FINAL JEE-MAIN EXAMINATION - APRIL, 2024

(Held On Saturday 06 ${ }^{\text {th }}$ April, 2024)

MATHEMATICS

SECTION-A

1. If $f(x)=\left\{\begin{array}{cl}x^{3} \sin \left(\frac{1}{x}\right) & , x \neq 0 \\ 0, & x=0\end{array}\right.$, then
(1) $f^{\prime \prime}(0)=1$
(2) $\mathrm{ff}^{\prime}\left(\frac{2}{\pi}\right)=\frac{24-\pi^{2}}{2 \pi}$
(3) f" $\left(\frac{2}{\pi}\right)=\frac{12-\pi^{2}}{2 \pi}$
(4) $\mathrm{f}^{\prime \prime}(0)=0$

Ans. (2)
2. If $\mathrm{A}(3,1,-1), \mathrm{B}\left(\frac{5}{3}, \frac{7}{3}, \frac{1}{3}\right), \mathrm{C}(2,2,1)$ and

D $\left(\frac{10}{3}, \frac{2}{3}, \frac{-1}{3}\right)$ are the vertices of a quadrilateral ABCD , then its area is
(1) $\frac{4 \sqrt{2}}{3}$
(2) $\frac{5 \sqrt{2}}{3}$
(3) $2 \sqrt{2}$
(4) $\frac{2 \sqrt{2}}{3}$

Ans. (1)
3. $\int_{0}^{\pi / 4} \frac{\cos ^{2} x \sin ^{2} x}{\left(\cos ^{3} x+\sin ^{3} x\right)^{2}} d x$ is equal to
(1) $1 / 12$
(2) $1 / 9$
(3) $1 / 6$
(4) $1 / 3$

Ans. (3)
4. The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On respectively, it was found that an observation by mistake was taken 8 instead of 12 . The correct standard deviation is
(1) $\sqrt{3.86}$
(2) 1.8
(3) $\sqrt{3.96}$
(4) 1.94

Ans. (3)

TIME : 9: 00 AM to 12: 00 NOON

TEST PAPER WITH ANSWER

5. The function $f(x)=\frac{x^{2}+2 x-15}{x^{2}-4 x+9}, x \in R$ is
(1) both one-one and onto.
(2) onto but not one-one.
(3) neither one-one nor onto.
(4) one-one but not onto.

NTA Ans. (3)
Ans. Bonus
6. Let $\mathrm{A}=\{\mathrm{n} \in[100,700] \cap \mathrm{N}: \mathrm{n}$ is neither a multiple of 3 nor a multiple of 4$\}$. Then the number of elements in A is
(1) 300
(2) 280
(3) 310
(4) 290

Ans. (1)
7. Let C be the circle of minimum area touching the parabola $y=6-x^{2}$ and the lines $y=\sqrt{3}|x|$. Then, which one of the following points lies on the circle C ?
(1) $(2,4)$
(2) $(1,2)$
(3) $(2,2)$
(4) $(1,1)$

Ans. (1)
8. For $\alpha, \beta \in \mathrm{R}$ and a natural number n , let $A_{r}=\left|\begin{array}{ccc}r & 1 & \frac{n^{2}}{2}+\alpha \\ 2 r & 2 & n^{2}-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$. Then $2 A_{10}-A_{8}$ is
(1) $4 \alpha+2 \beta$
(2) $2 \alpha+4 \beta$
(3) 2 n
(4) 0

Ans. (1)
9. The shortest distance between the lines $\frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5}$ and $\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}$ is
(1) $6 \sqrt{3}$
(2) $4 \sqrt{3}$
(3) $5 \sqrt{3}$
(4) $8 \sqrt{3}$

Ans. (2)
10. A company has two plants A and B to manufacture motorcycles. 60% motorcycles are manufactured at plant A and the remaining are manufactured at plant B. 80% of the motorcycles manufactured at plant A are rated of the standard quality, while 90% of the motorcycles manufactured at plant B are rated of the standard quality. A motorcycle picked up randomly from the total production is found to be of the standard quality. If p is the probability that it was manufactured at plant B, then 126 p is
(1) 54
(2) 64
(3) 66
(4) 56

