CAREER INSTITUTE
KOTA (RAJASTHAN)
nati to mesean KOTA (RAJASTHAN) FINAL JEE-MAIN EXAMINATION - APRIL, 2024
(Held On Saturday 06 ${ }^{\text {th }}$ April, 2024)
TIME: 3:00 PM to 6:00 PM

MATHEMATICS

SECTION-A

1. Let ABC be an equilateral triangle. A new triangle is formed by joining the middle points of all sides of the triangle ABC and the same process is repeated infinitely many times. If P is the sum of perimeters and Q is be the sum of areas of all the triangles formed in this process, then:
(1) $P^{2}=36 \sqrt{3} Q$
(2) $P^{2}=6 \sqrt{3} Q$
(3) $P=36 \sqrt{3} Q^{2}$
(4) $P^{2}=72 \sqrt{3} Q$

Ans. (1)
2. Let $\mathrm{A}=\{1,2,3,4,5\}$. Let R be a relation on A defined by $x R y$ if and only if $4 x \leq 5 y$. Let m be the number of elements in R and n be the minimum number of elements from $A \times A$ that are required to be added to R to make it a symmetric relation. Then $\mathrm{m}+\mathrm{n}$ is equal to:
(1) 24
(2) 23
(3) 25
(4) 26

Ans. (3)
3. If three letters can be posted to any one of the 5 different addresses, then the probability that the three letters are posted to exactly two addresses is:
(1) $\frac{12}{25}$
(2) $\frac{18}{25}$
(3) $\frac{4}{25}$
(4) $\frac{6}{25}$

Ans. (1)
4. Suppose the solution of the differential equation $\frac{d y}{d x}=\frac{(2+\alpha) x-\beta y+2}{\beta x-2 \alpha y-(\beta \gamma-4 \alpha)} \quad$ represents a circle passing through origin. Then the radius of this circle is :
(1) $\sqrt{17}$
(2) $\frac{1}{2}$
(3) $\frac{\sqrt{17}}{2}$
(4) 2

Ans. (3)

TEST PAPER WITH ANSWER

5. If the locus of the point, whose distances from the point $(2,1)$ and $(1,3)$ are in the ratio $5: 4$, is $a x^{2}+b y^{2}+c x y+d x+e y+170=0$, then the value of $a^{2}+2 b+3 c+4 d+e$ is equal to:
(1) 5
(2) -27
(3) 37
(4) 437

Ans. (3)
6. $\lim _{n \rightarrow \infty} \frac{\left(1^{2}-1\right)(n-1)+\left(2^{2}-2\right)(n-2)+\ldots .+\left((n-1)^{2}-(n-1)\right) \cdot 1}{\left(1^{3}+2^{3}+\ldots .+n^{3}\right)-\left(1^{2}+2^{2}+\ldots .+n^{2}\right)}$ is equal to:
(1) $\frac{2}{3}$
(2) $\frac{1}{3}$
(3) $\frac{3}{4}$
(4) $\frac{1}{2}$

Ans. (2)
7. Let $0 \leq r \leq n$. If ${ }^{n+1} C_{r+1}:{ }^{n} C_{r}:{ }^{n-1} C_{r-1}=55: 35: 21$, then $2 n+5 r$ is equal to:
(1) 60
(2) 62
(3) 50
(4) 55

Ans. (3)
8. A software company sets up m number of computer systems to finish an assignment in 17 days. If 4 computer systems crashed on the start of the second day, 4 more computer systems crashed on the start of the third day and so on, then it took 8 more days to finish the assignment. The value of m is equal to :
(1) 125
(2) 150
(3) 180
(4) 160

Ans. (2)
9. If $\mathrm{z}_{1}, \mathrm{z}_{2}$ are two distinct complex number such that $\left|\frac{z_{1}-2 z_{2}}{\frac{1}{2}-z_{1} \bar{z}_{2}}\right|=2$, then
(1) either z_{1} lies on a circle of radius 1 or z_{2} lies on a circle of radius $\frac{1}{2}$
(2) either z_{1} lies on a circle of radius $\frac{1}{2}$ or z_{2} lies on a circle of radius 1 .
(3) z_{1} lies on a circle of radius $\frac{1}{2}$ and z_{2} lies on a circle of radius 1.
(4) both z_{1} and z_{2} lie on the same circle.

