FINAL JEE-MAIN EXAMINATION - APRIL, 2024
(Held On Monday 08 ${ }^{\text {th }}$ April, 2024)
TIME : 9:00 AM to 12: 00 NOON

PHYSICS

SECTION-A

31. Three bodies A, B and C have equal kinetic energies and their masses are $400 \mathrm{~g}, 1.2 \mathrm{~kg}$ and 1.6 kg respectively. The ratio of their linear momenta is :
(1) $1: \sqrt{3}: 2$
(2) $1: \sqrt{3}: \sqrt{2}$
(3) $\sqrt{2}: \sqrt{3}: 1$
(4) $\sqrt{3}: \sqrt{2}: 1$

Ans. (1)
32. Average force exerted on a non-reflecting surface at normal incidence is $2.4 \times 10^{-4} \mathrm{~N}$. If $360 \mathrm{~W} / \mathrm{cm}^{2}$ is the light energy flux during span of 1 hour 30 minutes. Then the area of the surface is:
(1) $0.2 \mathrm{~m}^{2}$
(2) $0.02 \mathrm{~m}^{2}$
(3) $20 \mathrm{~m}^{2}$
(4) $0.1 \mathrm{~m}^{2}$

Ans. (2)
33. A proton and an electron are associated with same de-Broglie wavelength. The ratio of their kinetic energies is:
(Assume $\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}, \mathrm{~m}_{\mathrm{e}}=9.0 \times 10^{-31} \mathrm{~kg}$ and $\mathrm{m}_{\mathrm{p}}=1836$ times m_{e})
(1) $1: 1836$
(2) $1: \frac{1}{1836}$
(3) $1: \frac{1}{\sqrt{1836}}$
(4) $1: \sqrt{1836}$

Ans. (1)
34. A mixture of one mole of monoatomic gas and one mole of a diatomic gas (rigid) are kept at room temperature $\left(27^{\circ} \mathrm{C}\right)$. The ratio of specific heat of gases at constant volume respectively is:
(1) $\frac{7}{5}$
(2) $\frac{3}{2}$
(3) $\frac{3}{5}$
(4) $\frac{5}{3}$

Ans. (3)

TEST PAPER WITH ANSWER

35. In an expression $\mathrm{a} \times 10^{\mathrm{b}}$:
(1) a is order of magnitude for $\mathrm{b} \leq 5$
(2) b is order of magnitude for $\mathrm{a} \leq 5$
(3) b is order of magnitude for $5<a \leq 10$
(4) b is order of magnitude for $a \geq 5$

Ans. (2)
36. In the given circuit, the terminal potential difference of the cell is :

(1) 2 V
(2) 4 V
(3) 1.5 V
(4) 3 V

Ans. (1)
37. Binding energy of a certain nucleus is $18 \times 10^{8} \mathrm{~J}$. How much is the difference between total mass of all the nucleons and nuclear mass of the given nucleus:
(1) $0.2 \mu \mathrm{~g}$
(2) $20 \mu \mathrm{~g}$
(3) $2 \mu \mathrm{~g}$
(4) $10 \mu \mathrm{~g}$

Ans. (2)
38. Paramagnetic substances:
A. align themselves along the directions of external magnetic field.
B. attract strongly towards external magnetic field.
C. has susceptibility little more than zero.
D. move from a region of strong magnetic field to weak magnetic field.

Choose the most appropriate answer from the options given below:
(1) A, B, C, D
(2) B, D Only
(3) A, B, C Only
(4) A, C Only

Ans. (4)
39. A clock has $75 \mathrm{~cm}, 60 \mathrm{~cm}$ long second hand and minute hand respectively. In 30 minutes duration the tip of second hand will travel x distance more than the tip of minute hand. The value of x in meter is nearly (Take $\pi=3.14$) :
(1) 139.4
(2) 140.5
(3) 220.0
(4) 118.9

Ans. (1)
40. Young's modulus is determined by the equation given by $Y=49000 \frac{\mathrm{~m}}{\ell} \frac{\text { dyne }}{\mathrm{cm}^{2}}$ where M is the mass and ℓ is the extension of wire used in the experiment. Now error in Young modules(Y) is estimated by taking data from $\mathrm{M}-\ell$ plot in graph paper. The smallest scale divisions are 5 g and 0.02 cm along load axis and extension axis respectively. If the value of M and ℓ are 500 g and 2 cm respectively then percentage error of Y is :
(1) 0.2%
(2) 0.02%
(3) 2%
(4) 0.5%