Ans. (1)
11. Let, α, β be the distinct roots of the equation

$$
x^{2}-\left(t^{2}-5 t+6\right) x+1=0, t \in R \text { and } a_{n}=\alpha^{n}+\beta^{n}
$$

Then the minimum value of $\frac{a_{2023}+a_{2025}}{a_{2024}}$ is
(1) $1 / 4$
(2) $-1 / 2$
(3) $-1 / 4$
(4) $1 / 2$

Ans. (3)
12. Let the relations R_{1} and R_{2} on the set
$X=\{1,2,3, \ldots, 20\}$ be given by
$\mathrm{R}_{1}=\{(\mathrm{x}, \mathrm{y}): 2 \mathrm{x}-3 \mathrm{y}=2\}$ and
$R_{2}=\{(x, y):-5 x+4 y=0\}$. If M and N be the minimum number of elements required to be added in R_{1} and R_{2}, respectively, in order to make the relations symmetric, then $\mathrm{M}+\mathrm{N}$ equals
(1) 8
(2) 16
(3) 12
(4) 10

Ans. (4)
13. Let a variable line of slope $m>0$ passing through the point $(4,-9)$ intersect the coordinate axes at the points A and B. the minimum value of the sum of the distances of A and B from the origin is
(1) 25
(2) 30
(3) 15
(4) 10

Ans. (1)
14. The interval in which the function $f(x)=x^{x}, x>0$, is strictly increasing is
(1) $\left(0, \frac{1}{\mathrm{e}}\right]$
(2) $\left[\frac{1}{\mathrm{e}^{2}}, 1\right)$
(3) $(0, \infty)$
(4) $\left[\frac{1}{\mathrm{e}}, \infty\right)$

Ans. (4)
15. A circle in inscribed in an equilateral triangle of side of length 12 . If the area and perimeter of any square inscribed in this circle are m and n, respectively, then $m+n^{2}$ is equal to
(1) 396
(2) 408
(3) 312
(4) 414

Ans. (2)
16. The number of triangles whose vertices are at the vertices of a regular octagon but none of whose sides is a side of the octagon is
(1) 24
(2) 56
(3) 16
(4) 48

Ans. (3)
17. Let $\mathrm{y}=\mathrm{y}(\mathrm{x})$ be the solution of the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x}, y(1)=0$. Then $y(0)$ is
(1) $\frac{1}{4}\left(\mathrm{e}^{\pi / 2}-1\right)$
(2) $\frac{1}{2}\left(1-\mathrm{e}^{\pi / 2}\right)$
(3) $\frac{1}{4}\left(1-\mathrm{e}^{\pi / 2}\right)$
(4) $\frac{1}{2}\left(\mathrm{e}^{\pi / 2}-1\right)$

Ans. (2)
18. Let $y=y(x)$ be the solution of the differential equation $\left(2 x \log _{e} x\right) \frac{d y}{d x}+2 y=\frac{3}{x} \log _{e} x, x>0$ and $y\left(e^{-1}\right)=0$. Then, $y(e)$ is equal to
(1) $-\frac{3}{2 e}$
(2) $-\frac{2}{3 \mathrm{e}}$
(3) $-\frac{3}{\mathrm{e}}$
(4) $-\frac{2}{e}$

Ans. (3)
19. Let the area of the region enclosed by the curves $y=3 x, 2 y=27-3 x$ and $y=3 x-x \sqrt{x}$ be A. Then 10 A is equal to
(1) 184
(2) 154
(3) 172
(4) 162

Ans. (4)
20. Let $\mathrm{f}:(-\infty, \infty)-\{0\} \rightarrow \mathrm{R}$ be a differentiable function such that $f^{\prime}(1)=\lim _{a \rightarrow \infty} a^{2} f\left(\frac{1}{a}\right)$.

