MATHEMATICS

SECTION-A

1. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a function given by $f(x)= \begin{cases}\frac{1-\cos 2 x}{x^{2}} & , x<0 \\ \alpha & , x=0, \text { where } \alpha, \beta \in R \text {. If } \\ \frac{\beta \sqrt{1-\cos x}}{x} & , x>0\end{cases}$ f is continuous at $\mathrm{x}=0$, then $\alpha^{2}+\beta^{2}$ is equal to :
(1) 48
(2) 12
(3) 3
(4) 6

Ans. (2)
2. Three urns A, B and C contain 7 red, 5 black; 5 red, 7 black and 6 red, 6 black balls, respectively. One of the urn is selected at random and a ball is drawn from it. If the ball drawn is black, then the probability that it is drawn from urn A is :
(1) $\frac{4}{17}$
(2) $\frac{5}{18}$
(3) $\frac{7}{18}$
(4) $\frac{5}{16}$

Ans. (2)
3. The vertices of a triangle are $\mathrm{A}(-1,3), \mathrm{B}(-2,2)$ and $\mathrm{C}(3,-1)$. A new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is :
(1) $x-y-(2+\sqrt{2})=0$
(2) $-x+y-(2-\sqrt{2})=0$
(3) $x+y-(2-\sqrt{2})=0$
(4) $x+y+(2-\sqrt{2})=0$

Ans. (3)

TEST PAPER WITH ANSWER

4. If the solution $y=y(x)$ of the differential equation $\left(x^{4}+2 x^{3}+3 x^{2}+2 x+2\right) d y-\left(2 x^{2}+2 x+3\right) d x=0$ satisfies $y(-1)=-\frac{\pi}{4}$, then $y(0)$ is equal to :
(1) $-\frac{\pi}{12}$
(2) 0
(3) $\frac{\pi}{4}$
(4) $\frac{\pi}{2}$

Ans. (3)
5. Let the sum of the maximum and the minimum values of the function $f(x)=\frac{2 x^{2}-3 x+8}{2 x^{2}+3 x+8}$ be $\frac{m}{n}$, where $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$. Then $\mathrm{m}+\mathrm{n}$ is equal to :
(1) 182
(2) 217
(3) 195
(4) 201

Ans. (4)
6. One of the points of intersection of the curves $\mathrm{y}=1+3 \mathrm{x}-2 \mathrm{x}^{2}$ and $\mathrm{y}=\frac{1}{\mathrm{x}}$ is $\left(\frac{1}{2}, 2\right)$. Let the area of the region enclosed by these curves be $\frac{1}{24}(\ell \sqrt{5}+\mathrm{m})-\operatorname{nlog}_{\mathrm{e}}(1+\sqrt{5})$, where $\ell, \mathrm{m}, \mathrm{n} \in$

N . Then $\ell+\mathrm{m}+\mathrm{n}$ is equal to
(1) 32
(2) 30
(3) 29
(4) 31

Ans. (2)
7. If the system of equations
$x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0$
$\mathrm{x}+(\cos \alpha) \mathrm{y}+(\sin \alpha) \mathrm{z}=0$
$\mathrm{x}+(\sin \alpha) \mathrm{y}-(\cos \alpha) \mathrm{z}=0$
has a non-trivial solution, then $\alpha \in\left(0, \frac{\pi}{2}\right)$ is equal to :
(1) $\frac{3 \pi}{4}$
(2) $\frac{7 \pi}{24}$
(3) $\frac{5 \pi}{24}$
(4) $\frac{11 \pi}{24}$

Ans. (3)

Download the new ALLEN app \& enroll for Online Programs

8. There are 5 points $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{P}_{5}$ on the side AB , excluding A and B , of a triangle ABC . Similarly there are 6 points $\mathrm{P}_{6}, \mathrm{P}_{7}, \ldots, \mathrm{P}_{11}$ on the side BC and 7 points $\mathrm{P}_{12}, \mathrm{P}_{13}, \ldots, \mathrm{P}_{18}$ on the side CA of the triangle. The number of triangles, that can be formed using the points $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{18}$ as vertices, is :
(1) 776
(2) 751
(3) 796
(4) 771

Ans. (2)
9. Let $f(\mathrm{x})=\left\{\begin{array}{cc}-2, & -2 \leq \mathrm{x} \leq 0 \\ \mathrm{x}-2, & 0<\mathrm{x} \leq 2\end{array}\right.$ and $\mathrm{h}(\mathrm{x})=\mathrm{f}(|\mathrm{x}|)+|\mathrm{f}(\mathrm{x})|$. Then $\int_{-2}^{2} h(x) d x$ is equal to :
(1) 2
(2) 4
(3) 1
(4) 6

Ans. (1)
10. The sum of all rational terms in the expansion of $\left(2^{\frac{1}{5}}+5^{\frac{1}{3}}\right)^{15}$ is equal to :
(1) 3133
(2) 633
(3) 931
(4) 6131

