FINAL JEE-MAIN EXAMINATION - APRIL, 2024

6.

7.

8.

(Held On Tuesday 09th April, 2024)

TIME: 3:00 PM to 6:00 PM

MATHEMATICS

SECTION-A

1.
$$\lim_{x \to 0} \frac{e - (1 + 2x)^{\frac{1}{2x}}}{x}$$
 is equal to :

(2) $\frac{-2}{e}$ (1) e (4) $e - e^2$ (3)0

Ans. (1)

- 2. Consider the line L passing through the points (1, 2, 3) and (2, 3, 5). The distance of the point
 - $\left(\frac{11}{3}, \frac{11}{3}, \frac{19}{3}\right)$ from the line L along the line

3x - 11	3y - 11	$=\frac{3z-19}{2}$ is equal	al to ·
2	1	2 is equa	ai 10 .
(1) 3		(2) 5	
(3) 4		(4) 6	

Ans. (1)

3. Let
$$\int_{0}^{x} \sqrt{1 - (y'(t))^2} dt = \int_{0}^{x} y(t) dt, 0 \le x \le 3, y \ge 0,$$

- y(0) = 0. Then at x = 2, y'' + y + 1 is equal to : (1) 1(2) 2
- (3) $\sqrt{2}$ (4) 1/2
- Ans. (1)

4. Let z be a complex number such that the real part of $\frac{z-2i}{z+2i}$ is zero. Then, the maximum value of

z - (6+8i) is equal to :	
---------------------------	--

(3) 10(4) 8

Ans. (1)

- **TEST PAPER WITH ANSWER**
- The area (in square units) of the region enclosed by 5. the ellipse $x^2 + 3y^2 = 18$ in the first quadrant below the line y = x is :

(1)
$$\sqrt{3}\pi + \frac{3}{4}$$
 (2) $\sqrt{3}\pi$
(3) $\sqrt{3}\pi - \frac{3}{4}$ (4) $\sqrt{3}\pi + 1$
Ans. (2)

Let the foci of a hyperbola H coincide with the foci of the ellipse E : $\frac{(x-1)^2}{100} + \frac{(y-1)^2}{75} = 1$ and the eccentricity of the hyperbola H be the reciprocal of the eccentricity of the ellipse E. If the length of the transverse axis of H is α and the length of its conjugate axis is β , then $3\alpha^2 + 2\beta^2$ is equal to :

Two vertices of a triangle ABC are A(3, -1) and B (-2, 3), and its orthocentre is P(1, 1). If the coordinates of the point C are (α, β) and the centre of the circle circumscribing the triangle PAB is (h, k), then the value of $(\alpha + \beta) + 2$ (h + k) equals : (1) 51(2) 81

(3)5(4) 15

Ans. (3)

If the variance of the frequency distribution is 160, then the value of $c \in N$ is

Х	с	2c	3c	4c	5c	6c
f	2	1	1	1	1	1
5						

(1) 5	(2) 8
(3) 7	(4) 6

Ans. (3)

6

Final JEE-Main Exam April, 2024/09-04-2024/Evening

9. Let the range of the function

$$f(x) = \frac{1}{2 + \sin 3x + \cos 3x}, x \in IR \text{ be } [a, b].$$

If α and β are respectively the A.M. and the G.M.

of a and b, then
$$\frac{\alpha}{\beta}$$
 is equal to :

(1)
$$\sqrt{2}$$
 (2) 2
(3) $\sqrt{\pi}$ (4) π

Ans. (1)

10. Between the following two statements :

Statement-I : Let $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} - \hat{k}$. Then the vector \vec{r} satisfying $\vec{a} \times \vec{r} = \vec{a} \times \vec{b}$ and $\vec{a} \cdot \vec{r} = 0$ is of magnitude $\sqrt{10}$.

Statement-II : In a triangle ABC, cos2A + cos2B

$$+\cos 2C \ge -\frac{3}{2}$$
.