Ans. (1)
10. If the function $f(x)=\left(\frac{1}{x}\right)^{2 x} ; x>0$ attains the maximum value at $\mathrm{x}=\frac{1}{\mathrm{e}}$ then :
(1) $\mathrm{e}^{\pi}<\pi^{\mathrm{e}}$
(2) $\mathrm{e}^{2 \pi}<(2 \pi)^{\mathrm{e}}$
(3) $\mathrm{e}^{\pi}>\pi^{\mathrm{e}}$
(4) $(2 \mathrm{e})^{\pi}>\pi^{(2 e)}$

Ans. (3)
11. Let $\vec{a}=6 \hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$. If \vec{c} is a is vector such that $|\overrightarrow{\mathrm{c}}| \geq 6, \vec{a} . \overrightarrow{\mathrm{c}}=6|\overrightarrow{\mathrm{c}}|,|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 60°, then $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is equal to:
(1) $\frac{9}{2}(6-\sqrt{6})$
(2) $\frac{3}{2} \sqrt{3}$
(3) $\frac{3}{2} \sqrt{6}$
(4) $\frac{9}{2}(6+\sqrt{6})$

Ans. (4)
12. If all the words with or without meaning made using all the letters of the word "NAGPUR" are arranged as in a dictionary, then the word at $315^{\text {th }}$ position in this arrangement is :
(1) NRAGUP
(2) NRAGPU
(3) NRAPGU
(4) NRAPUG

Ans. (3)
13. Suppose for a differentiable function $h, h(0)=0$, $h(1)=1$ and $h^{\prime}(0)=h^{\prime}(1)=2$. If $g(x)=h\left(e^{x}\right) e^{h(x)}$, then $\mathrm{g}^{\prime}(0)$ is equal to:
(1) 5
(2) 3
(3) 8
(4) 4

Ans. (4)
14. Let $\mathrm{P}(\alpha, \beta, \gamma)$ be the image of the point $\mathrm{Q}(3,-3,1)$ in the line $\frac{x-0}{1}=\frac{y-3}{1}=\frac{z-1}{-1}$ and R be the point $(2,5,-1)$. If the area of the triangle PQR is λ and $\lambda^{2}=14 K$, then K is equal to:
(1) 36
(2) 72
(3) 18
(4) 81

Ans. (4)
15. If $P(6,1)$ be the orthocentre of the triangle whose vertices are $A(5,-2), B(8,3)$ and $C(h, k)$, then the point C lies on the circle.
(1) $x^{2}+y^{2}-65=0$
(2) $x^{2}+y^{2}-74=0$
(3) $x^{2}+y^{2}-61=0$
(4) $x^{2}+y^{2}-52=0$

Ans. (1)
16. Let $f(x)=\frac{1}{7-\sin 5 x}$ be a function defined on R. Then the range of the function $f(x)$ is equal to:
(1) $\left[\frac{1}{8}, \frac{1}{5}\right]$
(2) $\left[\frac{1}{7}, \frac{1}{6}\right]$
(3) $\left[\frac{1}{7}, \frac{1}{5}\right]$
(4) $\left[\frac{1}{8}, \frac{1}{6}\right]$

Ans. (4)
17. Let $\vec{a}=2 \hat{i}+\hat{j}-\hat{k}, \vec{b}=((\vec{a} \times(\hat{i}+\hat{j})) \times \hat{i}) \times \hat{i}$.

Then the square of the projection of \vec{a} on \vec{b} is:
(1) $\frac{1}{5}$
(2) 2
(3) $\frac{1}{3}$
(4) $\frac{2}{3}$

Ans. (2)
18. If the area of the region
$\left\{(x, y): \frac{a}{x^{2}} \leq y \leq \frac{1}{x}, 1 \leq x \leq 2,0<a<1\right\}$ is
$\left(\log _{\mathrm{e}} 2\right)-\frac{1}{7}$ then the value of $7 \mathrm{a}-3$ is equal to:
(1) 2
(2) 0
(3) -1
(4) 1

Ans. (3)
19. If $\int \frac{1}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x} d x=\frac{1}{12} \tan ^{-1}(3 \tan x)+$ constant, then the maximum value of $\operatorname{asin} x+b \cos x$, is :
(1) $\sqrt{40}$
(2) $\sqrt{39}$
(3) $\sqrt{42}$
(4) $\sqrt{41}$