Ans. (1)
11. Let a unit vector which makes an angle of 60° with $2 \hat{i}+2 \hat{j}-\hat{k}$ and an angle of 45° with $\hat{i}-\hat{k}$ be \vec{C}. Then $\overrightarrow{\mathrm{C}}+\left(-\frac{1}{2} \hat{\mathrm{i}}+\frac{1}{3 \sqrt{2}} \hat{\mathrm{j}}-\frac{\sqrt{2}}{3} \hat{\mathrm{k}}\right)$ is :
(1) $-\frac{\sqrt{2}}{3} \hat{i}+\frac{\sqrt{2}}{3} \hat{j}+\left(\frac{1}{2}+\frac{2 \sqrt{2}}{3}\right) \hat{k}$
(2) $\frac{\sqrt{2}}{3} \hat{\mathrm{i}}+\frac{1}{3 \sqrt{2}} \hat{\mathrm{j}}-\frac{1}{2} \hat{\mathrm{k}}$
(3) $\left(\frac{1}{\sqrt{3}}+\frac{1}{2}\right) \hat{\mathrm{i}}+\left(\frac{1}{\sqrt{3}}-\frac{1}{3 \sqrt{2}}\right) \hat{\mathrm{j}}+\left(\frac{1}{\sqrt{3}}+\frac{\sqrt{2}}{3}\right) \hat{\mathrm{k}}$
(4) $\frac{\sqrt{2}}{3} \hat{\mathrm{i}}-\frac{1}{2} \hat{\mathrm{k}}$

Ans. (4)
12. Let the first three terms $2, \mathrm{p}$ and q , with $\mathrm{q} \neq 2$, of a G.P. be respectively the $7^{\text {th }}, 8^{\text {th }}$ and $13^{\text {th }}$ terms of an A.P. If the $5^{\text {th }}$ term of the G.P. is the $n^{\text {th }}$ term of the A.P., then n is equal to
(1) 151
(2) 169
(3) 177
(4) 163

Ans. (4)
13. Let $a, b \in R$. Let the mean and the variance of 6 observations $-3,4,7,-6, \mathrm{a}, \mathrm{b}$ be 2 and 23 , respectively. The mean deviation about the mean of these 6 observations is :
(1) $\frac{13}{3}$
(2) $\frac{16}{3}$
(3) $\frac{11}{3}$
(4) $\frac{14}{3}$

Ans. (1)
14. If 2 and 6 are the roots of the equation $a x^{2}+b x+1=0$, then the quadratic equation, whose roots are $\frac{1}{2 a+b}$ and $\frac{1}{6 a+b}$, is :
(1) $2 x^{2}+11 x+12=0$
(2) $4 x^{2}+14 x+12=0$
(3) $x^{2}+10 x+16=0$
(4) $x^{2}+8 x+12=0$

Ans. (4)
15. Let α and β be the sum and the product of all the non-zero solutions of the equation $(\bar{z})^{2}+|z|=0, z \in C$. Then $4\left(\alpha^{2}+\beta^{2}\right)$ is equal to :
(1) 6
(2) 4
(3) 8
(4) 2

Ans. (2)
16. Let the point, on the line passing through the points $\mathrm{P}(1,-2,3)$ and $\mathrm{Q}(5,-4,7)$, farther from the origin and at a distance of 9 units from the point P , be (α, β, γ). Then $\alpha^{2}+\beta^{2}+\gamma^{2}$ is equal to :
(1) 155
(2) 150
(3) 160
(4) 165

Ans. (1)
17. A square is inscribed in the circle $x^{2}+y^{2}-10 x-6 y+30=0$. One side of this square is parallel to $y=x+3$. If $\left(x_{i}, y_{i}\right)$ are the vertices of the square, then $\sum\left(x_{i}^{2}+y_{i}^{2}\right)$ is equal to :
(1) 148
(2) 156
(3) 160
(4) 152

Ans. (4)
18. If the domain of the function $\sin ^{-1}\left(\frac{3 x-22}{2 x-19}\right)+\log _{e}\left(\frac{3 x^{2}-8 x+5}{x^{2}-3 x-10}\right)$ is $(\alpha, \beta]$, then $3 \alpha+10 \beta$ is equal to :
(1) 97
(2) 100
(3) 95
(4) 98

Ans. (1)
19. Let $f(\mathrm{x})=\mathrm{x}^{5}+2 \mathrm{e}^{\mathrm{x} / 4}$ for all $\mathrm{x} \in$ R. Consider a function $g(x)$ such that $(g o f)(x)=x$ for all $x \in R$. Then the value of $8 g^{\prime}(2)$ is :
(1) 16
(2) 4
(3) 8
(4) 2

Ans. (1)
20. Let $\alpha \in(0, \infty)$ and $A=\left[\begin{array}{lll}1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$.