(1) Both Statement-I and Statement-II are incorrect

(2) Statement-I is incorrect but Statement-II is correct

(3) Both Statement-I and Statement-II are correct(4) Statement-I is correct but Statement-II is incorrect

Ans. (2)

11.
$$\lim_{x \to \frac{x}{2}} \left(\frac{\int_{x^{3}}^{(\pi/2)^{3}} (\sin(2t^{1/3}) + \cos(t^{1/3})) dt}{(x - \frac{\pi}{2})^{2}} \right) \text{ is equal}$$

to:
$$(1) \frac{9\pi^{2}}{8} \qquad (2) \frac{11\pi^{2}}{10}$$
$$(3) \frac{3\pi^{2}}{2} \qquad (4) \frac{5\pi^{2}}{9}$$

Ans. (1)

- 12. The sum of the coefficient of $x^{2/3}$ and $x^{-2/5}$ in the binomial expansion of $\left(x^{2/3} + \frac{1}{2}x^{-2/5}\right)^9$ is : (1) 21/4 (2) 69/16 (3) 63/16 (4) 19/4 Ans. (1)
- 13. Let $B = \begin{bmatrix} 1 & 3 \\ 1 & 5 \end{bmatrix}$ and A be a 2 × 2 matrix such that $AB^{-1} = A^{-1}$. If $BCB^{-1} = A$ and $C^4 + \alpha C^2 + \beta I = O$, then $2\beta - \alpha$ is equal to : (1) 16 (2) 2

14. If
$$\log_e y = 3 \sin^{-1} x$$
, then $(1 - x)^2 y'' - xy'$ at $x = \frac{1}{2}$

is equal to :
(1)
$$9e^{\pi/6}$$
 (2) $3e^{\pi/6}$
(3) $3e^{\pi/2}$ (4) $9e^{\pi/2}$

Ans. (4)

15. The integral $\int_{1/4}^{3/4} \cos\left(2\cot^{-1}\sqrt{\frac{1-x}{1+x}}\right) dx$ is equal

to:
(1)
$$-1/2$$
 (2) $1/4$
(3) $1/2$ (4) $-1/4$

Ans. (4)

16. Let a, ar, ar^2 ,be an infinite G.P. If $\sum_{n=0}^{\infty} ar^n = 57 \text{ and } \sum_{n=0}^{\infty} a^3 r^{3n} = 9747, \text{ then a} + 18r \text{ is}$ equal to : (1) 27 (2) 46

(4) 31

(3) 38 Ans. (4)

Final JEE-Main Exam April, 2024/09-04-2024/Evening

- 17. If an unbiased dice is rolled thrice, then the probability of getting a greater number in the ith roll than the number obtained in the (i-1)th roll, i = 2, 3, is equal to :

 (1) 3/54
 (2) 2/54
 (3) 5/54
 (4) 1/54

 Ans. (3)
- 18. The value of the integral $\int_{-1}^{2} \log_{e} \left(x + \sqrt{x^{2} + 1} \right) dx$

(1)
$$\sqrt{5} - \sqrt{2} + \log_{e} \left(\frac{9 + 4\sqrt{5}}{1 + \sqrt{2}} \right)$$

(2) $\sqrt{2} - \sqrt{5} + \log_{e} \left(\frac{9 + 4\sqrt{5}}{1 + \sqrt{2}} \right)$
(3) $\sqrt{5} - \sqrt{2} + \log_{e} \left(\frac{7 + 4\sqrt{5}}{1 + \sqrt{2}} \right)$
(4) $\sqrt{2} - \sqrt{5} + \log_{e} \left(\frac{7 + 4\sqrt{5}}{1 + \sqrt{2}} \right)$

Ans. (2)

19. Let α , β ; $\alpha > \beta$, be the roots of the equation $x^2 - \sqrt{2}x - \sqrt{3} = 0$. Let $P_n = \alpha^n - \beta^n$, $n \in N$. Then $(11\sqrt{3} - 10\sqrt{2}) P_{10} + (11\sqrt{2} + 10) P_{11} - 11P_{12}$ is equal to :

(1) $10\sqrt{2}P_9$

(2) $10\sqrt{3}P_9$

(3)
$$11\sqrt{2}P_9$$

(4) $11\sqrt{3}P_9$

Ans. (2)