Ans. (3)
41. Two different adiabatic paths for the same gas intersect two isothermal curves as shown in P-V diagram. The relation between the ratio $\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{V}_{\mathrm{d}}}$ and the $\operatorname{ratio} \frac{V_{b}}{V_{c}}$ is:

(1) $\frac{V_{a}}{V_{d}}=\left(\frac{V_{b}}{V_{c}}\right)^{-1}$
(2) $\frac{V_{a}}{V_{d}} \neq \frac{V_{b}}{V_{c}}$
(3) $\frac{V_{a}}{V_{d}}=\frac{V_{b}}{V_{c}}$
(4) $\frac{V_{a}}{V_{d}}=\left(\frac{V_{b}}{V_{c}}\right)^{2}$

Ans. (3)
42. Two planets A and B having masses m_{1} and m_{2} move around the sun in circular orbits of r_{1} and r_{2} radii respectively. If angular momentum of A is L and that of B is $3 L$, the ratio of time period $\left(\frac{T_{A}}{T_{B}}\right)$ is:
(1) $\left(\frac{r_{2}}{r_{1}}\right)^{\frac{3}{2}}$
(2) $\left(\frac{r_{1}}{r_{2}}\right)^{3}$
(3) $\frac{1}{27}\left(\frac{m_{2}}{m_{1}}\right)^{3}$
(4) $27\left(\frac{m_{1}}{m_{2}}\right)^{3}$

Ans. (3)
43. A LCR circuit is at resonance for a capacitor C , inductance L and resistance R. Now the value of resistance is halved keeping all other parameters same. The current amplitude at resonance will be now:
(1) Zero
(2) double
(3) same
(4) halved

Ans. (2)
44. The output Y of following circuit for given inputs is :

(1) $A \cdot B(A+B)$
(2) A • B
(3) 0
(4) $\overline{\mathrm{A}} \cdot \mathrm{B}$

Ans. (3)

Download the new ALLEN app \& enroll for Online Programs
45. Two charged conducting spheres of radii a and b are connected to each other by a conducting wire. The ratio of charges of the two spheres respectively is:
(1) $\sqrt{\mathrm{ab}}$
(2) ab
(3) $\frac{a}{b}$
(4) $\frac{b}{a}$

Ans. (3)
46. Correct Bernoulli's equation is (symbols have their usual meaning) :
(1) $\mathrm{P}+\mathrm{mgh}+\frac{1}{2} \mathrm{mv}^{2}=\mathrm{constant}$
(2) $P+\rho g h+\frac{1}{2} \rho v^{2}=$ constant
(3) $P+\rho g h+\rho v^{2}=$ constant
(4) $\mathrm{P}+\frac{1}{2} \rho g h+\frac{1}{2} \rho v^{2}=$ constant

Ans. (2)
47. A player caught a cricket ball of mass 150 g moving at a speed of $20 \mathrm{~m} / \mathrm{s}$. If the catching process is completed in 0.1 s , the magnitude of force exerted by the ball on the hand of the player is:
(1) 150 N
(2) 3 N
(3) 30 N
(4) 300 N

Ans. (3)
48. A stationary particle breaks into two parts of masses m_{A} and m_{B} which move with velocities v_{A} and v_{B} respectively. The ratio of their kinetic energies $\left(K_{B}: K_{A}\right)$ is :
(1) $\mathrm{V}_{\mathrm{B}}: \mathrm{v}_{\mathrm{A}}$
(2) $m_{B}: m_{A}$
(3) $m_{B} v_{B}: m_{A} v_{A}$
(4) $1: 1$

Ans. (1)
49. Critical angle of incidence for a pair of optical media is 45°. The refractive indices of first and second media are in the ratio:
(1) $\sqrt{2}: 1$
(2) $1: 2$
(3) $1: \sqrt{2}$
(4) $2: 1$

