: y^{2}=8 x$. If the set of all values of α, for which three chords of the circle C on three distinct lines passing through the point $(\alpha, 0)$ are bisected by the parabola P is the interval (p, q), then $(2 q-p)^{2}$ is equal to \qquad .
Ans. (80)
22. Let the set of all values of p, for which
$f(x)=\left(p^{2}-6 p+8\right)\left(\sin ^{2} 2 x-\cos ^{2} 2 x\right)+2(2-p) x+7$ does not have any critical point, be the interval (a, b). Then $16 a b$ is equal to \qquad .
Ans. (252)
23. For a differentiable function $\mathrm{f}: I R \rightarrow I R$, suppose $f^{\prime}(\mathrm{x})=3 f(\mathrm{x})+\alpha$, where $\alpha \in \mathrm{IR}, f(0)=1$ and $\lim _{x \rightarrow-\infty} f(x)=7$. Then $9 f\left(-\log _{e} 3\right)$ is equal to \qquad .

Ans. (61)
24. The number of integers, between 100 and 1000 having the sum of their digits equals to 14 , is
\qquad .
Ans. (70)
25. Let $A=\{(x, y): 2 x+3 y=23, x, y \in N\}$ and $B=\{x:(x, y) \in A\}$. Then the number of one-one functions from A to B is equal to \qquad -.
Ans. (24)
26. Let A, B and C be three points on the parabola $y^{2}=6 x$ and let the line segment $A B$ meet the line L through C parallel to the x-axis at the point D. Let M and N respectively be the feet of the perpendiculars from A and B on L.
Then $\left(\frac{A M \cdot B N}{C D}\right)^{2}$ is equal to \qquad .
Ans. (36)
27. The square of the distance of the image of the point $(6,1,5)$ in the line $\frac{x-1}{3}=\frac{y}{2}=\frac{z-2}{4}$, from the origin is \qquad .
Ans. (62)
28. If $\left(\frac{1}{\alpha+1}+\frac{1}{\alpha+2}+\ldots .+\frac{1}{\alpha+1012}\right)$
$-\left(\frac{1}{2 \cdot 1}+\frac{1}{4 \cdot 3}+\frac{1}{6 \cdot 5}+\ldots .+\frac{1}{2024 \cdot 2023}\right)$
$=\frac{1}{2024}$, then α is equal to-
Ans. (1011)
29. Let the inverse trigonometric functions take principal values. The number of real solutions of the equation $2 \sin ^{-1} x+3 \cos ^{-1} x=\frac{2 \pi}{5}$, is \qquad -.

Ans. (0)
30. Consider the matrices : $\mathrm{A}=\left[\begin{array}{cc}2 & -5 \\ 3 & \mathrm{~m}\end{array}\right], \mathrm{B}=\left[\begin{array}{c}20 \\ \mathrm{~m}\end{array}\right]$ and $X=\left[\begin{array}{l}x \\ y\end{array}\right]$. Let the set of all m, for which the system of equations $\mathrm{AX}=\mathrm{B}$ has a negative solution (i.e., $x<0$ and $y<0$), be the interval (a, b).

Then $8 \int^{\mathrm{b}}|\mathrm{A}| \mathrm{dm}$ is equal to \qquad .

Ans. (450)

Are you targeting JEE 2025 ?

Ace it with ALLEN's Leader Course

Online Program 18 APRIL'24

Offline Program) 24 APRIL'24

ALLEET
Get The Latest

IIT-JJE Special Books

 at Your Door Steps...!!JOIN THE JOURNEY OF LEARNING with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's |JEE-Adv. PYQ's

Available in HINDI \& ENGLISH