20. Let $\vec{a} = 2\hat{i} + \alpha \hat{j} + \hat{k}$, $\vec{b} = -\hat{i} + \hat{k}$, $\vec{c} = \beta \hat{j} - \hat{k}$, where α and β are integers and $\alpha\beta = -6$. Let the values of the ordered pair (α , β) for which the area of the parallelogram of diagonals $\vec{a} + \vec{b}$ and $\vec{b} + \vec{c}$

is
$$\frac{\sqrt{21}}{2}$$
, be (α_1, β_1) and (α_2, β_2) .
Then $\alpha^2 + \beta^2 - \alpha_1 \beta_1$ is equal to

Then $\alpha_1^2 + \beta_1^2 - \alpha_2\beta_2$ is equal to

Ans. (4)

SECTION-B

21. Consider the circle $C : x^2 + y^2 = 4$ and the parabola $P : y^2 = 8x$. If the set of all values of α , for which three chords of the circle C on three distinct lines passing through the point (α , 0) are bisected by the parabola P is the interval (p, q), then $(2q - p)^2$ is equal to _____.

Ans. (80)

- 22. Let the set of all values of p, for which $f(x) = (p^2 - 6p + 8) (sin^2 2x - cos^2 2x) + 2(2 - p)x + 7$ does not have any critical point, be the interval (a, b). Then 16ab is equal to _____. Ans. (252)
- 23. For a differentiable function $f: IR \to IR$, suppose $f'(x) = 3f(x) + \alpha$, where $\alpha \in IR$, f(0) = 1 and $\lim_{x \to -\infty} f(x) = 7$. Then 9f (-log_e3) is equal to_____.

Ans. (61)

24. The number of integers, between 100 and 1000 having the sum of their digits equals to 14, is

Ans. (70)

25. Let A = {(x, y) : 2x + 3y = 23, x, y ∈ N} and B = {x : (x, y) ∈ A}. Then the number of one-one functions from A to B is equal to _____.
Ans. (24)

Final JEE-Main Exam April, 2024/09-04-2024/Evening

- ALLEN CAREER INSTITUTE KOTA (RAJASTHAN)
- 26. Let A, B and C be three points on the parabola $y^2 = 6x$ and let the line segment AB meet the line L through C parallel to the x-axis at the point D. Let M and N respectively be the feet of the perpendiculars from A and B on L.

Then $\left(\frac{AM \cdot BN}{CD}\right)^2$ is equal to _____.

27. The square of the distance of the image of the point

(6, 1, 5) in the line
$$\frac{x-1}{3} = \frac{y}{2} = \frac{z-2}{4}$$
, from the origin is _____.
Ans. (62)

28. If
$$\left(\frac{1}{\alpha+1} + \frac{1}{\alpha+2} + \dots + \frac{1}{\alpha+1012}\right)$$

- $\left(\frac{1}{2\cdot 1} + \frac{1}{4\cdot 3} + \frac{1}{6\cdot 5} + \dots + \frac{1}{2024\cdot 2023}\right)$
= $\frac{1}{2024}$, then α is equal to-

Ans. (1011)

29. Let the inverse trigonometric functions take principal values. The number of real solutions of the equation $2 \sin^{-1} x + 3 \cos^{-1} x = \frac{2\pi}{5}$, is _____. Ans. (0)

30. Consider the matrices : A = $\begin{bmatrix} 2 & -5 \\ 3 & m \end{bmatrix}$, B = $\begin{bmatrix} 20 \\ m \end{bmatrix}$

and $X = \begin{bmatrix} x \\ y \end{bmatrix}$. Let the set of all m, for which the system of equations AX = B has a negative solution (i.e., x < 0 and y < 0), be the interval (a, b).

Then
$$8\int_{a}^{b} |\mathbf{A}| d\mathbf{m}$$
 is equal to _____.

Ans. (450)

Are you targeting JEE 2025?

Ace it with **ALLEN's** Leader Course

Online Program 18 APRIL '24

Offline Program 24 APRIL '24

ALLEN

The

Get The Latest **IT-JEE Special Books** at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING

with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's | JEE-Adv. PYQ's

Available in HINDI & ENGLISH