Ans. (1)
50. The diameter of a sphere is measured using a vernier caliper whose 9 divisions of main scale are equal to 10 divisions of vernier scale. The shortest division on the main scale is equal to 1 mm . The main scale reading is 2 cm and second division of vernier scale coincides with a division on main scale. If mass of the sphere is 8.635 g , the density of the sphere is:
(1) $2.5 \mathrm{~g} / \mathrm{cm}^{3}$
(2) $1.7 \mathrm{~g} / \mathrm{cm}^{3}$
(3) $2.2 \mathrm{~g} / \mathrm{cm}^{3}$
(4) $2.0 \mathrm{~g} / \mathrm{cm}^{3}$

Ans. (4)

SECTION-B

51. A uniform thin metal plate of mass 10 kg with dimensions is shown. The ratio of x and y coordinates of center of mass of plate in $\frac{n}{9}$.The value of n is \qquad .

Ans. (15)
52. An electron with kinetic energy 5 eV enters a region of uniform magnetic field of $3 \mu \mathrm{~T}$ perpendicular to its direction. An electric field E is applied perpendicular to the direction of velocity and magnetic field. The value of E , so that electron moves along the same path, is \qquad NC^{-1}.
(Given, mass of electron $=9 \times 10^{-31} \mathrm{~kg}$, electric charge $=1.6 \times 10^{-19} \mathrm{C}$)

Ans. (4)
53. A square loop PQRS having 10 turns, area $3.6 \times$ $10^{-3} \mathrm{~m}^{2}$ and resistance 100Ω is slowly and uniformly being pulled out of a uniform magnetic field of magnitude $\mathrm{B}=0.5 \mathrm{~T}$ as shown. Work done in pulling the loop out of the field in 1.0 s is
\qquad $\times 10^{-6} \mathrm{~J}$.

Ans. (3)
54. Resistance of a wire at $0^{\circ} \mathrm{C}, 100{ }^{\circ} \mathrm{C}$ and $\mathrm{t}^{\circ} \mathrm{C}$ is found to be $10 \Omega, 10.2 \Omega$ and 10.95Ω respectively. The temperature t in Kelvin scale is \qquad .

Ans. (748)
55. An electric field, $\overrightarrow{\mathrm{E}}=\frac{2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+8 \hat{\mathrm{k}}}{\sqrt{6}}$ passes through the surface of $4 \mathrm{~m}^{2}$ area having unit vector $\hat{\mathrm{n}}=\left(\frac{2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{6}}\right)$. The electric flux for that surface is \qquad V m.

Ans. (12)
56. A liquid column of height 0.04 cm balances excess pressure of soap bubble of certain radius. If density of liquid is $8 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ and surface tension of soap solution is $0.28 \mathrm{Nm}^{-1}$, then diameter of the soap bubble is \qquad cm.
(if $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
Ans. (7)
57. A closed and an open organ pipe have same lengths. If the ratio of frequencies of their seventh overtones is $\left(\frac{a-1}{a}\right)$ then the value of a is \qquad .

Ans. (16)
58. Three vectors $\overrightarrow{\mathrm{OP}}, \overrightarrow{\mathrm{OQ}}$ and $\overrightarrow{\mathrm{OR}}$ each of magnitude A are acting as shown in figure. The resultant of the three vectors is $A \sqrt{x}$. The value of x is \qquad .

Ans. (3)
59. A parallel beam of monochromatic light of wavelength 600 nm passes through single slit of 0.4 mm width. Angular divergence corresponding to second order minima would be \qquad $\times 10^{-3} \mathrm{rad}$.

Ans. (6)
60. In an alpha particle scattering experiment distance of closest approach for the α particle is $4.5 \times 10^{-14} \mathrm{~m}$. If target nucleus has atomic number 80 , then maximum velocity of α-particle is \qquad $\times 10^{5}$ m / s approximately.
$\left(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9}\right.$ SI unit, mass of α particle

$$
\left.=6.72 \times 10^{-27} \mathrm{~kg}\right)
$$

Ans. (156)

Are you targeting JEE 2025 ?

Ace it with A내N's Leader Course

Online Program) 18 APRIL '24

Offiline Program ${ }^{24}$ APRIL '24

A노N
Get The Latest
IIT-JEE Special Books at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING
with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's |JEE-Adv. PYQ's

Available in HINDI \& ENGLISH

