FINAL JEE-MAIN EXAMINATION - APRIL, 2024

(Held On Friday 05 ${ }^{\text {th }}$ April, 2024)
TIME : 3:00 PM to 6:00 PM

MATHEMATICS

SECTION-A

1. Let $f:[-1,2] \rightarrow \mathrm{R}$ be given by $f(\mathrm{x})=2 \mathrm{x}^{2}+\mathrm{x}+\left[\mathrm{x}^{2}\right]-[\mathrm{x}]$, where $[\mathrm{t}]$ denotes the greatest integer less than or equal to t. The number of points, where f is not continuous, is :
(1) 6
(2) 3
(3) 4
(4) 5

Ans. (3)
2. The differential equation of the family of circles passing the origin and having center at the line $y=x$ is :
(1) $\left(x^{2}-y^{2}+2 x y\right) d x=\left(x^{2}-y^{2}+2 x y\right) d y$
(2) $\left(x^{2}+y^{2}+2 x y\right) d x=\left(x^{2}+y^{2}-2 x y\right) d y$
(3) $\left(x^{2}-y^{2}+2 x y\right) d x=\left(x^{2}-y^{2}-2 x y\right) d y$
(4) $\left(x^{2}+y^{2}-2 x y\right) d x=\left(x^{2}+y^{2}+2 x y\right) d y$

Ans. (3)
3. Let $S_{1}=\{z \in C:|z| \leq 5\}$,
$S_{2}=\left\{z \in C: \operatorname{Im}\left(\frac{z+1-\sqrt{3} i}{1-\sqrt{3} i}\right) \geq 0\right\}$ and
$S_{3}=\{z \in C: \operatorname{Re}(z) \geq 0\}$. Then the area of region $\mathrm{S}_{1} \cap \mathrm{~S}_{2} \cap \mathrm{~S}_{3}$ is
(1) $\frac{125 \pi}{6}$
(2) $\frac{125 \pi}{24}$
(3) $\frac{125 \pi}{4}$
(4) $\frac{125 \pi}{12}$

Ans. (4)
4. The area enclosed between the curves $y=x|x|$ and $\mathrm{y}=\mathrm{x}-|\mathrm{x}|$ is :
(1) $\frac{8}{3}$
(2) $\frac{2}{3}$
(3) 1
(4) $\frac{4}{3}$

Ans. (4)

TEST PAPER WITH ANSWER

5. 60 words can be made using all the letters of the word BHBJO, with or without meaning. If these words are written as in a dictionary, then the $50^{\text {th }}$ word is :
(1) OBBHJ
(2) HBBJO
(3) OBBJH
(4) JBBOH

Ans. (3)
6. Let $\vec{a}=2 \hat{i}+5 \hat{j}-\hat{k}, \vec{b}=2 \hat{i}-2 \hat{j}+2 \hat{k}$
and $\overrightarrow{\mathrm{c}}$ be three vectors such that
$(\vec{c}+\hat{i}) \times(\vec{a}+\vec{b}+\hat{i})=\vec{a} \times(\vec{c}+\hat{i}) . \vec{a} \cdot \vec{c}=-29$,
then $\overrightarrow{\mathrm{c}} \cdot(-2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$ is equal to :
(1) 10
(2) 5
(3) 15
(4) 12

Ans. (2)
7. Consider three vectors $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}$. Let $|\overrightarrow{\mathrm{a}}|=2,|\overrightarrow{\mathrm{~b}}|=3$ and $\vec{a}=\vec{b} \times \vec{c}$. If $\alpha \in\left[0, \frac{\pi}{3}\right]$ is the angle between the vectors \vec{b} and \vec{c}, then the minimum value of $27|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|^{2}$ is equal to :
(1) 110
(2) 105
(3) 124
(4) 121

Ans. (3)
8. Let $A(-1,1)$ and $B(2,3)$ be two points and P be a variable point above the line AB such that the area of $\triangle \mathrm{PAB}$ is 10 . If the locus of P is $\mathrm{ax}+\mathrm{by}=15$, then $5 a+2 b$ is :
(1) $-\frac{12}{5}$
(2) $-\frac{6}{5}$
(3) 4
(4) 6

Ans. (1)
9. Let (α, β, γ) be the image of the point $(8,5,7)$ in the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-2}{5}$. Then $\alpha+\beta+\gamma$ is equal to
(1) 16
(2) 18
(3) 14
(4) 20