Then $\lim _{a \rightarrow \infty} \frac{a(a+1)}{2} \tan ^{-1}\left(\frac{1}{a}\right)+a^{2}-2 \log _{e} a$ is equal to
(1) $\frac{3}{2}+\frac{\pi}{4}$
(2) $\frac{3}{8}+\frac{\pi}{4}$
(3) $\frac{5}{2}+\frac{\pi}{8}$
(4) $\frac{3}{4}+\frac{\pi}{8}$

Ans. (3)

SECTION-B

21. Let $\alpha \beta \gamma=45 ; \alpha, \beta, \gamma \in \mathrm{R}$. If $\mathrm{x}(\alpha, 1,2)+\mathrm{y}(1, \beta, 2)$ $+z(2,3, \gamma)=(0,0,0)$ for some $x, y, z \in R, x y z \neq$ 0 , then $6 \alpha+4 \beta+\gamma$ is equal to \qquad
Ans. (55)
22. Let a conic C pass through the point $(4,-2)$ and $P(x, y), x \geq 3$, be any point on C. Let the slope of the line touching the conic C only at a single point P be half the slope of the line joining the points P and $(3,-5)$. If the focal distance of the point $(7,1)$ on C is d , then 12 d equals \qquad .

Ans. (75)
23. Let $r_{k}=\frac{\int_{0}^{1}\left(1-x^{7}\right)^{k} d x}{\int_{0}^{1}\left(1-x^{7}\right)^{k+1} d x}, k \in N$. Then the value of $\sum_{\mathrm{k}=1}^{10} \frac{1}{7\left(\mathrm{r}_{\mathrm{k}}-1\right)}$ is equal to \qquad -

Ans. (65)
24. Let $x_{1}, x_{2}, x_{3}, x_{4}$ be the solution of the equation
$4 x^{4}+8 x^{3}-17 x^{2}-12 x+9=0$ and
$\left(4+x_{1}^{2}\right)\left(4+x_{2}^{2}\right)\left(4+x_{3}^{2}\right)\left(4+x_{4}^{2}\right)=\frac{125}{16} m$.
Then the value of m is \qquad .

Ans. (221)
25. Let L_{1}, L_{2} be the lines passing through the point $\mathrm{P}(0,1)$ and touching the parabola
$9 x^{2}+12 x+18 y-14=0$. Let Q and R be the points on the lines L_{1} and L_{2} such that the $\triangle P Q R$ is an isosceles triangle with base QR . If the slopes of the lines $Q R$ are m_{1} and m_{2}. then $16\left(m_{1}^{2}+m_{2}^{2}\right)$ is equal to \qquad .

Ans. (68)

26. If the second, third and fourth terms in the expansion of $(x+y)^{\mathrm{n}}$ are 135, 30 and $\frac{10}{3}$, respectively, then $6\left(n^{3}+x^{2}+y\right)$ is equal to
\qquad .

Ans. (806)
27. Let the first term of a series be $\mathrm{T}_{1}=6$ and its $\mathrm{r}^{\text {th }}$ term $T_{r}=3 T_{r-1}+6^{r}, r=2,3, \ldots \ldots, n$. If the sum of the first n terms of this series is $\frac{1}{5}\left(\mathrm{n}^{2}-12 \mathrm{n}+39\right)$ $\left(4.6^{\mathrm{n}}-5.3^{\mathrm{n}}+1\right)$. Then n is equal to \qquad .

Ans. (6)
28. For $n \in N$, if $\cot ^{-1} 3+\cot ^{-1} 4+\cot ^{-1} 5+\cot ^{1} n=\frac{\pi}{4}$, then n is equal to \qquad .
Ans. (47)
29. Let P be the point $(10,-2,-1)$ and Q be the foot of the perpendicular drawn from the point $\mathrm{R}(1,7,6)$ on the line passing through the points $(2,-5,11)$ and $(-6,7,-5)$. Then the length of the line segment $P Q$ is equal to \qquad .

Ans. (13)
30. Let $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \vec{b}=3 \hat{i}+4 \hat{j}-5 \hat{k}$, and a vector $\overrightarrow{\mathrm{c}}$ be such that $\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}})+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}+8 \hat{\mathrm{j}}+13 \hat{\mathrm{k}}$. If $\vec{a} \cdot \vec{c}=13$, then $(24-\vec{b} \cdot \vec{c})$ is equal to \qquad .

Ans. (46)

Are you targeting JEE 2025 ?

Ace it with ALLEN's Leader Course

Online Program 18 APRIL'24

Offline Program) 24 APRIL'24

ALLEET
Get The Latest

IIT-JJE Special Books

 at Your Door Steps...!!JOIN THE JOURNEY OF LEARNING with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's |JEE-Adv. PYQ's

Available in HINDI \& ENGLISH