Ans. (1)
20. If A is a square matrix of order 3 such that $\operatorname{det}(\mathrm{A})=3$ and
$\operatorname{det}\left(\operatorname{adj}\left(-4 \operatorname{adj}\left(-3 \operatorname{adj}\left(3 \operatorname{adj}\left((2 A)^{-1}\right)\right)\right)\right)\right)=2^{m} 3^{n}$, then $m+\mid 2 n$ is equal to:
(1) 3
(2) 2
(3) 4
(4) 6

Ans. (3)

SECTION-B

21. Let [t] denote the greatest integer less than or equal to t. Let $\mathrm{f}:[0, \infty) \rightarrow \mathrm{R}$ be a function defined by $f(x)=\left[\frac{x}{2}+3\right]-[\sqrt{x}]$. Let S be the set of all points in the interval $[0,8]$ at which f is not continuous. Then $\sum_{\mathrm{a} \in \mathrm{S}} \mathrm{a}$ is equal to \qquad .

Ans. (17)
22. The length of the latus rectum and directrices of a hyperbola with eccentricity e are 9 and $x= \pm \frac{4}{\sqrt{3}}$, respectively. Let the line $y-\sqrt{3} x+\sqrt{3}=0$ touch this hyperbola at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$. If m is the product of the focal distances of the point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$, then $4 \mathrm{e}^{2}+\mathrm{m}$ is equal to \qquad $-$
NTA Ans. (61)
23. If $S(x)=(1+x)+2(1+x)^{2}+3(1+x)^{3}+\ldots$. $+60(1+x)^{60}, x \neq 0$, and $(60)^{2} S(60)=a(b)^{b}+b$, where $a, b \in N$, then $(a+b)$ equal to \qquad
Ans. (3660)
24. Let [t] denote the largest integer less than or equal to t. If
$\int_{0}^{3}\left(\left[x^{2}\right]+\left[\frac{x^{2}}{2}\right]\right) d x=a+b \sqrt{2}-\sqrt{3}-\sqrt{5}+c \sqrt{6}-\sqrt{7}$,
where $a, b, c \in z$, then $a+b+c$ is equal to \qquad
Ans. (23)
25. From a lot of 12 items containing 3 defectives, a sample of 5 items is drawn at random. Let the random variable X denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If variance of X is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $n-m$ is equal to \qquad .

Ans. (71)
26. In a triangle $\mathrm{ABC}, \mathrm{BC}=7, \mathrm{AC}=8, \mathrm{AB}=\alpha \in \mathrm{N}$ and $\cos \mathrm{A}=\frac{2}{3}$. If $49 \cos (3 \mathrm{C})+42=\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $m+n$ is equal to \qquad
Ans. (39)
27. If the shortest distance between the lines $\frac{x-\lambda}{3}=\frac{y-2}{-1}=\frac{z-1}{1}$ and $\frac{x+2}{-3}=\frac{y+5}{2}=\frac{z-4}{4}$ is $\frac{44}{\sqrt{30}}$, then the largest possible value of $|\lambda|$ is equal to \qquad -

Ans. (43)
28. Let α, β be roots of $x^{2}+\sqrt{2} x-8=0$.

If $\mathrm{U}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}$, then $\frac{\mathrm{U}_{10}+\sqrt{12} \mathrm{U}_{9}}{2 \mathrm{U}_{8}}$
is equal to \qquad .
Ans. (4)
29. If the system of equations
$2 x+7 y+\lambda z=3$
$3 x+2 y+5 z=4$
$x+\mu y+32 z=-1$
has infinitely many solutions, then $(\lambda-\mu)$ is equal to \qquad :

Ans. (38)
30. If the solution $y(x)$ of the given differential equation $\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$ passes through the point $\left(\frac{\pi}{2}, 0\right)$, then the value of $\mathrm{e}^{\mathrm{y}\left(\frac{\pi}{6}\right)}$ is equal to \qquad .
Ans. (3)

Are you targeting JEE 2025 ?

Ace it with A내N's Leader Course

Online Program) 18 APRIL '24

Offiline Program ${ }^{24}$ APRIL '24

A노N
Get The Latest
IIT-JEE Special Books at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING
with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's |JEE-Adv. PYQ's

Available in HINDI \& ENGLISH