If $\operatorname{det}\left(\operatorname{adj}\left(2 \mathrm{~A}-\mathrm{A}^{\mathrm{T}}\right) \cdot \operatorname{adj}\left(\mathrm{A}-2 \mathrm{~A}^{\mathrm{T}}\right)\right)=2^{8}$, then $(\operatorname{det}(\mathrm{A}))^{2}$ is equal to :
(1) 1
(2) 49
(3) 16
(4) 36

Ans. (3)

SECTION-B

21. If $\lim _{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 / 3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}}=\frac{m \sqrt{5}}{n(2 n)^{2 / 3}}$, where $\operatorname{gcd}(m, n)=1$, then $8 m+12 n$ is equal to \qquad
Ans. (100)
22. In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let m and n respectively be the least and the most number of students who studied all the three subjects. Then $m+n$ is equal to \qquad
Ans. (45)
23. Let the solution $y=y(x)$ of the differential equation $\frac{d y}{d x}-y=1+4 \sin x$ satisfy $y(\pi)=1$. Then $\mathrm{y}\left(\frac{\pi}{2}\right)+10$ is equal to \qquad
Ans. (7)
24. If the shortest distance between the lines $\frac{x+2}{2}=\frac{y+3}{3}=\frac{z-5}{4}$ and $\frac{x-3}{1}=\frac{y-2}{-3}=\frac{z+4}{2}$ is $\frac{38}{3 \sqrt{5}} \mathrm{k}$ and $\int_{0}^{\mathrm{k}}\left[\mathrm{x}^{2}\right] \mathrm{dx}=\alpha-\sqrt{\alpha}$, where $\quad[\mathrm{x}]$ denotes the greatest integer function, then $6 \alpha^{3}$ is equal to \qquad
Ans. (48)
25. Let A be a square matrix of order 2 such that $|A|=2$ and the sum of its diagonal elements is -3 . If the points (x, y) satisfying $A^{2}+x A+y I=0$ lie on a hyperbola, whose transverse axis is parallel to the x -axis, eccentricity is e and the length of the latus rectum is ℓ, then $\mathrm{e}^{4}+\ell^{4}$ is equal to \qquad
Ans. (Bouns)
NTA Ans. (25)
26. Let $\mathrm{a}=1+\frac{{ }^{2} \mathrm{C}_{2}}{3!}+\frac{{ }^{3} \mathrm{C}_{2}}{4!}+\frac{{ }^{4} \mathrm{C}_{2}}{5!}+\ldots$, $\mathrm{b}=1+\frac{{ }^{1} \mathrm{C}_{0}+{ }^{1} \mathrm{C}_{1}}{1!}+\frac{{ }^{2} \mathrm{C}_{0}+{ }^{2} \mathrm{C}_{1}+{ }^{2} \mathrm{C}_{2}}{2!}+\frac{{ }^{3} \mathrm{C}_{0}+{ }^{3} \mathrm{C}_{1}+{ }^{3} \mathrm{C}_{2}+{ }^{3} \mathrm{C}_{3}}{3!}+\ldots$ Then $\frac{2 b}{a^{2}}$ is equal to \qquad
Ans. (8)
27. Let A be a 3×3 matrix of non-negative real elements such that $\mathrm{A}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=3\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Then the maximum value of $\operatorname{det}(A)$ is \qquad
Ans. (27)
28. Let the length of the focal chord $P Q$ of the parabola $y^{2}=12 x$ be 15 units. If the distance of $P Q$ from the origin is p , then $10 \mathrm{p}^{2}$ is equal to \qquad -
Ans. (72)
29. Let ABC be a triangle of area $15 \sqrt{2}$ and the vectors $\overrightarrow{\mathrm{AB}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-7 \hat{\mathrm{k}}, \quad \overrightarrow{\mathrm{BC}}=\mathrm{a} \hat{\mathrm{i}}+\mathrm{b} \hat{\mathrm{j}}+\mathrm{c} \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{AC}}=6 \hat{\mathrm{i}}+\mathrm{d} \hat{\mathrm{j}}-2 \hat{\mathrm{k}}, d>0$. Then the square of the length of the largest side of the triangle ABC is

Ans. (54)
30. If $\int_{0}^{\frac{\pi}{4}} \frac{\sin ^{2} x}{1+\sin x \cos x} d x=\frac{1}{a} \log _{e}\left(\frac{a}{3}\right)+\frac{\pi}{b \sqrt{3}}$, where a,
$b \in N$, then $a+b$ is equal to \qquad
Ans. (8)

Are you targeting JEE 2025 ?

Ace it with ALLEN's Leader Course

Online Program 18 APRIL'24

Offline Program) 24 APRIL'24

ALLEET
Get The Latest

IIT-JJE Special Books

 at Your Door Steps...!!JOIN THE JOURNEY OF LEARNING with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's |JEE-Adv. PYQ's

Available in HINDI \& ENGLISH