Ans. (3)
10. If the constant term in the expansion of $\left(\frac{\sqrt[5]{3}}{x}+\frac{2 x}{\sqrt[3]{5}}\right)^{12}, x \neq 0$, is $\alpha \times 2^{8} \times \sqrt[5]{3}$, then 25α is equal to :
(1) 639
(2) 724
(3) 693
(4) 742

Ans. (3)
11. Let $f, \mathrm{~g}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as: $f(\mathrm{x})=|\mathrm{x}-1|$ and $g(x)=\left\{\begin{array}{cc}e^{x}, & x \geq 0 \\ x+1, & x \leq 0\end{array}\right.$.Then the function $f(g(x))$ is
(1) neither one-one nor onto.
(2) one-one but not onto.
(3) both one-one and onto.
(4) onto but not one-one.

Ans. (1)
12. Let the circle $\mathrm{C}_{1}: \mathrm{x}^{2}+\mathrm{y}^{2}-2(\mathrm{x}+\mathrm{y})+1=0$ and C_{2} be a circle having centre at $(-1,0)$ and radius 2 . If the line of the common chord of C_{1} and C_{2} intersects the y -axis at the point P , then the square of the distance of P from the centre of C_{1} is :
(1) 2
(2) 1
(3) 6
(4) 4

Ans. (1)
13. Let the set $S=\{2,4,8,16, \ldots . ., 512\}$ be partitioned into 3 sets $\mathrm{A}, \mathrm{B}, \mathrm{C}$ with equal number of elements such that $\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}=\mathrm{S}$ and $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{C}=\mathrm{A} \cap \mathrm{C}=\phi$. The maximum number of such possible partitions of S is equal to :
(1) 1680
(2) 1520
(3) 1710
(4) 1640

Ans. (1)
14. The values of m, n, for which the system of equations
$x+y+z=4$,
$2 x+5 y+5 z=17$,
$x+2 y+m z=n$
has infinitely many solutions, satisfy the equation :
(1) $\mathrm{m}^{2}+\mathrm{n}^{2}-\mathrm{m}-\mathrm{n}=46$
(2) $\mathrm{m}^{2}+\mathrm{n}^{2}+\mathrm{m}+\mathrm{n}=64$
(3) $\mathrm{m}^{2}+\mathrm{n}^{2}+\mathrm{mn}=68$
(4) $\mathrm{m}^{2}+\mathrm{n}^{2}-\mathrm{mn}=39$

Ans. (4)
15. The coefficients a, b, c in the quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are from the set $\{1,2,3,4,5,6\}$. If the probability of this equation having one real root bigger than the other is p , then 216 p equals :
(1) 57
(2) 38
(3) 19
(4) 76

Ans. (2)
16. Let ABCD and AEFG be squares of side 4 and 2 units, respectively. The point E is on the line segment AB and the point F is on the diagonal AC . Then the radius r of the circle passing through the point F and touching the line segments BC and CD satisfies :
(1) $r=1$
(2) $\mathrm{r}^{2}-8 \mathrm{r}+8=0$
(3) $2 r^{2}-4 r+1=0$
(4) $2 r^{2}-8 r+7=0$

Ans. (2)
17. Let $\beta(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x, m, n>0$. If $\int_{0}^{1}\left(1-x^{10}\right)^{20} d x=a \times \beta(b, c)$, then $100(a+b+c)$ equals \qquad .
(1) 1021
(2) 1120
(3) 2012
(4) 2120

Ans. (4)
18. Let $\alpha \beta \neq 0$ and $A=\left[\begin{array}{ccc}\beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2 \alpha\end{array}\right]$.

If $B=\left[\begin{array}{ccc}3 \alpha & -9 & 3 \alpha \\ -\alpha & 7 & -2 \alpha \\ -2 \alpha & 5 & -2 \beta\end{array}\right]$ is the matrix of cofactors
of the elements of A, then $\operatorname{det}(A B)$ is equal to :
(1) 343
(2) 125
(3) 64
(4) 216

Ans. (4)
19. If $y(\theta)=\frac{2 \cos \theta+\cos 2 \theta}{\cos 3 \theta+4 \cos 2 \theta+5 \cos \theta+2}$, then at $\theta=\frac{\pi}{2}, y^{\prime \prime}+y^{\prime}+\mathrm{y}$ is equal to:
(1) $\frac{3}{2}$
(2) 1
(3) $\frac{1}{2}$
(4) 2

Ans. (4)
20. For $x \geq 0$, the least value of K, for which $4^{1+x}+4^{1-\mathrm{x}}$, $\frac{\mathrm{K}}{2}, 16^{\mathrm{x}}+16^{-\mathrm{x}}$ are three consecutive terms of an A.P. is equal to :
(1) 10
(2) 4
(3) 8
(4) 16

Ans. (1)

SECTION-B

21. Let the mean and the standard deviation of the probability distribution

X	α	1	0	-3
$\mathrm{P}(\mathrm{X})$	$\frac{1}{3}$	K	$\frac{1}{6}$	$\frac{1}{4}$

be μ and σ, respectively. If $\sigma-\mu=2$, then $\sigma+\mu$ is equal to \qquad -.
Ans. (5)
22. Let $y=y(x)$ be the solution of the differential equation $\frac{d y}{d x}+\frac{2 x}{\left(1+x^{2}\right)^{2}} y=x e^{\frac{1}{\left(1+x^{2}\right)}} ; y(0)=0$.

Then the area enclosed by the curve $f(\mathrm{x})=\mathrm{y}(\mathrm{x}) \mathrm{e}^{-\frac{1}{\left(1+\mathrm{x}^{2}\right)}}$ and the line $\mathrm{y}-\mathrm{x}=4$ is \qquad .

Ans. (18)
23. The number of solutions of
$\sin ^{2} \mathrm{x}+\left(2+2 \mathrm{x}-\mathrm{x}^{2}\right) \sin \mathrm{x}-3(\mathrm{x}-1)^{2}=0$, where $-\pi \leq \mathrm{x} \leq \pi$, is

Ans. (2)
24. Let the point $(-1, \alpha, \beta)$ lie on the line of the shortest distance between the lines $\frac{x+2}{-3}=\frac{y-2}{4}=\frac{z-5}{2} \quad$ and $\quad \frac{x+2}{-1}=\frac{y+6}{2}=\frac{z-1}{0}$. Then $(\alpha-\beta)^{2}$ is equal to \qquad .

Ans. (25)
25. If
$1+\frac{\sqrt{3}-\sqrt{2}}{2 \sqrt{3}}+\frac{5-2 \sqrt{6}}{18}+\frac{9 \sqrt{3}-11 \sqrt{2}}{36 \sqrt{3}}+\frac{49-20 \sqrt{6}}{180}+\ldots$. upto $\infty=2\left(\sqrt{\frac{b}{a}}+1\right) \log _{e}\left(\frac{a}{b}\right)$, where a and b are integers with $\operatorname{gcd}(a, b)=1$, then $11 a+18 b$ is equal to \qquad .

Ans. (76)
26. Let $\mathrm{a}>0$ be a root of the equation $2 \mathrm{x}^{2}+\mathrm{x}-2=0$.

If $\lim _{x \rightarrow \frac{1}{a}} \frac{16\left(1-\cos \left(2+x-2 x^{2}\right)\right)}{\left(1-a x^{2}\right)}=\alpha+\beta \sqrt{17}$, where $\alpha, \beta \in \mathrm{Z}$ then $\alpha+\beta$ is equal to \qquad .

Ans. (170)
27. If $f(\mathrm{t})=\int_{0}^{\pi} \frac{2 \mathrm{xdx}}{1-\cos ^{2} \mathrm{t} \sin ^{2} \mathrm{x}}, 0<\mathrm{t}<\pi$, then the value
of $\int_{0}^{\frac{\pi}{2}} \frac{\pi^{2} \mathrm{dt}}{f(\mathrm{t})}$ equals \qquad .

Ans. (1)
28. Let the maximum and minimum values of $\left(\sqrt{8 x-x^{2}-12}-4\right)^{2}+(x-7)^{2}, x \in R$ be M and m respectively. Then $\mathrm{M}^{2}-\mathrm{m}^{2}$ is equal to \qquad .
Ans. (1600)
29. Let a line perpendicular to the line $2 x-y=10$ touch the parabola $y^{2}=4(x-9)$ at the point P. The distance of the point P from the centre of the circle $x^{2}+y^{2}-14 x-8 y+56=0$ is \qquad _.
Ans. (10)
30. The number of real solutions of the equation $x|x+5|+2|x+7|-2=0$ is \qquad .

Ans. (3)

Are you targeting JEE 2025 ?
Ace it with A느N's Leader Course

Online Program 18 APRIL'24

Offline Program 24 APRIL'24

ALIEET
Get The Latest
IIT-JEE Special Books at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's |JEE-Adv. PYQ's

Available in HINDI \& ENGLISH

